Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (26)

Search Parameters:
Keywords = alveolar pneumocytes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 3590 KiB  
Article
Mesocricetus auratus (Golden Syrian Hamster) Experimental Model of SARS-CoV-2 Infection Reveals That Lung Injury Is Associated with Phenotypic Differences Between SARS-CoV-2 Variants
by Daniela del Rosario Flores Rodrigues, Alexandre dos Santos da Silva, Arthur Daniel Rocha Alves, Bárbara Araujo Rossi, Richard de Almeida Lima, Sarah Beatriz Salvador Castro Faria, Oswaldo Gonçalves Cruz, Rodrigo Muller, Julio Scharfstein, Amanda Roberta Revoredo Vicentino, Aline da Rocha Matos, João Paulo Rodrigues dos Santos, Pedro Paulo Abreu Manso, Milla Bezerra Paiva, Debora Ferreira Barreto-Vieira, Gabriela Cardoso Caldas, Marcelo Pelajo Machado and Marcelo Alves Pinto
Viruses 2025, 17(8), 1048; https://doi.org/10.3390/v17081048 - 28 Jul 2025
Viewed by 437
Abstract
Despite the current level of public immunity to SARS-CoV-2, the early inflammatory events associated with respiratory distress in COVID-19 patients are not fully elucidated. Syrian golden hamsters, facultative hibernators, recapitulate the phenotype of SARS-CoV-2-induced severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)—induced severe acute [...] Read more.
Despite the current level of public immunity to SARS-CoV-2, the early inflammatory events associated with respiratory distress in COVID-19 patients are not fully elucidated. Syrian golden hamsters, facultative hibernators, recapitulate the phenotype of SARS-CoV-2-induced severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)—induced severe acute lung injury seen in patients. In this study, we describe the predominance of the innate immune response in hamsters inoculated with four different SARS-CoV-2 variants, underscoring phenotypic differences among them. Severe inflammatory lung injury was chronologically associated with acute and significant weight loss, mainly in animals inoculated with A.2 and Delta variants. Omicron-infected animals had lower overall histopathology scores compared to other variants. We highlight the central role of endothelial injury and activation in the pathogenesis of experimental SARS-CoV-2 infection in hamsters, characterised by the presence of proliferative type I and type II pneumocytes with abundant surfactant expression, thereby maintaining hyperinflated alveolar fields. Additionally, there was evidence of intrapulmonary lymphatic vessel proliferation, which was accompanied by a lack of detectable microthrombosis in the lung parenchyma. However, white microthrombi were observed in lymphatic vessels. Our findings suggest that the physiological compensatory mechanisms that maintain respiratory homeostasis in Golden Syrian hamsters prevent severe respiratory distress and death after SARS-CoV-2 infection. Full article
(This article belongs to the Special Issue Emerging Concepts in SARS-CoV-2 Biology and Pathology, 3rd Edition)
Show Figures

Figure 1

12 pages, 653 KiB  
Brief Report
A Comprehensive Clinicopathological Analysis of the First Wave of COVID-19 in Slovakia
by Lucia Krivosikova, Michal Palkovic, Pavol Janega, Kristina Mikus Kuracinova, Andrea Janegova and Pavel Babal
COVID 2025, 5(3), 29; https://doi.org/10.3390/covid5030029 - 24 Feb 2025
Viewed by 657
Abstract
The early introduction of strict measures during the first wave of COVID-19 in Slovakia resulted in a low number of fatal cases. Most of them (27/28) were autopsied with microscopic evaluation focusing on changes in the lungs. The average age of the patients [...] Read more.
The early introduction of strict measures during the first wave of COVID-19 in Slovakia resulted in a low number of fatal cases. Most of them (27/28) were autopsied with microscopic evaluation focusing on changes in the lungs. The average age of the patients was 79. The most common microscopic finding was diffuse alveolar damage in various stages. There were statistically significant relationships between microthrombi and neutrophil count, level of C-reactive protein, and immobility. Oxygen therapy, as a factor that might cause changes typical for diffuse alveolar damage, showed statistically significant relationships with perivascular lymphocytic infiltrate, alveolar capillaritis, alveolar bleeding, and pneumocyte hyperplasia. Hyaline membranes showed a statistically significant relationship with monocyte count, and borderline statistically significant relationships with platelet count and antimalarial therapy. The level of C-reactive protein and neutrophil count seemed to be useful for predicting microthrombi formation. Interestingly, there were no statistically significant relationships between microthrombosis and anticoagulant therapy, platelet count, or level of D-dimer. Full article
(This article belongs to the Section COVID Public Health and Epidemiology)
Show Figures

Figure 1

49 pages, 2915 KiB  
Review
The Chemokine System as a Key Regulator of Pulmonary Fibrosis: Converging Pathways in Human Idiopathic Pulmonary Fibrosis (IPF) and the Bleomycin-Induced Lung Fibrosis Model in Mice
by Remo Castro Russo and Bernhard Ryffel
Cells 2024, 13(24), 2058; https://doi.org/10.3390/cells13242058 - 12 Dec 2024
Cited by 3 | Viewed by 4412
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and lethal interstitial lung disease (ILD) of unknown origin, characterized by limited treatment efficacy and a fibroproliferative nature. It is marked by excessive extracellular matrix deposition in the pulmonary parenchyma, leading to progressive lung volume decline [...] Read more.
Idiopathic pulmonary fibrosis (IPF) is a chronic and lethal interstitial lung disease (ILD) of unknown origin, characterized by limited treatment efficacy and a fibroproliferative nature. It is marked by excessive extracellular matrix deposition in the pulmonary parenchyma, leading to progressive lung volume decline and impaired gas exchange. The chemokine system, a network of proteins involved in cellular communication with diverse biological functions, plays a crucial role in various respiratory diseases. Chemokine receptors trigger the activation, proliferation, and migration of lung-resident cells, including pneumocytes, endothelial cells, alveolar macrophages, and fibroblasts. Around 50 chemokines can potentially interact with 20 receptors, expressed by both leukocytes and non-leukocytes such as tissue parenchyma cells, contributing to processes such as leukocyte mobilization from the bone marrow, recirculation through lymphoid organs, and tissue influx during inflammation or immune response. This narrative review explores the complexity of the chemokine system in the context of IPF and the bleomycin-induced lung fibrosis mouse model. The goal is to identify specific chemokines and receptors as potential therapeutic targets. Recent progress in understanding the role of the chemokine system during IPF, using experimental models and molecular diagnosis, underscores the complex nature of this system in the context of the disease. Despite advances in experimental models and molecular diagnostics, discovering an effective therapy for IPF remains a significant challenge in both medicine and pharmacology. This work delves into microarray results from lung samples of IPF patients and murine samples at different stages of bleomycin-induced pulmonary fibrosis. By discussing common pathways identified in both IPF and the experimental model, we aim to shed light on potential targets for therapeutic intervention. Dysregulation caused by abnormal chemokine levels observed in IPF lungs may activate multiple targets, suggesting that chemokine signaling plays a central role in maintaining or perpetuating lung fibrogenesis. The highlighted chemokine axes (CCL8-CCR2, CCL19/CCL21-CCR7, CXCL9-CXCR3, CCL3/CCL4/CCL5-CCR5, and CCL20-CCR6) present promising opportunities for advancing IPF treatment research and uncovering new pharmacological targets within the chemokine system. Full article
Show Figures

Figure 1

19 pages, 1734 KiB  
Article
Anti-Inflammatory Effects of SGLT1 Synthetic Ligand in In Vitro and In Vivo Models of Lung Diseases
by Cristiano Rumio, Giuseppina Dusio, Diego Cardani, Barbara La Ferla and Giuseppe D’Orazio
Immuno 2024, 4(4), 502-520; https://doi.org/10.3390/immuno4040031 - 8 Nov 2024
Cited by 2 | Viewed by 1595
Abstract
Background. Several research findings suggest that sodium–glucose co-transporter 1 (SGLT1) is implicated in the progression and control of infections and inflammation processes at the pulmonary level. Moreover, our previous works indicate an engagement of SGLT1 in inhibiting the inflammatory response induced in intestinal [...] Read more.
Background. Several research findings suggest that sodium–glucose co-transporter 1 (SGLT1) is implicated in the progression and control of infections and inflammation processes at the pulmonary level. Moreover, our previous works indicate an engagement of SGLT1 in inhibiting the inflammatory response induced in intestinal epithelial cells by TLR agonists. In this study, we report the anti-inflammatory effects observed in the lung upon engagement of the transporter, and upon the use of glucose and BLF501, a synthetic SGLT1 ligand, for the treatment of animal models of lung inflammation, including a model of allergic asthma. Methods. In vitro experiments were carried out on human pneumocytes stimulated with LPS from Pseudomonas aeruginosa and co-treated with glucose or BLF501, and the production of IL-8 was determined. The anti-inflammatory effect associated with SGLT1 engagement was then assessed in in vivo models of LPS-induced lung injury, as well as in a murine model of ovalbumin (OVA)-induced asthma, treating mice with aerosolized LPS and the synthetic ligand. After the treatments, lung samples were collected and analyzed for morphological alterations by histological examination and immunohistochemical analysis; serum and BALF samples were collected for the determination of several pro- and anti-inflammatory markers. Results. In vitro experiments on human pneumocytes treated with LPS showed significant inhibition of IL-8 production. The results of two in vivo experimental models, mice exposed to aerosolized LPS and OVA-induced asthma, revealed that the engagement of glucose transport protein 1 (SGLT1) induced a significant anti-inflammatory effect in the lungs. In the first model, the acute respiratory distress induced in mice was abrogated by co-treatment with the ligand, with almost complete recovery of the lung morphology and physiology. Similar results were observed in the OVA-induced model of allergic asthma, both with aerosolized and oral BLF501, suggesting an engagement of SGLT1 expressed both in intestinal and alveolar cells. Conclusions. Our results confirmed the engagement of SGLT1 in lung inflammation processes and suggested that BLF501, a non-metabolizable synthetic ligand of the co-transporter, might represent a drug candidate for therapeutic intervention against lung inflammation states. Full article
Show Figures

Figure 1

15 pages, 2988 KiB  
Article
Bilirubin Exerts Protective Effects on Alveolar Type II Pneumocytes in an In Vitro Model of Oxidative Stress
by Stefanie Endesfelder, Thomas Schmitz and Christoph Bührer
Int. J. Mol. Sci. 2024, 25(10), 5323; https://doi.org/10.3390/ijms25105323 - 13 May 2024
Cited by 1 | Viewed by 1136
Abstract
Newborn infants face a rapid surge of oxygen and a more protracted rise of unconjugated bilirubin after birth. Bilirubin has a strong antioxidant capacity by scavenging free radicals, but it also exerts direct toxicity. This study investigates whether cultured rat alveolar epithelial cells [...] Read more.
Newborn infants face a rapid surge of oxygen and a more protracted rise of unconjugated bilirubin after birth. Bilirubin has a strong antioxidant capacity by scavenging free radicals, but it also exerts direct toxicity. This study investigates whether cultured rat alveolar epithelial cells type II (AEC II) react differently to bilirubin under different oxygen concentrations. The toxic threshold concentration of bilirubin was narrowed down by means of a cell viability test. Subsequent analyses of bilirubin effects under 5% oxygen and 80% oxygen compared to 21% oxygen, as well as pretreatment with bilirubin after 4 h and 24 h of incubation, were performed to determine the induction of apoptosis and the gene expression of associated transcripts of cell death, proliferation, and redox-sensitive transcription factors. Oxidative stress led to an increased rate of cell death and induced transcripts of redox-sensitive signaling pathways. At a non-cytotoxic concentration of 400 nm, bilirubin attenuated oxidative stress-induced responses and possibly mediated cellular antioxidant defense by influencing Nrf2/Hif1α- and NFκB-mediated signaling pathways. In conclusion, the study demonstrates that rat AEC II cells are protected from oxidative stress-induced impairment by low-dose bilirubin. Full article
(This article belongs to the Special Issue Pharmacological Modulation of Oxidative Stress)
Show Figures

Figure 1

14 pages, 7101 KiB  
Article
Immunohistochemical and Morphometric Analysis of Lung Tissue in Fatal COVID-19
by Ioana-Andreea Gheban-Roșca, Bogdan-Alexandru Gheban, Bogdan Pop, Daniela-Cristina Mironescu, Vasile Costel Siserman, Elena Mihaela Jianu, Tudor Drugan and Sorana D. Bolboacă
Diagnostics 2024, 14(9), 914; https://doi.org/10.3390/diagnostics14090914 - 27 Apr 2024
Viewed by 3158
Abstract
The primary targets of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the lungs are type I pneumocytes, macrophages, and endothelial cells. We aimed to identify lung cells targeted by SARS-CoV-2 using viral nucleocapsid protein staining and morphometric features on patients with fatal [...] Read more.
The primary targets of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the lungs are type I pneumocytes, macrophages, and endothelial cells. We aimed to identify lung cells targeted by SARS-CoV-2 using viral nucleocapsid protein staining and morphometric features on patients with fatal COVID-19. We conducted a retrospective analysis of fifty-one autopsy cases of individuals who tested positive for SARS-CoV-2. Demographic and clinical information were collected from forensic reports, and lung tissue was examined for microscopic lesions and the presence of specific cell types. Half of the evaluated cohort were older than 71 years, and the majority were male (74.5%). In total, 24 patients presented diffuse alveolar damage (DAD), and 50.9% had comorbidities (56.9% obesity, 33.3% hypertension, 15.7% diabetes mellitus). Immunohistochemical analysis showed a similar pattern of infected macrophages, infected type I pneumocytes, and endothelial cells, regardless of the presence of DAD (p > 0.5). The immunohistochemical reactivity score (IRS) was predominantly moderate but without significant differences between patients with and without DAD (p = 0.633 IRS for type I pneumocytes, p = 0.773 IRS for macrophage, and p = 0.737 for IRS endothelium). The nucleus/cytoplasm ratio shows lower values in patients with DAD (median: 0.29 vs. 0.35), but the difference only reaches a tendency for statistical significance (p = 0.083). Our study confirms the presence of infected macrophages, type I pneumocytes, and endothelial cells with a similar pattern in patients with and without diffuse alveolar damage. Full article
(This article belongs to the Special Issue Updates on Forensic Pathology)
Show Figures

Figure 1

14 pages, 6773 KiB  
Article
Platelet Activating Factor Receptor and Intercellular Adhesion Molecule–1 Expression Increases in the Small Airway Epithelium and Parenchyma of Patients with Idiopathic Pulmonary Fibrosis: Implications for Microbial Pathogenesis
by Affan Mahmood Shahzad, Wenying Lu, Surajit Dey, Prem Bhattarai, Archana Vijay Gaikwad, Jade Jaffar, Glen Westall, Darren Sutherland, Gurpreet Kaur Singhera, Tillie-Louise Hackett, Mathew Suji Eapen and Sukhwinder Singh Sohal
J. Clin. Med. 2024, 13(7), 2126; https://doi.org/10.3390/jcm13072126 - 6 Apr 2024
Cited by 2 | Viewed by 2406
Abstract
Background: Idiopathic pulmonary fibrosis (IPF) is an irreversible lung fibrotic disorder of unknown cause. It has been reported that bacterial and viral co-infections exacerbate disease pathogenesis. These pathogens use adhesion molecules such as platelet activating factor receptor (PAFR) and intercellular adhesion molecule-1 [...] Read more.
Background: Idiopathic pulmonary fibrosis (IPF) is an irreversible lung fibrotic disorder of unknown cause. It has been reported that bacterial and viral co-infections exacerbate disease pathogenesis. These pathogens use adhesion molecules such as platelet activating factor receptor (PAFR) and intercellular adhesion molecule-1 (ICAM–1) to gain cellular entry, causing infections. Methods: Immunohistochemical staining was carried out for lung resections from IPF patients (n = 11) and normal controls (n = 12). The quantification of PAFR and ICAM–1 expression is presented as a percentage in the small airway epithelium. Also, type 2 pneumocytes and alveolar macrophages were counted as cells per mm2 of the parenchymal area and presented as a percentage. All image analysis was done using Image Pro Plus 7.0 software. Results: PAFR expression significantly increased in the small airway epithelium (p < 0.0001), type 2 pneumocytes (p < 0.0001) and alveolar macrophages (p < 0.0001) compared to normal controls. Similar trend was observed for ICAM–1 expression in the small airway epithelium (p < 0.0001), type 2 pneumocytes (p < 0.0001) and alveolar macrophages (p < 0.0001) compared to normal controls. Furthermore, the proportion of positively expressed type 2 pneumocytes and alveolar macrophages was higher in IPF than in normal control. Conclusions: This is the first study to show PAFR and ICAM–1 expression in small airway epithelium, type 2 pneumocytes and alveolar macrophages in IPF. These findings could help intervene microbial impact and facilitate management of disease pathogenesis. Full article
(This article belongs to the Section Respiratory Medicine)
Show Figures

Figure 1

17 pages, 11121 KiB  
Article
Histopathological Pulmonary Lesions in 1st-Day Newborn Piglets Derived from PRRSV-1 MLV Vaccinated Sows at the Last Stage of Gestation
by Georgios I. Papakonstantinou, Dimitra Psalla, Aris Pourlis, Ioanna Stylianaki, Labrini V. Athanasiou, Eleni Tzika, Eleftherios Meletis, Polychronis Kostoulas, George Maragkakis, Georgios Christodoulopoulos, Nikolaos Papaioannou and Vasileios G. Papatsiros
Life 2023, 13(7), 1609; https://doi.org/10.3390/life13071609 - 23 Jul 2023
Cited by 3 | Viewed by 2694
Abstract
Modified live virus (MLV) vaccines for the control of porcine respiratory and reproductive syndrome virus (PRRSV) have been associated with the vertical and horizontal transmission of vaccine viruses. The present study aimed to describe pathological lung lesions in piglets born by gilts vaccinated [...] Read more.
Modified live virus (MLV) vaccines for the control of porcine respiratory and reproductive syndrome virus (PRRSV) have been associated with the vertical and horizontal transmission of vaccine viruses. The present study aimed to describe pathological lung lesions in piglets born by gilts vaccinated with PRRSV-1 MLV. In total, 25 gilts were vaccinated at late gestation (100th day) and were divided into five groups according to the different vaccines (Vac) used: no vaccine—control group, Vac-1—strain DV, Vac-2—strain VP-046 BIS, Vac-3—strain 94881, Vac-4—strain 96V198. Within the first 0–9 h of the farrowing, blood samples were collected from all newborn piglets and lung samples were exanimated grossly, histopathologically and with scanning electron microscopy. PRRSV (RT-PCR-positive) and antibodies were detected in the serum of piglets from gilts vaccinated with Vac-2. In these piglets, moderate to severe interstitial pneumonia with thickened alveolar septa was noticed. Type II pneumocyte hyperplasia was also observed. The rest of the trial piglets showed unremarkable lung lesions. Phylogenetic analysis revealed the 98.7% similarity of the PRRSV field strain (GR 2019-1) to the PRRS MLV vaccine strain VP-046 BIS. In conclusion, the Vac-2 PRRSV vaccine strain can act as an infectious strain when vaccination is administrated at late gestation, causing lung lesions. Full article
(This article belongs to the Special Issue Porcine Reproductive and Respiratory Syndrome Virus (PRRSV))
Show Figures

Figure 1

15 pages, 615 KiB  
Systematic Review
A Systematic Review of Lung Autopsy Findings in Elderly Patients after SARS-CoV-2 Infection
by Susa Septimiu-Radu, Tejaswi Gadela, Doros Gabriela, Cristian Oancea, Ovidiu Rosca, Voichita Elena Lazureanu, Roxana Manuela Fericean, Felix Bratosin, Andreea Dumitrescu, Emil Robert Stoicescu, Iulia Bagiu, Mircea Murariu and Adelina Mavrea
J. Clin. Med. 2023, 12(5), 2070; https://doi.org/10.3390/jcm12052070 - 6 Mar 2023
Cited by 14 | Viewed by 3733
Abstract
Although COVID-19 may cause various and multiorgan diseases, few research studies have examined the postmortem pathological findings of SARS-CoV-2-infected individuals who died. Active autopsy results may be crucial for understanding how COVID-19 infection operates and preventing severe effects. In contrast to younger persons, [...] Read more.
Although COVID-19 may cause various and multiorgan diseases, few research studies have examined the postmortem pathological findings of SARS-CoV-2-infected individuals who died. Active autopsy results may be crucial for understanding how COVID-19 infection operates and preventing severe effects. In contrast to younger persons, however, the patient’s age, lifestyle, and concomitant comorbidities might alter the morpho-pathological aspects of the damaged lungs. Through a systematic analysis of the available literature until December 2022, we aimed to provide a thorough picture of the histopathological characteristics of the lungs in patients older than 70 years who died of COVID-19. A thorough search was conducted on three electronic databases (PubMed, Scopus, and Web of Science), including 18 studies and a total of 478 autopsies performed. It was observed that the average age of patients was 75.6 years, of which 65.4% were men. COPD was identified in an average of 16.7% of all patients. Autopsy findings indicated significantly heavier lungs, with an average weight of the right lung of 1103 g, while the left lung mass had an average weight of 848 g. Diffuse alveolar damage was a main finding in 67.2% of all autopsies, while pulmonary edema had a prevalence of between 50% and 70%. Thrombosis was also a significant finding, while some studies described focal and extensive pulmonary infarctions in 72.7% of elderly patients. Pneumonia and bronchopneumonia were observed, with a prevalence ranging from 47.6% to 89.5%. Other important findings described in less detail comprise hyaline membranes, the proliferation of pneumocytes and fibroblasts, extensive suppurative bronchopneumonic infiltrates, intra-alveolar edema, thickened alveolar septa, desquamation of pneumocytes, alveolar infiltrates, multinucleated giant cells, and intranuclear inclusion bodies. These findings should be corroborated with children’s and adults’ autopsies. Postmortem examination as a technique for studying the microscopic and macroscopic features of the lungs might lead to a better knowledge of COVID-19 pathogenesis, diagnosis, and treatment, hence enhancing elderly patient care. Full article
(This article belongs to the Special Issue Clinical Features and Outcomes of COVID-19 in Older Adults)
Show Figures

Figure 1

20 pages, 15223 KiB  
Article
Expression Patterns of Serotonin Receptors 5-HT1A, 5-HT2A, and 5-HT3A during Human Fetal Lung Development
by Jelena Nikolić, Katarina Vukojević, Violeta Šoljić, Josip Mišković, Martina Orlović Vlaho, Mirna Saraga-Babić and Natalija Filipović
Int. J. Mol. Sci. 2023, 24(3), 2965; https://doi.org/10.3390/ijms24032965 - 3 Feb 2023
Cited by 7 | Viewed by 3298
Abstract
We analyzed the expression of the serotonin receptors 5-HT1A, 5-HT2A, and 5-HT3A at four different stages of fetal lung development from 12 to 40 weeks of gestation, divided into four groups: the pseudoglandular stage (12–16th week of development; n = 8), the canalicular [...] Read more.
We analyzed the expression of the serotonin receptors 5-HT1A, 5-HT2A, and 5-HT3A at four different stages of fetal lung development from 12 to 40 weeks of gestation, divided into four groups: the pseudoglandular stage (12–16th week of development; n = 8), the canalicular stage (16th–26th week of development; n = 7), the saccular stage (26th-36th week of development; n = 5), and the alveolar stage (36th–40th week of development; n = 5). The strongest expression of all three receptor types was found in the epithelium of the proximal airways during the pseudoglandular, canalicular, and saccular stages and in a vascular wall. 5-HT1A was also strongly expressed in the smooth muscle cells of the proximal airway. Vascular smooth muscle cells and endothelium occasionally showed a strong expression of 5-HT1A and 5-HT2A. In the alveolar stage, the expression of 5-HT1A, 5-HT2A, and 5-HT3A was detected in both type I (p1) and type II (p2) pneumocytes, with a stronger expression in p2. A significant decrease in percent the 5-HT2A area and in the integrated density was observed at the alveolar stage. On the other hand, a significant decrease in the percentage area but an increase in the integrated density was observed for 5-HT3A toward the alveolar stage, suggesting that a smaller number of cells expressed 5-HT3A but that they (p1 and p2) significantly increased their 5-HT3A expression at the alveolar stage. The results presented provided us with new data on the development and function of the serotonin system in the human fetal lung and gave us insight into their possible involvement in the pathogenesis of lung pathology, particularly that characteristic of the neonatal period. Full article
(This article belongs to the Special Issue Serotonin Receptors in Human Health and Disease)
Show Figures

Figure 1

13 pages, 4909 KiB  
Review
Pulmonary Fibrosis Related to Amiodarone—Is It a Standard Pathophysiological Pattern? A Case-Based Literature Review
by Corina Eugenia Budin, Iuliu Gabriel Cocuz, Adrian Horațiu Sabău, Raluca Niculescu, Ingrid Renata Ianosi, Vladimir Ioan and Ovidiu Simion Cotoi
Diagnostics 2022, 12(12), 3217; https://doi.org/10.3390/diagnostics12123217 - 19 Dec 2022
Cited by 14 | Viewed by 6573
Abstract
Amiodarone hydrochloride is an antiarrhythmic drug, with proven efficacy in prevention and treatment of numerous arrhythmias, atrial fibrillation especially, or ventricular arrhythmias, with a long half-life (55–60 days). The increased risk of developing amiodarone-induced pulmonary fibrosis is directly related to the dose and [...] Read more.
Amiodarone hydrochloride is an antiarrhythmic drug, with proven efficacy in prevention and treatment of numerous arrhythmias, atrial fibrillation especially, or ventricular arrhythmias, with a long half-life (55–60 days). The increased risk of developing amiodarone-induced pulmonary fibrosis is directly related to the dose and the duration of the intake. Amiodarone-induced pulmonary toxicity is conditioned by dose, patient’s age, and pre-existent pulmonary pathologies. The pattern for drug-induced lung injury may vary in many forms, but the amiodarone can cause polymorphous injuries such as diffuse alveolar damage, chronical interstitial pneumonia, organizing pneumonia, pulmonary hemorrhage, lung nodules or pleural disease. The pathological mechanism of pulmonary injury induced by amiodarone consists of the accumulation of phospholipid complexes in histocytes and type II pneumocytes. Differential diagnosis of pulmonary fibrosis induced by amiodarone is made mainly with idiopathic pulmonary fibrosis, left ventricular failure or infectious disease. Before starting treatment with amiodarone, patients should be informed of potential adverse effects and any new respiratory symptoms should promptly be reported to their family physician or attending physician. The assessment carried out at the initiation of amiodarone treatment should include at least chest X-ray and respiratory function tests and extrapulmonary evaluation. Full article
(This article belongs to the Special Issue Advances in Cardiopulmonary Imaging)
Show Figures

Figure 1

25 pages, 2738 KiB  
Article
microRNA Expression Profile of Purified Alveolar Epithelial Type II Cells
by Stefan Dehmel, Katharina J. Weiss, Natalia El-Merhie, Jens Callegari, Birte Konrad, Kathrin Mutze, Oliver Eickelberg, Melanie Königshoff and Susanne Krauss-Etschmann
Genes 2022, 13(8), 1420; https://doi.org/10.3390/genes13081420 - 10 Aug 2022
Cited by 2 | Viewed by 3242
Abstract
Alveolar type II (ATII) cells are essential for the maintenance of the alveolar homeostasis. However, knowledge of the expression of the miRNAs and miRNA-regulated networks which control homeostasis and coordinate diverse functions of murine ATII cells is limited. Therefore, we asked how miRNAs [...] Read more.
Alveolar type II (ATII) cells are essential for the maintenance of the alveolar homeostasis. However, knowledge of the expression of the miRNAs and miRNA-regulated networks which control homeostasis and coordinate diverse functions of murine ATII cells is limited. Therefore, we asked how miRNAs expressed in ATII cells might contribute to the regulation of signaling pathways. We purified “untouched by antibodies” ATII cells using a flow cytometric sorting method with a highly autofluorescent population of lung cells. TaqMan® miRNA low-density arrays were performed on sorted cells and intersected with miRNA profiles of ATII cells isolated according to a previously published protocol. Of 293 miRNAs expressed in both ATII preparations, 111 showed equal abundances. The target mRNAs of bona fide ATII miRNAs were used for pathway enrichment analysis. This analysis identified nine signaling pathways with known functions in fibrosis and/or epithelial-to-mesenchymal transition (EMT). In particular, a subset of 19 miRNAs was found to target 21 components of the TGF-β signaling pathway. Three of these miRNAs (miR-16-5p, -17-5p and -30c-5p) were down-modulated by TGF-β1 stimulation in human A549 cells, and concomitant up-regulation of associated mRNA targets (BMPR2, JUN, RUNX2) was observed. These results suggest an important role for miRNAs in maintaining the homeostasis of the TGF-β signaling pathway in ATII cells under physiological conditions. Full article
(This article belongs to the Special Issue The Ins and Outs of miRNAs as Biomarkers)
Show Figures

Figure 1

18 pages, 3503 KiB  
Article
Prometastatic Effect of ATX Derived from Alveolar Type II Pneumocytes and B16-F10 Melanoma Cells
by Mélanie A. Dacheux, Sue Chin Lee, Yoojin Shin, Derek D. Norman, Kuan-Hung Lin, Shuyu E, Junming Yue, Zoltán Benyó and Gábor J. Tigyi
Cancers 2022, 14(6), 1586; https://doi.org/10.3390/cancers14061586 - 21 Mar 2022
Cited by 8 | Viewed by 3565
Abstract
Although metastases are the principal cause of cancer-related deaths, the molecular aspects of the role of stromal cells in the establishment of the metastatic niche remain poorly understood. One of the most prevalent sites for cancer metastasis is the lungs. According to recent [...] Read more.
Although metastases are the principal cause of cancer-related deaths, the molecular aspects of the role of stromal cells in the establishment of the metastatic niche remain poorly understood. One of the most prevalent sites for cancer metastasis is the lungs. According to recent research, lung stromal cells such as bronchial epithelial cells and resident macrophages secrete autotaxin (ATX), an enzyme with lysophospholipase D activity that promotes cancer progression. In fact, several studies have shown that many cell types in the lung stroma could provide a rich source of ATX in diseases. In the present study, we sought to determine whether ATX derived from alveolar type II epithelial (ATII) pneumocytes could modulate the progression of lung metastasis, which has not been evaluated previously. To accomplish this, we used the B16-F10 syngeneic melanoma model, which readily metastasizes to the lungs when injected intravenously. Because B16-F10 cells express high levels of ATX, we used the CRISPR-Cas9 technology to knock out the ATX gene in B16-F10 cells, eliminating the contribution of tumor-derived ATX in lung metastasis. Next, we used the inducible Cre/loxP system (Sftpc-CreERT2/Enpp2fl/fl) to generate conditional knockout (KO) mice in which ATX is specifically deleted in ATII cells (i.e., Sftpc-KO). Injection of ATX-KO B16-F10 cells into Sftpc-KO or Sftpc-WT control littermates allowed us to investigate the specific contribution of ATII-derived ATX in lung metastasis. We found that targeted KO of ATX in ATII cells significantly reduced the metastatic burden of ATX-KO B16-F10 cells by 30% (unpaired t-test, p = 0.028) compared to Sftpc-WT control mice, suggesting that ATX derived from ATII cells could affect the metastatic progression. We detected upregulated levels of cytokines such as IFNγ (unpaired t-test, p < 0.0001) and TNFα (unpaired t-test, p = 0.0003), which could favor the increase in infiltrating CD8+ T cells observed in the tumor regions of Sftpc-KO mice. Taken together, our results highlight the contribution of host ATII cells as a stromal source of ATX in the progression of melanoma lung metastasis. Full article
(This article belongs to the Special Issue Metastatic Progression of Human Melanoma)
Show Figures

Figure 1

18 pages, 22788 KiB  
Article
Differential Effect of SARS-CoV-2 Spike Glycoprotein 1 on Human Bronchial and Alveolar Lung Mucosa Models: Implications for Pathogenicity
by Mizanur Rahman, Martin Irmler, Sandeep Keshavan, Micol Introna, Johannes Beckers, Lena Palmberg, Gunnar Johanson, Koustav Ganguly and Swapna Upadhyay
Viruses 2021, 13(12), 2537; https://doi.org/10.3390/v13122537 - 17 Dec 2021
Cited by 19 | Viewed by 5092
Abstract
Background: The SARS-CoV-2 spike protein mediates attachment of the virus to the host cell receptor and fusion between the virus and the cell membrane. The S1 subunit of the spike glycoprotein (S1 protein) contains the angiotensin converting enzyme 2 (ACE2) receptor binding domain. [...] Read more.
Background: The SARS-CoV-2 spike protein mediates attachment of the virus to the host cell receptor and fusion between the virus and the cell membrane. The S1 subunit of the spike glycoprotein (S1 protein) contains the angiotensin converting enzyme 2 (ACE2) receptor binding domain. The SARS-CoV-2 variants of concern contain mutations in the S1 subunit. The spike protein is the primary target of neutralizing antibodies generated following infection, and constitutes the viral component of mRNA-based COVID-19 vaccines. Methods: Therefore, in this work we assessed the effect of exposure (24 h) to 10 nM SARS-CoV-2 recombinant S1 protein on physiologically relevant human bronchial (bro) and alveolar (alv) lung mucosa models cultured at air–liquid interface (ALI) (n = 6 per exposure condition). Corresponding sham exposed samples served as a control. The bro-ALI model was developed using primary bronchial epithelial cells and the alv-ALI model using representative type II pneumocytes (NCI-H441). Results: Exposure to S1 protein induced the surface expression of ACE2, toll like receptor (TLR) 2, and TLR4 in both bro-ALI and alv-ALI models. Transcript expression analysis identified 117 (bro-ALI) and 97 (alv-ALI) differentially regulated genes (p ≤ 0.01). Pathway analysis revealed enrichment of canonical pathways such as interferon (IFN) signaling, influenza, coronavirus, and anti-viral response in the bro-ALI. Secreted levels of interleukin (IL) 4 and IL12 were significantly (p < 0.05) increased, whereas IL6 decreased in the bro-ALI. In the case of alv-ALI, enriched terms involving p53, APRIL (a proliferation-inducing ligand) tight junction, integrin kinase, and IL1 signaling were identified. These terms are associated with lung fibrosis. Further, significantly (p < 0.05) increased levels of secreted pro-inflammatory cytokines IFNγ, IL1ꞵ, IL2, IL4, IL6, IL8, IL10, IL13, and tumor necrosis factor alpha were detected in alv-ALI, whereas IL12 was decreased. Altered levels of these cytokines are also associated with lung fibrotic response. Conclusions: In conclusion, we observed a typical anti-viral response in the bronchial model and a pro-fibrotic response in the alveolar model. The bro-ALI and alv-ALI models may serve as an easy and robust platform for assessing the pathogenicity of SARS-CoV-2 variants of concern at different lung regions. Full article
(This article belongs to the Special Issue SARS-CoV-2 and Other Coronaviruses)
Show Figures

Figure 1

7 pages, 9826 KiB  
Article
Early Lesion of Post-Primary Tuberculosis: Subclinical Driver of Disease and Target for Vaccines and Host-Directed Therapies
by Robert E. Brown and Robert L. Hunter
Pathogens 2021, 10(12), 1572; https://doi.org/10.3390/pathogens10121572 - 2 Dec 2021
Cited by 5 | Viewed by 3522
Abstract
The characteristic lesion of primary tuberculosis is the granuloma as is widely studied in human tissues and animal models. Post-primary tuberculosis is different. It develops only in human lungs and begins as a prolonged subclinical obstructive lobular pneumonia that slowly accumulates mycobacterial antigens [...] Read more.
The characteristic lesion of primary tuberculosis is the granuloma as is widely studied in human tissues and animal models. Post-primary tuberculosis is different. It develops only in human lungs and begins as a prolonged subclinical obstructive lobular pneumonia that slowly accumulates mycobacterial antigens and host lipids in alveolar macrophages with nearby highly sensitized T cells. After several months, the lesions undergo necrosis to produce a mass of caseous pneumonia large enough to fragment and be coughed out to produce a cavity or be retained as the focus of a post-primary granuloma. Bacteria grow massively on the cavity wall where they can be coughed out to infect new people. Here we extend these findings with the demonstration of secreted mycobacterial antigens, but not acid fast bacilli (AFB) of M. tuberculosis in the cytoplasm of ciliated bronchiolar epithelium and alveolar pneumocytes in association with elements of the programmed death ligand 1 (PD-L1), cyclo-oxygenase (COX)-2, and fatty acid synthase (FAS) pathways in the early lesion. This suggests that M. tuberculosis uses its secreted antigens to coordinate prolonged subclinical development of the early lesions in preparation for a necrotizing reaction sufficient to produce a cavity, post-primary granulomas, and fibrocaseous disease. Full article
(This article belongs to the Special Issue Pathogenesis of Tuberculosis: Challenges and Opportunities)
Show Figures

Figure 1

Back to TopTop