Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (106)

Search Parameters:
Keywords = alternative powertrain

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 6709 KB  
Article
Human Toxicity Potential: A Lifecycle Evaluation in Current and Future Frameworks for Hydrogen-Based and Battery Electric Buses in the European Union
by Andrea Nicolò Damiani Ferretti, Pier Paolo Brancaleoni, Francesco Bellucci, Alessandro Brusa and Enrico Corti
Energies 2025, 18(18), 4932; https://doi.org/10.3390/en18184932 - 16 Sep 2025
Viewed by 367
Abstract
In recent years, governments have promoted the shift to low-emission transport systems, with electric and hydrogen vehicles emerging as key alternatives for greener urban mobility. Evaluating zero- or near-zero tailpipe solutions requires a Lifecycle Assessment (LCA) approach, accounting for emissions from energy production, [...] Read more.
In recent years, governments have promoted the shift to low-emission transport systems, with electric and hydrogen vehicles emerging as key alternatives for greener urban mobility. Evaluating zero- or near-zero tailpipe solutions requires a Lifecycle Assessment (LCA) approach, accounting for emissions from energy production, components and vehicle manufacturing. Such studies mainly address Greenhouse Gas (GHG) emissions, while other pollutants are often overlooked. This study compares the Human Toxicity Potential (HTP) of Battery Electric Vehicles (BEVs), Fuel Cell Vehicles (FCVs), Hydrogen Internal Combustion Engine Vehicles (H2ICEVs) and hybrid H2ICEVs for public transport in the European Union. Current and future scenarios (2024, 2030, 2050) are examined, considering evolving energy mixes and manufacturing impacts. Results underline that BEVs are characterized by the highest HTP in 2024, and that this trend is maintained even in future scenarios. As for hydrogen-based powertrains, they show lower HTPs, similar among them. This work underlines that current efforts must be intensified, especially for BEVs, to further limit harmful emissions from the mobility sector. Full article
Show Figures

Figure 1

24 pages, 8247 KB  
Article
Life Cycle Assessment of Different Powertrain Alternatives for a Clean Urban Bus Across Diverse Weather Conditions
by Benedetta Peiretti Paradisi, Luca Pulvirenti, Matteo Prussi, Luciano Rolando and Afanasie Vinogradov
Energies 2025, 18(17), 4522; https://doi.org/10.3390/en18174522 - 26 Aug 2025
Cited by 1 | Viewed by 665
Abstract
At present, the decarbonization of the public transport sector plays a key role in international and regional policies. Among the various energy vectors being considered for future clean bus fleets, green hydrogen and electricity are gaining significant attention thanks to their minimal carbon [...] Read more.
At present, the decarbonization of the public transport sector plays a key role in international and regional policies. Among the various energy vectors being considered for future clean bus fleets, green hydrogen and electricity are gaining significant attention thanks to their minimal carbon footprint. However, a comprehensive Life Cycle Assessment (LCA) is essential to compare the most viable solutions for public mobility, accounting for variations in weather conditions, geographic locations, and time horizons. Therefore, the present work compares the life cycle environmental impact of different powertrain configurations for urban buses. In particular, a series hybrid architecture featuring two possible hydrogen-fueled Auxiliary Power Units (APUs) is considered: an H2-Internal Combustion Engine (ICE) and a Fuel Cell (FC). Furthermore, a Battery Electric Vehicle (BEV) is considered for the same application. The global warming potential of these powertrains is assessed in comparison to both conventional and hybrid diesel over a typical urban mission profile and in a wide range of external ambient conditions. Given that cabin and battery conditioning significantly influence energy consumption, their impact varies considerably between powertrain options. A sensitivity analysis of the BEV battery size is conducted, considering the effect of battery preconditioning strategies as well. Furthermore, to evaluate the potential of hydrogen and electricity in achieving cleaner public mobility throughout Europe, this study examines the effect of different grid carbon intensities on overall emissions, based also on a seasonal variability and future projections. Finally, the present study demonstrates the strong dependence of the carbon footprint of various technologies on both current and future scenarios, identifying a range of boundary conditions suitable for each analysed powertrain option. Full article
Show Figures

Figure 1

23 pages, 2912 KB  
Article
Electrify the Field: Designing and Optimizing Electric Tractor Drivetrains with Real-World Cycles
by Korbinian Götz, Markus Pointner, Lukas Mayr, Simon Mailhammer and Markus Lienkamp
World Electr. Veh. J. 2025, 16(8), 463; https://doi.org/10.3390/wevj16080463 - 14 Aug 2025
Viewed by 872
Abstract
The electrification of tractors can increase the self-supply of renewable energy produced on the farm and reduce the operating costs of tractors. However, electric tractors face higher upfront costs than their diesel counterparts, as well as limited operating time. A drivetrain that is [...] Read more.
The electrification of tractors can increase the self-supply of renewable energy produced on the farm and reduce the operating costs of tractors. However, electric tractors face higher upfront costs than their diesel counterparts, as well as limited operating time. A drivetrain that is highly efficient in a wide range of agricultural applications reduces operating costs and enables long operating times. Thus, we propose a method to design electric tractor drivetrain configurations that incorporates longitudinal dynamic simulations to enable the development of such efficient drivetrains. To represent a diverse application profile, we include real-world load cycles recorded from a 104 kW diesel tractor. Our investigation focuses on the axle-individual drivetrain topology (eAxle) and the central motor topology as the configurations that offer the most promising trade-off between efficiency and complexity. The design method includes the top-down design of the topology including its individual components, such as the inverter, motor, and transmission, which are varied based on the load. Our method derives drivetrains with average efficiencies of 83% for an axle-individual topology with two gears. With a 100 kWh battery, such a drivetrain enables operating times of 7.5 h when fertilizing and 2.4 h when seeding. Full article
Show Figures

Figure 1

26 pages, 3489 KB  
Article
Techno-Economic Analysis of Hydrogen Hybrid Vehicles
by Dapai Shi, Jiaheng Wang, Kangjie Liu, Chengwei Sun, Zhenghong Wang and Xiaoqing Liu
World Electr. Veh. J. 2025, 16(8), 418; https://doi.org/10.3390/wevj16080418 - 24 Jul 2025
Viewed by 561
Abstract
Driven by carbon neutrality and peak carbon policies, hydrogen energy, due to its zero-emission and renewable properties, is increasingly being used in hydrogen fuel cell vehicles (H-FCVs). However, the high cost and limited durability of H-FCVs hinder large-scale deployment. Hydrogen internal combustion engine [...] Read more.
Driven by carbon neutrality and peak carbon policies, hydrogen energy, due to its zero-emission and renewable properties, is increasingly being used in hydrogen fuel cell vehicles (H-FCVs). However, the high cost and limited durability of H-FCVs hinder large-scale deployment. Hydrogen internal combustion engine hybrid electric vehicles (H-HEVs) are emerging as a viable alternative. Research on the techno-economics of H-HEVs remains limited, particularly in systematic comparisons with H-FCVs. This paper provides a comprehensive comparison of H-FCVs and H-HEVs in terms of total cost of ownership (TCO) and hydrogen consumption while proposing a multi-objective powertrain parameter optimization model. First, a quantitative model evaluates TCO from vehicle purchase to disposal. Second, a global dynamic programming method optimizes hydrogen consumption by incorporating cumulative energy costs into the TCO model. Finally, a genetic algorithm co-optimizes key design parameters to minimize TCO. Results show that with a battery capacity of 20.5 Ah and an H-FC peak power of 55 kW, H-FCV can achieve optimal fuel economy and hydrogen consumption. However, even with advanced technology, their TCO remains higher than that of H-HEVs. H-FCVs can only become cost-competitive if the unit power price of the fuel cell system is less than 4.6 times that of the hydrogen engine system, assuming negligible fuel cell degradation. In the short term, H-HEVs should be prioritized. Their adoption can also support the long-term development of H-FCVs through a complementary relationship. Full article
Show Figures

Figure 1

22 pages, 2128 KB  
Article
Economic Evaluation of Vehicle Operation in Road Freight Transport—Case Study of Slovakia
by Miloš Poliak, Kristián Čulík, Milada Huláková and Erik Kováč
World Electr. Veh. J. 2025, 16(8), 409; https://doi.org/10.3390/wevj16080409 - 22 Jul 2025
Viewed by 756
Abstract
The European Union is committed to reducing greenhouse gas emissions across all sectors, including the transportation sector. It is possible to assume that road freight transport will need to undergo technological changes, leading to greater use of alternative powertrains. This article builds on [...] Read more.
The European Union is committed to reducing greenhouse gas emissions across all sectors, including the transportation sector. It is possible to assume that road freight transport will need to undergo technological changes, leading to greater use of alternative powertrains. This article builds on previous research on the energy consumption of battery electric trucks (BETs) and assesses the economic efficiency of electric vehicles in freight transport through a cost calculation. The primary objective was to determine the conditions under which a BET becomes cost-effective for a transport operator. These findings are practically relevant for freight carriers. Unlike other studies, this article does not focus on total cost of ownership (TCO) but rather compares the variable and fixed costs of BETs and conventional internal combustion engine trucks (ICETs). In this article, the operating costs of BETs were calculated and modeled based on real-world measurements of a tested vehicle. The research findings indicate that BETs are economically efficient, primarily when state subsidies are provided, compensating for the significant difference in purchase costs between BETs and conventional diesel trucks. This study found that optimizing operational conditions (daily routes) enables BETs to reach a break-even point at approximately 110,000 km per year, even without subsidies. Another significant finding is that battery capacity degradation leads to a projected annual operating cost increase of approximately 4%. Full article
Show Figures

Figure 1

28 pages, 3675 KB  
Article
Balancing Cam Mechanism for Instantaneous Torque and Velocity Stabilization in Internal Combustion Engines: Simulation and Experimental Validation
by Daniel Silva Cardoso, Paulo Oliveira Fael, Pedro Dinis Gaspar and António Espírito-Santo
Energies 2025, 18(13), 3256; https://doi.org/10.3390/en18133256 - 21 Jun 2025
Cited by 1 | Viewed by 741
Abstract
Torque and velocity fluctuations in internal combustion engines (ICEs), particularly during idle and low-speed operation, can reduce efficiency, increase vibration, and impose mechanical stress on coupled systems. This work presents the design, simulation, and experimental validation of a passive balancing cam mechanism developed [...] Read more.
Torque and velocity fluctuations in internal combustion engines (ICEs), particularly during idle and low-speed operation, can reduce efficiency, increase vibration, and impose mechanical stress on coupled systems. This work presents the design, simulation, and experimental validation of a passive balancing cam mechanism developed to mitigate fluctuations in single-cylinder internal combustion engines (ICEs). The system consists of a cam and a spring-loaded follower that synchronizes with the engine cycle to store and release energy, generating a compensatory torque that stabilizes rotational speed. The mechanism was implemented on a single-cylinder Honda® engine and evaluated through simulations and laboratory tests under idle conditions. Results demonstrate a reduction in torque ripple amplitude of approximately 54% and standard deviation of 50%, as well as a decrease in angular speed fluctuation amplitude of about 43% and standard deviation of 42%, resulting in significantly smoother engine behavior. These improvements also address longstanding limitations in traditional powertrains, which often rely on heavy flywheels or electronically controlled dampers to manage rotational irregularities. Such solutions increase system complexity, weight, and energy losses. In contrast, the proposed passive mechanism offers a simpler, more efficient alternative, requiring no external control or energy input. Its effectiveness in stabilizing engine output makes it especially suited for integration into hybrid electric systems, where consistent generator performance and low mechanical noise are critical for efficient battery charging and protection of sensitive electronic components. Full article
(This article belongs to the Special Issue Internal Combustion Engines: Research and Applications—3rd Edition)
Show Figures

Figure 1

17 pages, 2687 KB  
Article
Examining the Application Possibilities and Economic Issues of an Alternative Drive Chain in Hungary: Scenario Analysis
by Adrienn Boldizsár, Ádám Török and Norina Szander
Logistics 2025, 9(2), 77; https://doi.org/10.3390/logistics9020077 - 19 Jun 2025
Viewed by 820
Abstract
Background: A societal shift in attitudes is going to be required to reduce greenhouse gas emissions in the field of transportation, which is crucial to the level of mitigation that can be achieved. There is increasing pressure on policymakers to address climate [...] Read more.
Background: A societal shift in attitudes is going to be required to reduce greenhouse gas emissions in the field of transportation, which is crucial to the level of mitigation that can be achieved. There is increasing pressure on policymakers to address climate change and, in turn, to promote sustainable transport. The sector’s decarbonization is essential to meet climate change targets, and alternative powertrains, particularly battery electric trucks, can play a key role. However, international research shows that the solutions and strategic plan proposals are primarily developed in isolation according to the country’s specific conditions. Methods: This study aims to compare battery electric trucks and conventional internal combustion engine trucks in Hungary, focusing on the total cost of ownership over ten years. Results: This study examines the cost parameters for operating electric and conventional trucks, based on current economic conditions. In addition, alternative studies have been carried out to see what additional savings can be expected by changing the parameters under consideration. This research examines four scenarios that model changes in state subsidies, tolls, and excise duties alongside current cost parameters. Conclusions: The results suggest that public policy interventions play a key role in developing sustainable transport systems, particularly to preserve the competitiveness of small and medium-sized enterprises. Full article
Show Figures

Figure 1

16 pages, 3344 KB  
Article
Electric Vehicle Adoption in Poland: Insights from Academia and Technically Educated Youth
by Nikola Manev, Aleksandra Pyk, Monika Pendaroska and Artur Bartosik
Sustainability 2025, 17(11), 5179; https://doi.org/10.3390/su17115179 - 4 Jun 2025
Viewed by 1665
Abstract
As global concerns about climate change and air quality intensify, nations are increasingly adopting sustainable transportation solutions, with electromobility emerging as a key alternative. This study investigates the factors influencing powertrain technology choice and the barriers to electric vehicle (EV) adoption in Poland, [...] Read more.
As global concerns about climate change and air quality intensify, nations are increasingly adopting sustainable transportation solutions, with electromobility emerging as a key alternative. This study investigates the factors influencing powertrain technology choice and the barriers to electric vehicle (EV) adoption in Poland, focusing on insights from technically educated youth, early-career researchers, and academic professionals. Drawing on a mixed-methods approach, the study investigates public perceptions, motivations, and challenges associated with EV uptake in a country historically reliant on fossil fuels. Key drivers such as environmental considerations, government policies, and infrastructure development are evaluated alongside persistent obstacles, including high initial purchase costs, inadequate charging networks, range anxiety, and scepticism about battery performance. While the sample is not representative of the broader Polish population, it provides insights from a technically literate cohort likely to shape future technological and policy advancements. Our findings reveal that the adoption of EVs among this group is influenced by factors such as technological innovation and government policies, while barriers include high initial costs, limited charging infrastructure, and scepticism about perceived sustainability, battery life, and performance. The research also highlights the critical role of education and awareness in shaping attitudes toward EVs. This study, though limited by sample size and demographic focus, offers valuable contributions to understanding the early-stage adoption of EVs in Poland and serves as a foundation for future research targeting a more diverse population. The applied research model is scalable, providing a framework for broader studies that could include different age groups, geographical regions, and professional sectors. Full article
Show Figures

Figure 1

18 pages, 5968 KB  
Article
Assessment of Charge Dilution Strategies to Reduce Fuel Consumption in Natural Gas-Fuelled Heavy-Duty Spark Ignition Engines
by Davide Di Domenico, Pierpaolo Napolitano, Dario Di Maio and Carlo Beatrice
Energies 2025, 18(8), 2072; https://doi.org/10.3390/en18082072 - 17 Apr 2025
Cited by 2 | Viewed by 558
Abstract
The need to decarbonize the road transport sector is driving the evaluation of alternative solutions. From a long-term perspective, biomethane and e-methane are particularly attractive as green energy carriers and a part of the solutions for the sustainable freight on-road transport, as they [...] Read more.
The need to decarbonize the road transport sector is driving the evaluation of alternative solutions. From a long-term perspective, biomethane and e-methane are particularly attractive as green energy carriers and a part of the solutions for the sustainable freight on-road transport, as they offer significant CO2-equivalent emissions savings in a net Well-to-Wheel assessment. However, to make methane-fuelled spark ignition (SI) heavy-duty (HD) engines competitive in the market, their efficiency must be comparable to the top-performing diesel applications that dominate the sector. To this end, dilution techniques such as exhaust gas recirculation (EGR) or lean air–fuel mixtures represent promising solutions. Within limits specific to the engine’s tolerance to the used strategy, charge dilution can improve thermal efficiency impact on the pumping and wall heat loss, and the heat capacity ratio (γ). However, their potential has never been explored in the case of methane SI HD engines characterized by a semi diesel-like combustion system architecture. This work presents an experimental study to characterize the energy and pollutant emission performance of a state-of-the-art SI HD gas single-cylinder engine (SCE) operating with EGR or with lean conditions. The engine type is representative of most HD powertrains used for long-haul purposes. The designed test plan is representative of the majority of on-road operating conditions providing an overview of the impact of the two dilution methods on the overall engine performance. The results highlight that both techniques are effective for achieving significant fuel savings, with lean combustion being more tolerable and yielding higher efficiency improvements (10% peak vs. 5% with EGR). Full article
(This article belongs to the Special Issue Optimization of Efficient Clean Combustion Technology: 2nd Edition)
Show Figures

Figure 1

21 pages, 4653 KB  
Article
Trends in Swiss Passenger Vehicles Based on Machine Learning Segmentation
by Miriam Elser, Pirmin Sigron, Betsy Sandoval Guzman, Naghmeh Niroomand and Christian Bach
Sustainability 2025, 17(8), 3550; https://doi.org/10.3390/su17083550 - 15 Apr 2025
Cited by 1 | Viewed by 1491
Abstract
Road transport represents a major contributor to air pollution, energy consumption, and carbon dioxide emissions in Switzerland. In response, stringent emission regulations, penalties for non-compliance, and incentives for electric vehicles have been introduced. This study investigates how these policies, along with shifting consumer [...] Read more.
Road transport represents a major contributor to air pollution, energy consumption, and carbon dioxide emissions in Switzerland. In response, stringent emission regulations, penalties for non-compliance, and incentives for electric vehicles have been introduced. This study investigates how these policies, along with shifting consumer preferences and vehicle design advancements, have influenced the composition of the Swiss new passenger car fleet. Using machine learning techniques, we segment passenger vehicles to analyze trends over time. Our findings reveal a decline in micro and small vehicles, alongside an increase in lower- and upper-middle-class vehicles, sport utility vehicles, and alternative powertrains across all segments. Additionally, steady increases in vehicle width, length, and weight are observed in all classes since 1995. While technological advancements led to reductions in energy consumption and carbon dioxide emissions until 2016, an increase has since been observed, driven by higher engine power, greater vehicle weight, and changes in certification schemes. Full article
(This article belongs to the Section Sustainable Transportation)
Show Figures

Figure 1

13 pages, 2097 KB  
Article
A Coupled Harmonic Balance-Based Approach for the Non-Linear Dynamics of Spur-Gear Pairs
by Giacomo Saletti, Giuseppe Battiato and Stefano Zucca
Vibration 2025, 8(2), 18; https://doi.org/10.3390/vibration8020018 - 10 Apr 2025
Viewed by 700
Abstract
Noise, vibration and harshness analyses are of great interest for the latest developments of the gearboxes of electric vehicles. Gearboxes are now the main source of vibrations, since electric powertrains are much quieter than internal combustion engines. Traditionally, the simulation of the non-linear [...] Read more.
Noise, vibration and harshness analyses are of great interest for the latest developments of the gearboxes of electric vehicles. Gearboxes are now the main source of vibrations, since electric powertrains are much quieter than internal combustion engines. Traditionally, the simulation of the non-linear gear dynamics is studied by first performing a series of preliminary static analyses to compute the static transmission error (STE). The STE (i.e., in the form of varying mesh stiffness) is then accepted as the system’s excitation source to compute the dynamic transmission error (DTE). This paper presents a novel approach to analyze the non-linear dynamics of gears which does not require any preliminary static analyses. The method consists of a frequency–domain approach based on the Harmonic Balance Method (HBM) and the Alternating Frequency–Time (AFT) scheme, allowing for much faster simulations when compared to the widely used direct–time integration (DTI). The contact between the teeth is modeled as intermittent and penalty based with a varying gap. The time–varying gap between the teeth is initially approximated to a step function that guarantees the design contact ratio. The methodology introduced is tested on a lumped parameter model of a spur–gear pair already proposed and simulated in the literature. The results obtained with the novel approach are compared with the DTI simulation of the model as a reference. The excellent match between the different approaches validates the reliability of developed methodology. Full article
Show Figures

Figure 1

10 pages, 1657 KB  
Proceeding Paper
Design Challenges in the Development of a Hydrogen-Fueled Micro Gas Turbine Unit for Energy Generation
by Uma Nataraj Gottipati, Angelo Minotti, Vincenzo La Battaglia and Alessandro Giorgetti
Eng. Proc. 2025, 85(1), 45; https://doi.org/10.3390/engproc2025085045 - 21 Mar 2025
Cited by 1 | Viewed by 1068
Abstract
Environmental and social governance targets, as well as the global transition to cleaner renewable energy sources, push for advancements in hydrogen-based solutions for energy generators due to their high energy per unit mass (energy density) and lightweight nature. Hydrogen’s energy density and lightweight [...] Read more.
Environmental and social governance targets, as well as the global transition to cleaner renewable energy sources, push for advancements in hydrogen-based solutions for energy generators due to their high energy per unit mass (energy density) and lightweight nature. Hydrogen’s energy density and lightweight nature allow it to provide an extended range of uses without adding significant weight, potentially revolutionizing many applications. Moreover, a variety of sources, including renewable energy, can produce hydrogen, making it a potentially more sustainable option for energy storage despite its main limitations in production and transportation costs. In this framework we are proposing an innovative energy generator that might merge the benefits of batteries and hydrogen. The energy generator is based on a worldwide patented solution introduced by MIEEG s.r.l. regarding the shape of the chambers. This innovative solution can be used to design a 100% H2-fed microturbine with a high power/weight/volume ratio that works as a range extender of battery packs for a comprehensive, high-efficiency hybrid powertrain. In fact, it runs at 100,000 rpm and is designed to deliver about 100 kW in about 15 L of volume and 15 kg of weight (alternator excluded). The system is highly complex due to high firing temperatures, long life requirements, corrosion protection, mechanical and vibrational stresses, sealing, couplings, bearings, and the realization of tiny blades. This paper analyzes the main design challenges to face in the development of such complex generators, focusing on the hot gas path components, which are the most critical part of gas turbines. The contribution of additive manufacturing techniques, the adoption of special materials, and coatings have been evaluated for system improvement. Full article
Show Figures

Figure 1

12 pages, 662 KB  
Article
Operating Point Optimization of Agricultural Tractor–Implement Combinations as Constraint Optimization Problem
by Benjamin Kazenwadel, Marina Graf, Lukas Michiels and Marcus Geimer
Eng 2025, 6(2), 27; https://doi.org/10.3390/eng6020027 - 1 Feb 2025
Cited by 2 | Viewed by 1157
Abstract
Increasing the process efficiency of agricultural tasks is a key measure to decrease overall costs and CO2 emissions. However, optimizing tractor–implement combinations is challenging due to the variety of processes and implements and the complexity of the powertrains in modern tractors. In [...] Read more.
Increasing the process efficiency of agricultural tasks is a key measure to decrease overall costs and CO2 emissions. However, optimizing tractor–implement combinations is challenging due to the variety of processes and implements and the complexity of the powertrains in modern tractors. In addition, overall process efficiency is an ambiguous optimization objective in agricultural processes as it relates resource consumption to harvest yields, which are only known at the end of a harvest season. The presented approach defines process constraints, ensuring optimization does not negatively affect harvest yield. These constraints allow for the formulation of explicit objective functions that are observable during the operation. The method establishes a mathematical foundation for the optimization of agricultural processes. The mathematical principles of the theoretical framework and the techniques used to define control constraints are explored, whereby the applicability to alternative objectives like optimizing the overall process cost is highlighted. To demonstrate the practical utility of the proposed approach, an optimization cycle is applied to a real-world scenario: adapting the working speed during the tillage process using a cultivator to maximize energy efficiency. The approach simplifies the optimization problem by formulation as a constraint optimization problem, allowing for improving the operating point of tractor–implement combinations with respect to observable process objective functions. The results underline the importance of advanced control strategies in agricultural machinery, advancing precision agriculture and promoting sustainable farming practices. Full article
Show Figures

Figure 1

21 pages, 4247 KB  
Article
Hardware-in-the-Loop Implementation of an Optimized Energy Management Strategy for Range-Extended Electric Trucks
by Ankur Shiledar, Manfredi Villani and Giorgio Rizzoni
Energies 2024, 17(21), 5294; https://doi.org/10.3390/en17215294 - 24 Oct 2024
Cited by 3 | Viewed by 1460
Abstract
The reliance of the commercial transportation industry on fossil fuels has long contributed to pollutant and greenhouse gas emissions. Since full electrification of medium- and heavy-duty vehicles faces limitations due to the large battery capacity required for extended driving ranges, this study explores [...] Read more.
The reliance of the commercial transportation industry on fossil fuels has long contributed to pollutant and greenhouse gas emissions. Since full electrification of medium- and heavy-duty vehicles faces limitations due to the large battery capacity required for extended driving ranges, this study explores a Range-Extended Electric Vehicle (REEV) for medium-duty Class 6 pick-up and delivery trucks. This hybrid architecture combines an electric powertrain with an internal combustion engine range-extender. Maximizing the efficiency of REEVs requires an Energy Management Strategy (EMS) to optimally split the power between the two power sources. In this work, a hierarchical EMS is developed through model-based design and validated via Hardware-In-The-Loop (HIL) simulations. The proposed EMS demonstrated a 7% reduction in fuel consumption compared to a baseline control strategy, while maintaining emissions and engine start frequency comparable to a benchmark globally optimal EMS obtained with dynamic programming. Furthermore, HIL results confirmed the strategy’s real-time implementation feasibility, highlighting the practical viability of the controller. This research underscores the potential of REEVs in significantly reducing emissions and fuel consumption, as well as providing a sustainable alternative for medium-duty truck applications. Full article
Show Figures

Figure 1

14 pages, 6830 KB  
Article
Layer Approach to Model Fatigue Strength of Surface-Hardened Components
by Dénes Dobberke, Martin Leitner, Jens Wiebesiek and Jürgen Fröschl
Metals 2024, 14(7), 754; https://doi.org/10.3390/met14070754 - 25 Jun 2024
Cited by 1 | Viewed by 2130
Abstract
This paper deals with a surface-hardened forged steel that is commonly used for powertrain components like gears, axles or crankshafts. In order to increase static and fatigue strength and to minimise wear, surface treatments like induction hardening lead to a significant microstructural change [...] Read more.
This paper deals with a surface-hardened forged steel that is commonly used for powertrain components like gears, axles or crankshafts. In order to increase static and fatigue strength and to minimise wear, surface treatments like induction hardening lead to a significant microstructural change within heat-affected zones. The aim of this study was to elaborate a method for a reliable computational estimation of the local fatigue strength by considering local material properties. The method is based on experimental test results, where specimens were extracted from forged crankshafts and further heat-treated to investigate the fatigue strength of the unhardened and hardened material condition. The experimental test data were fundamental in defining elaborated Haigh diagrams, enabling a more reliable local fatigue assessment. The comparison of the component safety within the fatigue strength verification for a crankshaft section under alternate bending resulted in 28%-more progressive dimensioning of surface hardened layers. Full article
(This article belongs to the Special Issue Fatigue, Fracture and Damage of Steels)
Show Figures

Figure 1

Back to TopTop