Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (38)

Search Parameters:
Keywords = alloyed quantum dots

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1420 KB  
Article
Light-Driven Quantum Dot Dialogues: Oscillatory Photoluminescence in Langmuir–Blodgett Films
by Tefera Entele Tesema
Nanomaterials 2025, 15(14), 1113; https://doi.org/10.3390/nano15141113 - 18 Jul 2025
Viewed by 476
Abstract
This study explores the optical properties of a close-packed monolayer composed of core/shell-alloyed CdSeS/ZnS quantum dots (QDs) of two different sizes and compositions. The monolayers were self-assembled in a stacked configuration at the water/air interface using Langmuir–Blodgett (LB) techniques. Under continuous 532 nm [...] Read more.
This study explores the optical properties of a close-packed monolayer composed of core/shell-alloyed CdSeS/ZnS quantum dots (QDs) of two different sizes and compositions. The monolayers were self-assembled in a stacked configuration at the water/air interface using Langmuir–Blodgett (LB) techniques. Under continuous 532 nm laser illumination on the red absorption edge of the blue-emitting smaller QDs (QD450), the red-emitting larger QDs (QD645) exhibited oscillatory temporal dynamics in their photoluminescence (PL), characterized by a pronounced blueshift in the emission peak wavelength and an abrupt decrease in peak intensity. Conversely, excitation by a 405 nm laser on the blue absorption edge induced a drastic redshift in the emission wavelength over time. These significant shifts in emission spectra are attributed to photon- and anisotropic-strain-assisted interlayer atom transfer. The findings provide new insights into strain-driven atomic rearrangements and their impact on the photophysical behavior of QD systems. Full article
Show Figures

Graphical abstract

37 pages, 6344 KB  
Review
IR Sensors, Related Materials, and Applications
by Nikolaos Argirusis, Achilleas Achilleos, Niyaz Alizadeh, Christos Argirusis and Georgia Sourkouni
Sensors 2025, 25(3), 673; https://doi.org/10.3390/s25030673 - 23 Jan 2025
Cited by 11 | Viewed by 9373
Abstract
Infrared (IR) sensors are widely used in various applications due to their ability to detect infrared radiation. Currently, infrared detector technology is in its third generation and faces enormous challenges. IR radiation propagation is categorized into distinct transmission windows with the most intriguing [...] Read more.
Infrared (IR) sensors are widely used in various applications due to their ability to detect infrared radiation. Currently, infrared detector technology is in its third generation and faces enormous challenges. IR radiation propagation is categorized into distinct transmission windows with the most intriguing aspects of thermal imaging being mid-wave infrared (MWIR) and long-wave infrared (LWIR). Infrared detectors for thermal imaging have many uses in industrial applications, security, search and rescue, surveillance, medical, research, meteorology, climatology, and astronomy. Presently, high-performance infrared imaging technology mostly relies on epitaxially grown structures of the small-bandgap bulk alloy mercury–cadmium–telluride (MCT), indium antimonide (InSb), and GaAs-based quantum well infrared photodetectors (QWIPs), contingent upon the application and wavelength range. Nanostructures and nanomaterials exhibiting appropriate electrical and mechanical properties including two-dimensional materials, graphene, quantum dots (QDs), quantum dot in well (DWELL), and colloidal quantum dot (CQD) will significantly enhance the electronic characteristics of infrared photodetectors, transition metal dichalcogenides, and metal oxides, which are garnering heightened interest. The present manuscript gives an overview of IR sensors, their types, materials commonly used in them, and examples of related applications. Finally, a summary of the manuscript and an outlook on prospects are given. Full article
(This article belongs to the Special Issue Feature Review Papers in Physical Sensors)
Show Figures

Figure 1

17 pages, 4522 KB  
Article
The Temperature-Dependent Tight Binding Theory Modelling of Strain and Composition Effects on the Electronic Structure of CdSe- and ZnSe-Based Core/Shell Quantum Dots
by Derya Malkoç and Hilmi Ünlü
Materials 2025, 18(2), 283; https://doi.org/10.3390/ma18020283 - 10 Jan 2025
Cited by 1 | Viewed by 1091
Abstract
We propose a temperature-dependent optimization procedure for the second-nearest neighbor (2NN) sp3s* tight-binding (TB) theory parameters to calculate the effects of strain, structure dimensions, and alloy composition on the band structure of heterostructure spherical core/shell quantum dots (QDs). We integrate [...] Read more.
We propose a temperature-dependent optimization procedure for the second-nearest neighbor (2NN) sp3s* tight-binding (TB) theory parameters to calculate the effects of strain, structure dimensions, and alloy composition on the band structure of heterostructure spherical core/shell quantum dots (QDs). We integrate the thermoelastic theory of solids with the 2NN sp3s* TB theory to calculate the strain, core and shell dimensions, and composition effects on the band structure of binary/ternary CdSe/Cd(Zn)S and ZnSe/Zn(Cd)S QDs at any temperature. We show that the 2NN sp3s* TB theory with optimized parameters greatly improves the prediction of the energy dispersion curve at and in the vicinity of L and X symmetry points. We further used the optimized 2NN sp3s* TB parameters to calculate the strain, core and shell dimensions, and composition effects on the nanocrystal bandgaps of binary/ternary CdSe/Cd(Zn)S and ZnSe/Zn(Cd)S core/shell QDs. We conclude that the 2NN sp3s* TB theory provides remarkable agreement with the measured nanocrystal bandgaps of CdSe/Cd(Zn)S and ZnSe/Zn(Cd)S QDs and accurately reproduces the energy dispersion curves of the electronic band structure at any temperature. We believe that the proposed optimization procedure makes the 2NN sp3s* TB theory reliable and accurate in the modeling of core/shell QDs for nanoscale devices. Full article
Show Figures

Graphical abstract

10 pages, 2038 KB  
Article
Room-Temperature Fiber-Coupled Single-Photon Source from CdTeSeS Core Quantum Dots
by Surasak Chiangga
Photonics 2025, 12(1), 52; https://doi.org/10.3390/photonics12010052 - 9 Jan 2025
Viewed by 1497
Abstract
Single-photon sources with photon antibunching characteristics are essential for quantum information technologies. This paper investigates the potential of quaternary-alloy CdTeSeS colloidal core quantum dots (cQDs) as compact, room-temperature, and fiber-integrated single-photon sources. Single-photon emission from CdTeSeS cQDs was verified by measuring the second-order [...] Read more.
Single-photon sources with photon antibunching characteristics are essential for quantum information technologies. This paper investigates the potential of quaternary-alloy CdTeSeS colloidal core quantum dots (cQDs) as compact, room-temperature, and fiber-integrated single-photon sources. Single-photon emission from CdTeSeS cQDs was verified by measuring the second-order correlation function, g2τ, using a Hanbury-Brown and Twiss setup. A novel method to determine zero-time delay through afterpulsing analysis is presented. The results demonstrate strong photon antibunching with g20=0.13, confirming that the photoemission from the CdTeSeS cQDs function as a single-photon source. This work highlights the potential of CdTeSeS cQDs as reliable and efficient single-photon sources for practical use in fiber-based quantum information technologies. Full article
(This article belongs to the Special Issue Recent Progress in Single-Photon Generation and Detection)
Show Figures

Figure 1

12 pages, 3710 KB  
Article
Design and Performance of an InAs Quantum Dot Scintillator with Integrated Photodetector
by Tushar Mahajan, Allan Minns, Vadim Tokranov, Michael Yakimov, Michael Hedges, Pavel Murat and Serge Oktyabrsky
Sensors 2024, 24(22), 7178; https://doi.org/10.3390/s24227178 - 8 Nov 2024
Viewed by 1581
Abstract
A new scintillation material composed of InAs quantum dots (QDs) hosted within a GaAs matrix was developed, and its performance with different types of radiation is evaluated. A methodology for designing an integrated photodetector (PD) with a low defect density and that is [...] Read more.
A new scintillation material composed of InAs quantum dots (QDs) hosted within a GaAs matrix was developed, and its performance with different types of radiation is evaluated. A methodology for designing an integrated photodetector (PD) with a low defect density and that is optically matched to the QD’s emission spectrum is introduced, utilizing an engineered epitaxial InAlGaAs metamorphic buffer layer. The photoluminescence (PL) collection efficiency of the integrated PD is examined using two-dimensional scanning laser excitation. The detector response to 5.5 MeV α-particles and 122 keV photons is presented. Yields of 13 electrons/keV for α-particles and 30–60 electrons/keV for photons were observed. The energy resolution of 12% observed with α-particles was mainly limited by noise- and geometry-related optical losses. The radiation hardness of an InAs QDs hosted within GaAs and a wider band gap AlGaAs ternary alloy was studied under a 1 MeV proton implantation up to a 1014 cm−2 dose. The integrated PL responses were compared to evaluate PL quenching due to non-radiative defects. The QDs embedded in the AlGaAs demonstrated improved radiation hardness compared to QDs in the GaAs matrix and in the InGaAs quantum wells. Full article
Show Figures

Figure 1

20 pages, 4112 KB  
Article
Using Femtosecond Laser Pulses to Explore the Nonlinear Optical Properties of Ag/Au Alloy Nanoparticles Synthesized by Pulsed Laser Ablation in a Liquid
by Yasmin Abd El-Salam, Hussein Dhahi Adday, Fatma Abdel Samad, Hamza Qayyum and Tarek Mohamed
Nanomaterials 2024, 14(15), 1290; https://doi.org/10.3390/nano14151290 - 31 Jul 2024
Cited by 10 | Viewed by 2745
Abstract
Metallic nanoparticles have gained attention in technological fields, particularly photonics. The creation of silver/gold (Ag/Au) alloy NPs upon laser exposure of an assembly of these NPs was described. First, using the Nd: YAG pulsed laser ablation’s second harmonic at the same average power [...] Read more.
Metallic nanoparticles have gained attention in technological fields, particularly photonics. The creation of silver/gold (Ag/Au) alloy NPs upon laser exposure of an assembly of these NPs was described. First, using the Nd: YAG pulsed laser ablation’s second harmonic at the same average power and exposure time, Ag and Au NPs in distilled water were created individually. Next, the assembly of Ag and Au NP colloids was exposed again to the pulsed laser, and the effects were examined at different average powers and exposure times. Furthermore, Ag/Au alloy nanoparticles were synthesized with by raising the average power and exposure time. The absorption spectrum, average size, and shape of alloy NPs were obtained by using an ultraviolet-visible (UV–Vis) spectrophotometer and transmission electron microscope instrument. Ag/Au alloy NPs have been obtained in the limit of quantum dots (<10 nm). The optical band gap energies of the Ag/Au alloy colloidal solutions were assessed for different Ag/Au alloy NP concentrations and NP sizes as a function of the exposure time and average power. The experimental data showed a trend toward an increasing bandgap with decreasing nanoparticle size. The nonlinear optical characteristics of Ag/Au NPs were evaluated and measured by the Z-scan technique using high repetition rate (80 MHz), femtosecond (100 fs), and near-infrared (NIR) (750–850 nm) laser pulses. In open aperture (OA) Z-scan measurements, Ag, Au, and Ag/AuNPs present reverse saturation absorption (RSA) behavior, indicating a positive nonlinear absorption (NLA) coefficient. In the close-aperture (CA) measurements, the nonlinear refractive (NLR) indices (n2) of the Ag, Au, and Ag/Au NP samples were ascribed to the self-defocusing effect, indicating an effective negative nonlinearity for the nanoparticles. The NLA and NLR characteristics of the Ag/Au NPs colloids were found to be influenced by the incident power and excitation wavelength. The optical limiting (OL) effects of the Ag/Au alloy solution at various excitation wavelengths were studied. The OL effect of alloy NPs is greater than that of monometallic NPs. The Ag/Au bimetallic nanoparticles were found to be more suitable for optical-limiting applications. Full article
(This article belongs to the Topic Laser Processing of Metallic Materials)
Show Figures

Figure 1

13 pages, 3504 KB  
Article
Tailoring Quantum Dot Shell Thickness and Polyethylenimine Interlayers for Optimization of Inverted Quantum Dot Light-Emitting Diodes
by Ahmet F. Yazici, Sema Karabel Ocal, Aysenur Bicer, Ramis B. Serin, Rifat Kacar, Esin Ucar, Alper Ulku, Talha Erdem and Evren Mutlugun
Photonics 2024, 11(7), 651; https://doi.org/10.3390/photonics11070651 - 11 Jul 2024
Cited by 1 | Viewed by 2434
Abstract
Quantum dot light-emitting diodes (QLEDs) hold great promise for next-generation display applications owing to their exceptional optical properties and versatile tunability. In this study, we investigate the effects of quantum dot (QD) shell thickness, polyethylenimine (PEI) concentration, and PEI layer position on the [...] Read more.
Quantum dot light-emitting diodes (QLEDs) hold great promise for next-generation display applications owing to their exceptional optical properties and versatile tunability. In this study, we investigate the effects of quantum dot (QD) shell thickness, polyethylenimine (PEI) concentration, and PEI layer position on the performance of inverted QLED devices. Two types of alloyed-core/shell QDs with varying shell thicknesses were synthesized using a one-pot method with mean particle sizes of 8.0 ± 0.9 nm and 10.3 ± 1.3 nm for thin- and thick-shelled QDs, respectively. Thick-shelled QDs exhibited a higher photoluminescence quantum yield (PLQY) and a narrower emission linewidth compared to their thin-shelled counterparts. Next, QLEDs employing these QDs were fabricated. The incorporation of PEI layers on either side of the QD emissive layer significantly enhanced device performance. Using PEI on the hole transport side resulted in greater improvement than on the electron injection side. Sandwiching the QD layer between two PEI layers led to the best performance, with a maximum external quantum efficiency (EQE) of 17% and a peak luminance of 91,174 cd/m2 achieved using an optimized PEI concentration of 0.025 wt% on both electron injection and hole injection sides. This study highlights the critical role of QD shell engineering and interfacial modification in achieving high-performance QLEDs for display applications. Full article
(This article belongs to the Section Optoelectronics and Optical Materials)
Show Figures

Figure 1

11 pages, 2160 KB  
Communication
A Uni-Micelle Approach for the Controlled Synthesis of Monodisperse Gold Nanocrystals
by Liangang Shan, Wenchao Wang, Lei Qian, Jianguo Tang and Jixian Liu
Nanomaterials 2024, 14(11), 900; https://doi.org/10.3390/nano14110900 - 21 May 2024
Cited by 3 | Viewed by 1814
Abstract
Small-size gold nanoparticles (AuNPs) are showing large potential in various fields, such as photothermal conversion, sensing, and medicine. However, current synthesis methods generally yield lower, resulting in a high cost. Here, we report a novel uni-micelle method for the controlled synthesis of monodisperse [...] Read more.
Small-size gold nanoparticles (AuNPs) are showing large potential in various fields, such as photothermal conversion, sensing, and medicine. However, current synthesis methods generally yield lower, resulting in a high cost. Here, we report a novel uni-micelle method for the controlled synthesis of monodisperse gold nanocrystals, in which there is only one kind micelle containing aqueous solution of reductant while the dual soluble Au (III) precursor is dissolved in oil phase. Our synthesis includes the reversible phase transfer of Au (III) and “uni-micelle” synthesis, employing a Au (III)-OA complex as an oil-soluble precursor. Size-controlled monodisperse AuNPs with a size of 4–11 nm are synthesized by tuning the size of the micelles, in which oleylamine (OA) is adsorbed on the shell of micelles and enhances the rigidity of the micelles, depressing micellar coalescence. Monodisperse AuNPs can be obtained through a one-time separation process with a higher yield of 61%. This method also offers a promising way for the controlled synthesis of small-size alloy nanoparticles and semiconductor heterojunction quantum dots. Full article
(This article belongs to the Special Issue Synthesis and Applications of Gold Nanoparticles: 2nd Edition)
Show Figures

Figure 1

14 pages, 2924 KB  
Article
Exploring the Implementation of GaAsBi Alloys as Strain-Reducing Layers in InAs/GaAs Quantum Dots
by Verónica Braza, Daniel Fernández, Teresa Ben, Sara Flores, Nicholas James Bailey, Matthew Carr, Robert Richards and David Gonzalez
Nanomaterials 2024, 14(4), 375; https://doi.org/10.3390/nano14040375 - 17 Feb 2024
Cited by 2 | Viewed by 1813
Abstract
This paper investigates the effect of GaAsBi strain reduction layers (SRLs) on InAs QDs with different Bi fluxes to achieve nanostructures with improved temperature stability. The SRLs are grown at a lower temperature (370 °C) than the usual capping temperature for InAs QDs [...] Read more.
This paper investigates the effect of GaAsBi strain reduction layers (SRLs) on InAs QDs with different Bi fluxes to achieve nanostructures with improved temperature stability. The SRLs are grown at a lower temperature (370 °C) than the usual capping temperature for InAs QDs (510 °C). The study finds that GaAs capping at low temperatures reduces QD decomposition and leads to larger pyramidal dots but also increases the threading dislocation (TD) density. When adding Bi to the capping layer, a significant reduction in TD density is observed, but unexpected structural changes also occur. Increasing the Bi flux does not increase the Bi content but rather the layer thickness. The maximum Bi content for all layers is 2.4%. A higher Bi flux causes earlier Bi incorporation, along with the formation of an additional InGaAs layer above the GaAsBi layer due to In segregation from QD erosion. Additionally, the implementation of GaAsBi SRLs results in smaller dots due to enhanced QD decomposition, which is contrary to the expected function of an SRL. No droplets were detected on the surface of any sample, but we did observe regions of horizontal nanowires within the epilayers for the Bi-rich samples, indicating nanoparticle formation. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

14 pages, 5787 KB  
Article
Theoretical Analysis of GeSn Quantum Dots for Photodetection Applications
by Pin-Hao Lin, Soumava Ghosh and Guo-En Chang
Sensors 2024, 24(4), 1263; https://doi.org/10.3390/s24041263 - 16 Feb 2024
Cited by 3 | Viewed by 2095
Abstract
GeSn alloys have recently emerged as complementary metal–oxide–semiconductor (CMOS)-compatible materials for optoelectronic applications. Although various photonic devices based on GeSn thin films have been developed, low-dimensional GeSn quantum structures with improved efficiencies hold great promise for optoelectronic applications. This study theoretically analyses Ge-capped [...] Read more.
GeSn alloys have recently emerged as complementary metal–oxide–semiconductor (CMOS)-compatible materials for optoelectronic applications. Although various photonic devices based on GeSn thin films have been developed, low-dimensional GeSn quantum structures with improved efficiencies hold great promise for optoelectronic applications. This study theoretically analyses Ge-capped GeSn pyramid quantum dots (QDs) on Ge substrates to explore their potential for such applications. Theoretical models are presented to calculate the effects of the Sn content and the sizes of the GeSn QDs on the strain distributions caused by lattice mismatch, the band structures, transition energies, wavefunctions of confined electrons and holes, and transition probabilities. The bandgap energies of the GeSn QDs decrease with the increasing Sn content, leading to higher band offsets and improved carrier confinement, in addition to electron–hole wavefunction overlap. The GeSn QDs on the Ge substrate provide crucial type–I alignment, but with a limited band offset, thereby decreasing carrier confinement. However, the GeSn QDs on the Ge substrate show a direct bandgap at higher Sn compositions and exhibit a ground-state transition energy of ~0.8 eV, rendering this system suitable for applications in the telecommunication window (1550 nm). These results provide important insights into the practical feasibility of GeSn QD systems for optoelectronic applications. Full article
Show Figures

Figure 1

12 pages, 3133 KB  
Article
Engineering Band Gap of Ternary Ag2TexS1−x Quantum Dots for Solution-Processed Near-Infrared Photodetectors
by Zan Wang, Yunjiao Gu, Daniil Aleksandrov, Fenghua Liu, Hongbo He and Weiping Wu
Inorganics 2024, 12(1), 1; https://doi.org/10.3390/inorganics12010001 - 19 Dec 2023
Cited by 7 | Viewed by 3465
Abstract
Silver-based chalcogenide semiconductors exhibit low toxicity and near-infrared optical properties and are therefore extensively employed in the field of solar cells, photodetectors, and biological probes. Here, we report a facile mixture precursor hot-injection colloidal route to prepare Ag2TexS1−x [...] Read more.
Silver-based chalcogenide semiconductors exhibit low toxicity and near-infrared optical properties and are therefore extensively employed in the field of solar cells, photodetectors, and biological probes. Here, we report a facile mixture precursor hot-injection colloidal route to prepare Ag2TexS1−x ternary quantum dots (QDs) with tunable photoluminescence (PL) emissions from 950 nm to 1600 nm via alloying band gap engineering. As a proof-of-concept application, the Ag2TexS1−x QDs-based near-infrared photodetector (PD) was fabricated via solution-processes to explore their photoelectric properties. The ICP-OES results reveal the relationship between the compositions of the precursor and the samples, which is consistent with Vegard’s equation. Alloying broadened the absorption spectrum and narrowed the band gap of the Ag2S QDs. The UPS results demonstrate the energy band alignment of the Ag2Te0.53S0.47 QDs. The solution-processed Ag2TexS1−x QD-based PD exhibited a photoresponse to 1350 nm illumination. With an applied voltage of 0.5 V, the specific detectivity is 0.91 × 1010 Jones and the responsivity is 0.48 mA/W. The PD maintained a stable response under multiple optical switching cycles, with a rise time of 2.11 s and a fall time of 1.04 s, which indicate excellent optoelectronic performance. Full article
(This article belongs to the Special Issue Advanced Inorganic Semiconductor Materials)
Show Figures

Graphical abstract

12 pages, 5424 KB  
Article
Surface Functionalisation of Self-Assembled Quantum Dot Microlasers with a DNA Aptamer
by Bethan K. Charlton, Dillon H. Downie, Isaac Noman, Pedro Urbano Alves, Charlotte J. Eling and Nicolas Laurand
Int. J. Mol. Sci. 2023, 24(19), 14416; https://doi.org/10.3390/ijms241914416 - 22 Sep 2023
Cited by 4 | Viewed by 2427
Abstract
The surface functionalisation of self-assembled colloidal quantum dot supraparticle lasers with a thrombin binding aptamer (TBA-15) has been demonstrated. The self-assembly of CdSSe/ZnS alloyed core/shell microsphere-shape CQD supraparticles emitting at 630 nm was carried out using an oil-in-water emulsion technique, yielding microspheres with [...] Read more.
The surface functionalisation of self-assembled colloidal quantum dot supraparticle lasers with a thrombin binding aptamer (TBA-15) has been demonstrated. The self-assembly of CdSSe/ZnS alloyed core/shell microsphere-shape CQD supraparticles emitting at 630 nm was carried out using an oil-in-water emulsion technique, yielding microspheres with an oleic acid surface and an average diameter of 7.3 ± 5.3 µm. Surface modification of the microspheres was achieved through a ligand exchange with mercaptopropionic acid and the subsequent attachment of TBA-15 using EDC/NHS coupling, confirmed by zeta potential and Fourier transform IR spectroscopy. Lasing functionality between 627 nm and 635 nm was retained post-functionalisation, with oleic acid- and TBA-coated microspheres exhibiting laser oscillation with thresholds as low as 4.10 ± 0.37 mJ·cm−2 and 7.23 ± 0.78 mJ·cm−2, respectively. Full article
Show Figures

Figure 1

23 pages, 11165 KB  
Review
Cadmium-Based Quantum Dots Alloyed Structures: Synthesis, Properties, and Applications
by Fadia Ebrahim, Omar Al-Hartomy and S. Wageh
Materials 2023, 16(17), 5877; https://doi.org/10.3390/ma16175877 - 28 Aug 2023
Cited by 5 | Viewed by 4233
Abstract
Cadmium-based alloyed quantum dots are one of the most popular metal chalcogenides in both the industrial and research fields owing to their extraordinary optical and electronic properties that can be manipulated by varying the compositional ratio in addition to size control. This report [...] Read more.
Cadmium-based alloyed quantum dots are one of the most popular metal chalcogenides in both the industrial and research fields owing to their extraordinary optical and electronic properties that can be manipulated by varying the compositional ratio in addition to size control. This report aims to cover the main information concerning the synthesis techniques, properties, and applications of Cd-based alloyed quantum dots. It provides a comprehensive overview of the most common synthesis methods for these QDs, which include hot injection, co-precipitation, successive ionic layer adsorption and reaction, hydrothermal, and microwave-assisted synthesis methods. This detailed literature highlights the optical and structural properties of both ternary and quaternary quantum dots. Also, this review provides the high-potential applications of various alloyed quantum dots. Full article
(This article belongs to the Special Issue Quantum Dots for Optoelectronic Devices)
Show Figures

Graphical abstract

14 pages, 2907 KB  
Article
Fluorescent Alloyed CdZnSeS/ZnS Nanosensor for Doxorubicin Detection
by Svetlana A. Mescheryakova, Ivan S. Matlakhov, Pavel D. Strokin, Daniil D. Drozd, Irina Yu. Goryacheva and Olga A. Goryacheva
Biosensors 2023, 13(6), 596; https://doi.org/10.3390/bios13060596 - 31 May 2023
Cited by 15 | Viewed by 3263
Abstract
Doxorubicin (DOX) is widely used in chemotherapy as an anti-tumor drug. However, DOX is highly cardio-, neuro- and cytotoxic. For this reason, the continuous monitoring of DOX concentrations in biofluids and tissues is important. Most methods for the determination of DOX concentrations are [...] Read more.
Doxorubicin (DOX) is widely used in chemotherapy as an anti-tumor drug. However, DOX is highly cardio-, neuro- and cytotoxic. For this reason, the continuous monitoring of DOX concentrations in biofluids and tissues is important. Most methods for the determination of DOX concentrations are complex and costly, and are designed to determine pure DOX. The purpose of this work is to demonstrate the capabilities of analytical nanosensors based on the quenching of the fluorescence of alloyed CdZnSeS/ZnS quantum dots (QDs) for operative DOX detection. To maximize the nanosensor quenching efficiency, the spectral features of QDs and DOX were carefully studied, and the complex nature of QD fluorescence quenching in the presence of DOX was shown. Using optimized conditions, turn-off fluorescence nanosensors for direct DOX determination in undiluted human plasma were developed. A DOX concentration of 0.5 µM in plasma was reflected in a decrease in the fluorescence intensity of QDs, stabilized with thioglycolic and 3-mercaptopropionic acids, for 5.8 and 4.4 %, respectively. The calculated Limit of Detection values were 0.08 and 0.03 μg/mL using QDs, stabilized with thioglycolic and 3-mercaptopropionic acids, respectively. Full article
(This article belongs to the Special Issue Nano/Micro Biosensors for Biomedical Applications)
Show Figures

Graphical abstract

18 pages, 9058 KB  
Review
The Historical Development of Infrared Photodetection Based on Intraband Transitions
by Qun Hao, Xue Zhao, Xin Tang and Menglu Chen
Materials 2023, 16(4), 1562; https://doi.org/10.3390/ma16041562 - 13 Feb 2023
Cited by 7 | Viewed by 3797
Abstract
The infrared technology is entering widespread use as it starts fulfilling a growing number of emerging applications, such as smart buildings and automotive sectors. Majority of infrared photodetectors are based on interband transition, which is the energy gap between the valence band and [...] Read more.
The infrared technology is entering widespread use as it starts fulfilling a growing number of emerging applications, such as smart buildings and automotive sectors. Majority of infrared photodetectors are based on interband transition, which is the energy gap between the valence band and the conduction band. As a result, infrared materials are mainly limited to semi-metal or ternary alloys with narrow-bandgap bulk semiconductors, whose fabrication is complex and expensive. Different from interband transition, intraband transition utilizing the energy gap inside the band allows for a wider choice of materials. In this paper, we mainly discuss the recent developments on intraband infrared photodetectors, including ‘bottom to up’ devices such as quantum well devices based on the molecular beam epitaxial approach, as well as ‘up to bottom’ devices such as colloidal quantum dot devices based on the chemical synthesis. Full article
(This article belongs to the Section Quantum Materials)
Show Figures

Figure 1

Back to TopTop