Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = all-inorganic perovskite nanocrystals

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 5562 KiB  
Article
ZrBr4-Mediated Phase Engineering in CsPbBr3 for Enhanced Operational Stability of White-Light-Emitting Diodes
by Muhammad Amin Padhiar, Yongqiang Ji, Jing Wang, Noor Zamin Khan, Mengji Xiong and Shuxin Wang
Nanomaterials 2025, 15(9), 674; https://doi.org/10.3390/nano15090674 - 28 Apr 2025
Viewed by 460
Abstract
The persistent operational instability of all-inorganic cesium lead halide (CsPbX3) perovskite nanocrystals (NCs) has hindered their integration into white-light-emitting diodes (WLEDs). This study introduces a transformative approach by engineering a phase transition from CsPbBr3 NCs to zirconium bromide (ZrBr4 [...] Read more.
The persistent operational instability of all-inorganic cesium lead halide (CsPbX3) perovskite nanocrystals (NCs) has hindered their integration into white-light-emitting diodes (WLEDs). This study introduces a transformative approach by engineering a phase transition from CsPbBr3 NCs to zirconium bromide (ZrBr4)-stabilized hexagonal nanocomposites (HNs) through a modified hot-injection synthesis. Structural analyses revealed that the ZrBr4-mediated phase transformation induced a structurally ordered lattice with minimized defects, significantly enhancing charge carrier confinement and radiative recombination efficiency. The resulting HNs achieved an exceptional photoluminescence quantum yield (PLQY) of 92%, prolonged emission lifetimes, and suppressed nonradiative decay, attributed to effective surface passivation. The WLEDs with HNs enabled a breakthrough luminous efficiency of 158 lm/W and a record color rendering index (CRI) of 98, outperforming conventional CsPbX3-based devices. The WLEDs exhibited robust thermal stability, retaining over 80% of initial emission intensity at 100 °C, and demonstrated exceptional operational stability with negligible PL degradation during 50 h of continuous operation at 100 mA. Commission Internationale de l’Éclairage (CIE) coordinates of (0.35, 0.32) validated pure white-light emission with high chromatic fidelity. This work establishes ZrBr4-mediated HNs as a paradigm-shifting material platform, addressing critical stability and efficiency challenges in perovskite optoelectronics and paving the way for next-generation, high-performance lighting solutions. Full article
(This article belongs to the Special Issue Recent Advances in Halide Perovskite Nanomaterials)
Show Figures

Figure 1

4 pages, 946 KiB  
Proceeding Paper
Effective Surface Washing of All Inorganic Perovskite Nanocrystals to Enhance Optoelectronic Properties
by Saqib Ali, Maryam Basit, Muhammad Arman Liaquat, Muhammad Adnan, Aftab Akram and Sofia Javed
Mater. Proc. 2024, 17(1), 19; https://doi.org/10.3390/materproc2024017019 - 18 Apr 2024
Viewed by 1206
Abstract
All inorganic perovskite colloidal nano crystals are an emerging class of optoelectronic materials. However, their colloidal and structural stability during isolation and washing are major hurdles for their commercial application. Their intrinsic chemical instability and optical stability are directly related to the bonding [...] Read more.
All inorganic perovskite colloidal nano crystals are an emerging class of optoelectronic materials. However, their colloidal and structural stability during isolation and washing are major hurdles for their commercial application. Their intrinsic chemical instability and optical stability are directly related to the bonding nature of the nanocrystals’ surface and organic capping agents that passivate the surface of nanocrystals. We studied the surface ligand properties of CsPbBr3 prepared by the conventional hot injection method and their washing with varying polarity antisolvent. We observed changes in electrical and optical properties through experimental studies. The study was mainly done by optical and electronic measurements. We determined a facile nanocrystal washing protocol and observed a considerable improvement in the optoelectronic properties of the all-inorganic perovskite colloidal nanocrystals. Full article
(This article belongs to the Proceedings of CEMP 2023)
Show Figures

Figure 1

13 pages, 2644 KiB  
Article
Synergistic Halide- and Ligand-Exchanges of All-Inorganic Perovskite Nanocrystals for Near-Unity and Spectrally Stable Red Emission
by Kaiwang Chen, Dengliang Zhang, Qing Du, Wei Hong, Yue Liang, Xingxing Duan, Shangwei Feng, Linfeng Lan, Lei Wang, Jiangshan Chen and Dongge Ma
Nanomaterials 2023, 13(16), 2337; https://doi.org/10.3390/nano13162337 - 14 Aug 2023
Cited by 7 | Viewed by 2084
Abstract
All-inorganic perovskite nanocrystals (NCs) of CsPbX3 (X = Cl, Br, I) are promising for displays due to wide color gamut, narrow emission bandwidth, and high photoluminescence quantum yield (PLQY). However, pure red perovskite NCs prepared by mixing halide ions often result in [...] Read more.
All-inorganic perovskite nanocrystals (NCs) of CsPbX3 (X = Cl, Br, I) are promising for displays due to wide color gamut, narrow emission bandwidth, and high photoluminescence quantum yield (PLQY). However, pure red perovskite NCs prepared by mixing halide ions often result in defects and spectral instabilities. We demonstrate a method to prepare stable pure red emission and high-PLQY-mixed-halide perovskite NCs through simultaneous halide-exchange and ligand-exchange. CsPbBr3 NCs with surface organic ligands are first synthesized using the ligand-assisted reprecipitation (LARP) method, and then ZnI2 is introduced for anion exchange to transform CsPbBr3 to CsPbBrxI3−x NCs. ZnI2 not only provides iodine ions but also acts as an inorganic ligand to passivate surface defects and prevent ion migration, suppressing non-radiative losses and halide segregation. The luminescence properties of CsPbBrxI3−x NCs depend on the ZnI2 content. By regulating the ZnI2 exchange process, red CsPbBrxI3−x NCs with organic/inorganic hybrid ligands achieve near-unity PLQY with a stable emission peak at 640 nm. The CsPbBrxI3−x NCs can be combined with green CsPbBr3 NCs to construct white light-emitting diodes with high-color gamut. Our work presents a facile ion exchange strategy for preparing spectrally stable mixed-halide perovskite NCs with high PLQY, approaching the efficiency limit for display or lighting applications. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Figure 1

14 pages, 6527 KiB  
Article
All-Inorganic CsPbBr3 Perovskite Nanocrystals Synthesized with Olive Oil and Oleylamine at Room Temperature
by Getachew Welyab, Mulualem Abebe, Dhakshnamoorthy Mani, Aparna Thankappan, Sabu Thomas, Fekadu Gochole Aga and Jung Yong Kim
Micromachines 2023, 14(7), 1332; https://doi.org/10.3390/mi14071332 - 29 Jun 2023
Cited by 11 | Viewed by 4781
Abstract
Room temperature (RT) synthesis of the ternary cesium lead bromide CsPbBr3 quantum dots with oleic acid and oleylamine ligands was developed by Zeng and coworkers in 2016. In their works, the supersaturated recrystallization (SR) was adopted as a processing method without requiring [...] Read more.
Room temperature (RT) synthesis of the ternary cesium lead bromide CsPbBr3 quantum dots with oleic acid and oleylamine ligands was developed by Zeng and coworkers in 2016. In their works, the supersaturated recrystallization (SR) was adopted as a processing method without requiring inert gas and high-temperature injection. However, the oleic acid ligand for haloplumbate is known to be relatively unstable. Hence, in this work, we employed the eco-friendly olive oil to replace the oleic acid portion for the SR process at RT. Resultantly, we found that the cube-shaped nanocrystal has a size of ~40–42 nm and an optical bandgap of ~2.3 eV independent of the surface ligands, but the photoluminescence lifetime (τav) and crystal packing are dependent on the ligand species, e.g., τav = 3.228 ns (olive oil and oleylamine; here less ordered) vs. 1.167 ns (oleic acid and oleylamine). Importantly, we explain the SR mechanism from the viewpoint of the classical LaMer model combined with the solvent engineering technique in details. Full article
(This article belongs to the Special Issue Perovskite Semiconductors for Light-Emitting Diodes and Beyond)
Show Figures

Figure 1

13 pages, 3083 KiB  
Article
Synthesis of All-Inorganic Halide Perovskite Nanocrystals for Potential Photoelectric Catalysis Applications
by Xiaoqian Wang, Wanli Liu, Jiazhen He, Yuqing Li and Yong Liu
Catalysts 2023, 13(7), 1041; https://doi.org/10.3390/catal13071041 - 27 Jun 2023
Cited by 7 | Viewed by 3080
Abstract
Compared with conventional semiconductors, halide perovskite nanocrystals (NCs) have a unique crystal structure and outstanding optoelectronic properties, offering wide potential for applications in optoelectronic devices such as solar cells, photodetectors, light-emitting diodes, lasers, and displays. Rational technological design is providing vital support for [...] Read more.
Compared with conventional semiconductors, halide perovskite nanocrystals (NCs) have a unique crystal structure and outstanding optoelectronic properties, offering wide potential for applications in optoelectronic devices such as solar cells, photodetectors, light-emitting diodes, lasers, and displays. Rational technological design is providing vital support for the development of perovskite optoelectronics. Herein, monodisperse all-inorganic halide perovskite nanocrystals with consistent morphology and cubic crystal phase were synthesized employing a modified one-pot hot injection method to independently modulate the stoichiometric ratios of three precursors involving cesium salt, lead source, and halide. In combination with an anion exchange reaction, mixing two kinds of perovskite NCs with different halogens enables a transition from violet emission to green and finally to red emission over the entire visible region. Additionally, optical and electrochemical tests suggested that the as-synthesized halide perovskite NCs are promising for photoelectric catalysis applications. Full article
(This article belongs to the Special Issue Hierarchically Porous Catalysts)
Show Figures

Figure 1

10 pages, 3028 KiB  
Article
Highly Efficient and Stable CsPbBr3-Alginic Acid Composites for White Light-Emitting Diodes
by Muyi Wang, Song Wang, Renjie Chen, Mengmeng Zhu, Yunpeng Liu, Haojie Ding, Jun Ren, Tongtong Xuan and Huili Li
Coatings 2023, 13(6), 1062; https://doi.org/10.3390/coatings13061062 - 7 Jun 2023
Cited by 7 | Viewed by 2046
Abstract
All-inorganic perovskite nanocrystals (NCs) have attractive potential for applications in display and lighting fields due to their special optoelectronic properties. However, they still suffer from poor water and thermal stability. In this work, green CsPbBr3-alginic acid (CsPbBr3-AA) perovskite composites [...] Read more.
All-inorganic perovskite nanocrystals (NCs) have attractive potential for applications in display and lighting fields due to their special optoelectronic properties. However, they still suffer from poor water and thermal stability. In this work, green CsPbBr3-alginic acid (CsPbBr3-AA) perovskite composites were synthesized by an in situ hot-injection process which showed a high photoluminescence quantum yield (PLQY) of 86.43% and improved moisture and thermal stability. Finally, white light-emitting diodes (WLEDs) were fabricated by combining the green CsPbBr3-AA perovskite composites with red K2SiF6:Mn4+ phosphors and blue InGaN LED chips. The WLEDs show a relatively high luminous efficacy of 36.4 lm/W and a wide color gamut (124% of the National Television System Committee). These results indicate that the green CsPbBr3-AA perovskite composites have great potential applications in backlight displays. Full article
(This article belongs to the Special Issue Feature Papers of Coatings for Energy Applications)
Show Figures

Figure 1

28 pages, 3584 KiB  
Review
Cesium Lead Iodide Perovskites: Optically Active Crystal Phase Stability to Surface Engineering
by Yixi Wang, Hairong Zhao, Marek Piotrowski, Xiao Han, Zhongsheng Ge, Lizhuang Dong, Chengjie Wang, Sowjanya Krishna Pinisetty, Praveen Kumar Balguri, Anil Kumar Bandela and Udayabhaskararao Thumu
Micromachines 2022, 13(8), 1318; https://doi.org/10.3390/mi13081318 - 15 Aug 2022
Cited by 17 | Viewed by 5574
Abstract
Among perovskites, the research on cesium lead iodides (CsPbI3) has attracted a large research community, owing to their all-inorganic nature and promising solar cell performance. Typically, the CsPbI3 solar cell devices are prepared at various heterojunctions, and working at fluctuating [...] Read more.
Among perovskites, the research on cesium lead iodides (CsPbI3) has attracted a large research community, owing to their all-inorganic nature and promising solar cell performance. Typically, the CsPbI3 solar cell devices are prepared at various heterojunctions, and working at fluctuating temperatures raises questions on the material stability-related performance of such devices. The fundamental studies reveal that their poor stability is due to a lower side deviation from Goldschmidt’s tolerance factor, causing weak chemical interactions within the crystal lattice. In the case of organic–inorganic hybrid perovskites, where their stability is related to the inherent chemical nature of the organic cations, which cannot be manipulated to improve the stability drastically whereas the stability of CsPbI3 is related to surface and lattice engineering. Thus, the challenges posed by CsPbI3 could be overcome by engineering the surface and inside the CsPbI3 crystal lattice. A few solutions have been proposed, including controlled crystal sizes, surface modifications, and lattice engineering. Various research groups have been working on these aspects and had accumulated a rich understanding of these materials. In this review, at first, we survey the fundamental aspects of CsPbI3 polymorphs structure, highlighting the superiority of CsPbI3 over other halide systems, stability, the factors (temperature, polarity, and size influence) leading to their phase transformations, and electronic band structure along with the important property of the defect tolerance nature. Fortunately, the factors stabilizing the most effective phases are achieved through a size reduction and the efficient surface passivation on the delicate CsPbI3 nanocrystal surfaces. In the following section, we have provided the up-to-date surface passivating methods to suppress the non-radiative process for near-unity photoluminescence quantum yield, while maintaining their optically active phases, especially through molecular links (ligands, polymers, zwitterions, polymers) and inorganic halides. We have also provided recent advances to the efficient synthetic protocols for optically active CsPbI3 NC phases to use readily for solar cell applications. The nanocrystal purification techniques are challenging and had a significant effect on the device performances. In part, we summarized the CsPbI3-related solar cell device performances with respect to the device fabrication methods. At the end, we provide a brief outlook on the view of surface and lattice engineering in CsPbI3 NCs for advancing the enhanced stability which is crucial for superior optical and light applications. Full article
Show Figures

Figure 1

17 pages, 3039 KiB  
Review
Recent Progress in Lanthanide-Doped Inorganic Perovskite Nanocrystals and Nanoheterostructures: A Future Vision of Bioimaging
by Gowri Manohari Arumugam, Santhosh Kumar Karunakaran, Raquel E. Galian and Julia Pérez-Prieto
Nanomaterials 2022, 12(13), 2130; https://doi.org/10.3390/nano12132130 - 21 Jun 2022
Cited by 15 | Viewed by 4037
Abstract
All-inorganic lead halide perovskite nanocrystals have great potential in optoelectronics and photovoltaics. However, their biological applications have not been explored much owing to their poor stability and shallow penetration depth of ultraviolet (UV) excitation light into tissues. Interestingly, the combination of all-inorganic halide [...] Read more.
All-inorganic lead halide perovskite nanocrystals have great potential in optoelectronics and photovoltaics. However, their biological applications have not been explored much owing to their poor stability and shallow penetration depth of ultraviolet (UV) excitation light into tissues. Interestingly, the combination of all-inorganic halide perovskite nanocrystals (IHP NCs) with nanoparticles consisting of lanthanide-doped matrix (Ln NPs, such as NaYF4:Yb,Er NPs) is stable, near-infrared (NIR) excitable and emission tuneable (up-shifting emission), all of them desirable properties for biological applications. In addition, luminescence in inorganic perovskite nanomaterials has recently been sensitized via lanthanide doping. In this review, we discuss the progress of various Ln-doped all-inorganic halide perovskites (LnIHP). The unique properties of nanoheterostructures based on the interaction between IHP NCs and Ln NPs as well as those of LnIHP NCs are also detailed. Moreover, a systematic discussion of basic principles and mechanisms as well as of the recent advancements in bio-imaging based on these materials are presented. Finally, the challenges and future perspectives of bio-imaging based on NIR-triggered sensitized luminescence of IHP NCs are discussed. Full article
Show Figures

Figure 1

11 pages, 4431 KiB  
Article
Wavelength-Tunable and Water-Stable Cesium–Lead-Based All-Bromide Nanocrystal–Polymer Composite Films Using Ultraviolet-Curable Prepolymer as an Anti-Solvent
by Wook Hyun Kim, Jungyoun Bae, Kang-Pil Kim and Sungho Woo
Polymers 2022, 14(3), 381; https://doi.org/10.3390/polym14030381 - 19 Jan 2022
Cited by 4 | Viewed by 2918
Abstract
All-inorganic metal halide perovskite nanocrystals (IPeNCs) have become one of the most promising luminescent materials for next-generation display and lighting technology owing to their excellent color expression ability. However, research on IPeNCs with stable blue emission is limited. In this paper, we report [...] Read more.
All-inorganic metal halide perovskite nanocrystals (IPeNCs) have become one of the most promising luminescent materials for next-generation display and lighting technology owing to their excellent color expression ability. However, research on IPeNCs with stable blue emission is limited. In this paper, we report stable blue emissive all-bromide IPeNCs obtained through a modified ligand-assisted reprecipitation method using an ultraviolet (UV)-curable prepolymer as the anti-solvent at a low temperature. We found that the blue emission originates from quantum-confined CsPbBr3 nanoparticles formed together with the colorless wide-bandgap Cs4PbBr6 nanocrystals. When the temperature of the prepolymer was increased from 0 to 50 °C, CsPbBr3 nanoparticles became larger and more crystalline, thereby altering their emission color from blue to green. The synthesized all-bromide blue-emitting IPeNC solution remained stable for over 1 h. It also remained stable when it was mixed with the green-emitting IPeNC solution. By simply exposing the as-synthesized IPeNC–prepolymer solutions to UV light, we formed water-stable composite films that emitted red, green, blue, and white colors. We believe that this synthetic method can be used to develop color-emitting composite materials that are highly suitable for application as the color conversion films of full-color liquid crystal display backlight systems and lighting applications. Full article
Show Figures

Figure 1

9 pages, 2047 KiB  
Article
Photodetector Based on CsPbBr3/Cs4PbBr6 Composite Nanocrystals with High Detectivity
by Yue Han, Rong Wen, Feng Zhang, Linlin Shi, Wenyan Wang, Ting Ji, Guohui Li, Yuying Hao, Lin Feng and Yanxia Cui
Crystals 2021, 11(11), 1287; https://doi.org/10.3390/cryst11111287 - 24 Oct 2021
Cited by 4 | Viewed by 3175
Abstract
High-quality, all-inorganic CsPbBr3/Cs4PbBr6 composite perovskite nanocrystals (NCs) were obtained with all-solution-processing at room temperature, and a photodetector (PD) with high detectivity was realized based on CsPbBr3/Cs4PbBr6 NCs. The detectivity (D*) of [...] Read more.
High-quality, all-inorganic CsPbBr3/Cs4PbBr6 composite perovskite nanocrystals (NCs) were obtained with all-solution-processing at room temperature, and a photodetector (PD) with high detectivity was realized based on CsPbBr3/Cs4PbBr6 NCs. The detectivity (D*) of the proposed PD is 4.24 × 1012 Jones under 532 nm illumination, which is among the highest levels for PDs based on all-inorganic perovskite NCs. In addition, a high linear dynamic range (LDR) of 115 dB under 1 V bias was also realized. Furthermore, the underlying mechanism for the enhanced performance of the proposed PD was discussed. Our work might promote the preparation of high-performance PDs based on dual-phase all-inorganic perovskite nanocrystals. Full article
Show Figures

Figure 1

9 pages, 1854 KiB  
Article
Precise Control of Green to Blue Emission of Halide Perovskite Nanocrystals Using Terbium Chloride as Chlorine Source
by Wenqiang Deng, Ting Fan, Jiantao Lü, Jingling Li, Tingting Deng and Mingqi Liu
Nanomaterials 2021, 11(9), 2390; https://doi.org/10.3390/nano11092390 - 14 Sep 2021
Viewed by 2271
Abstract
CsPbClxBr3-x nanocrystals were prepared by ligand-assisted deposition at room temperature, and their wavelength was accurately adjusted by doping TbCl3. The synthesized nanocrystals were monoclinic and the morphology was almost unchanged after doping. The fluorescence emission of CsPbClx [...] Read more.
CsPbClxBr3-x nanocrystals were prepared by ligand-assisted deposition at room temperature, and their wavelength was accurately adjusted by doping TbCl3. The synthesized nanocrystals were monoclinic and the morphology was almost unchanged after doping. The fluorescence emission of CsPbClxBr3-x nanocrystals was easily controlled from green to blue by adjusting the amount of TbCl3, which realizes the continuous and accurate spectral regulation in the range of green to blue. This method provides a new scheme for fast anion exchange of all-inorganic perovskite nanocrystals in an open environment at room temperature. Full article
(This article belongs to the Special Issue Luminescent Nanomaterials and Their Applications)
Show Figures

Figure 1

19 pages, 23906 KiB  
Article
Design and Numerical Investigation of a Lead-Free Inorganic Layered Double Perovskite Cs4CuSb2Cl12 Nanocrystal Solar Cell by SCAPS-1D
by Yizhou He, Liyifei Xu, Cheng Yang, Xiaowei Guo and Shaorong Li
Nanomaterials 2021, 11(9), 2321; https://doi.org/10.3390/nano11092321 - 7 Sep 2021
Cited by 88 | Viewed by 6355
Abstract
In the last decade, perovskite solar cells have made a quantum leap in performance with the efficiency increasing from 3.8% to 25%. However, commercial perovskite solar cells have faced a major impediment due to toxicity and stability issues. Therefore, lead-free inorganic perovskites have [...] Read more.
In the last decade, perovskite solar cells have made a quantum leap in performance with the efficiency increasing from 3.8% to 25%. However, commercial perovskite solar cells have faced a major impediment due to toxicity and stability issues. Therefore, lead-free inorganic perovskites have been investigated in order to find substitute perovskites which can provide a high efficiency similar to lead-based perovskites. In recent studies, as a kind of lead-free inorganic perovskite material, Cs4CuSb2Cl12 has been demonstrated to possess impressive photoelectric properties and excellent environmental stability. Moreover, Cs4CuSb2Cl12 nanocrystals have smaller effective photo-generated carrier masses than bulk Cs4CuSb2Cl12, which provides excellent carrier mobility. To date, there have been no reports about Cs4CuSb2Cl12 nanocrystals used for making solar cells. To explore the potential of Cs4CuSb2Cl12 nanocrystal solar cells, we propose a lead-free perovskite solar cell with the configuration of FTO/ETL/Cs4CuSb2Cl12 nanocrystals/HTL/Au using a solar cell capacitance simulator. Moreover, we numerically investigate the factors that affect the performance of the Cs4CuSb2Cl12 nanocrystal solar cell with the aim of enhancing its performance. By selecting the appropriate hole transport material, electron transport material, thickness of the absorber layer, doping densities, defect density in the absorber, interface defect densities, and working temperature point, we predict that the Cs4CuSb2Cl12 nanocrystal solar cell with the FTO/TiO2/Cs4CuSb2Cl12 nanocrystals/Cu2O/Au structure can attain a power conversion efficiency of 23.07% at 300 K. Our analysis indicates that Cs4CuSb2Cl12 nanocrystals have great potential as an absorbing layer towards highly efficient lead-free all-inorganic perovskite solar cells. Full article
(This article belongs to the Special Issue Nanomaterials for Solar Energy Conversion and Storage)
Show Figures

Figure 1

14 pages, 4604 KiB  
Article
Carbon Nanodots as a Potential Transport Layer for Boosting Performance of All-Inorganic Perovskite Nanocrystals-Based Photodetector
by Hassan Algadi, Ahmad Umar, Hasan Albargi, Turki Alsuwian and Sotirios Baskoutas
Crystals 2021, 11(6), 717; https://doi.org/10.3390/cryst11060717 - 21 Jun 2021
Cited by 17 | Viewed by 4019
Abstract
A low-cost and simple drop-casting method was used to fabricate a carbon nanodot (C-dot)/all-inorganic perovskite (CsPbBr3) nanosheet bilayer heterojunction photodetector on a SiO2/Si substrate. The C-dot/perovskite bilayer heterojunction photodetector shows a high performance with a responsivity (R) of 1.09 [...] Read more.
A low-cost and simple drop-casting method was used to fabricate a carbon nanodot (C-dot)/all-inorganic perovskite (CsPbBr3) nanosheet bilayer heterojunction photodetector on a SiO2/Si substrate. The C-dot/perovskite bilayer heterojunction photodetector shows a high performance with a responsivity (R) of 1.09 A/W, almost five times higher than that of a CsPbBr3-based photodetector (0.21 A/W). In addition, the hybrid photodetector exhibits a fast response speed of 1.318/1.342 µs and a highly stable photocurrent of 6.97 µA at 10 V bias voltage. These figures of merits are comparable with, or much better than, most reported perovskite heterojunction photodetectors. UV–Vis absorption and photoluminescent spectra measurements reveal that the C-dot/perovskite bilayer heterojunction has a band gap similar to the pure perovskite layer, confirming that the absorption and emission in the bilayer heterojunction is dominated by the top layer of the perovskite. Moreover, the emission intensity of the C-dot/perovskite bilayer heterojunction is less than that of the pure perovskite layer, indicating that a significant number of charges were extracted by the C-dot layer. The studied band alignment of the C-dots and perovskites in the dark and under emission reveals that the photodetector has a highly efficient charge separation mechanism at the C-dot/perovskite interface, where the recombination rate between photogenerated electrons and holes is significantly reduced. This highly efficient charge separation mechanism is the main reason behind the enhanced performance of the C-dot/perovskite bilayer heterojunction photodetector. Full article
(This article belongs to the Special Issue Functional Nanomaterials for Advanced Applications)
Show Figures

Figure 1

13 pages, 2186 KiB  
Article
Near Unity PLQY and High Stability of Barium Thiocyanate Based All-Inorganic Perovskites and Their Applications in White Light-Emitting Diodes
by Gopi Chandra Adhikari, Saroj Thapa, Yang Yue, Hongyang Zhu and Peifen Zhu
Photonics 2021, 8(6), 209; https://doi.org/10.3390/photonics8060209 - 9 Jun 2021
Cited by 12 | Viewed by 5345
Abstract
All-inorganic lead halide perovskite (CsPbX3) nanocrystals (NCs) have emerged as a highly promising new generation of light emitters due to their extraordinary photophysical properties. However, the performance of these semiconducting NCs is undermined due to the inherent toxicity of lead and [...] Read more.
All-inorganic lead halide perovskite (CsPbX3) nanocrystals (NCs) have emerged as a highly promising new generation of light emitters due to their extraordinary photophysical properties. However, the performance of these semiconducting NCs is undermined due to the inherent toxicity of lead and long-term environmental stability. Here, we report the addition of B-site cation and X-site anion (pseudo-halide) concurrently using Ba(SCN)2 (≤50%) in CsPbX3 NCs to reduce the lead and improve the photophysical properties and stability. The as-grown particles demonstrated an analogous structure with an almost identical lattice constant and a fluctuation of particle size without altering the morphology of particles. Photoluminescence quantum yield is enhanced up to near unity (~98%) by taking advantage of concomitant doping at the B- and X-site of the structure. Benefitted from the defect reductions and stronger bonding interaction between Pb2+ and SCN ions, Ba(SCN)2-based NCs exhibit improved stability towards air and moisture compared to the host NCs. The doped NCs retain higher PLQY (as high as seven times) compared to the host NCs) when stored in an ambient atmosphere for more than 176 days. A novel 3D-printed multiplex color conversion layer was used to fabricate a white light-emitting diode (LED). The obtained white light shows a correlated color temperature of 6764 K, a color rendering index of 87, and luminous efficacy of radiation of 333 lm/W. In summary, this work proposes a facile route to treat sensitive lead halide perovskite NCs and to fabricate LEDs by using a low-cost large-scale 3-D printing method, which would serve as a foundation for fabricating high-quality optoelectronic devices for near future lighting technologies. Full article
(This article belongs to the Special Issue Wide Bandgap Semiconductor Photonic Devices)
Show Figures

Graphical abstract

7 pages, 15326 KiB  
Article
Directional and Fast Photoluminescence from CsPbI3 Nanocrystals Coupled to Dielectric Circular Bragg Gratings
by Yan Hua, Yuming Wei, Bo Chen, Zhuojun Liu, Zhe He, Zeyu Xing, Shunfa Liu, Peinian Huang, Yan Chen, Yunan Gao and Jin Liu
Micromachines 2021, 12(4), 422; https://doi.org/10.3390/mi12040422 - 13 Apr 2021
Cited by 6 | Viewed by 3123
Abstract
Lead halide perovskite nanocrystals (NCs), especially the all-inorganic perovskite NCs, have drawn substantial attention for both fundamental research and device applications in recent years due to their unique optoelectronic properties. To build high-performance nanophotonic devices based on perovskite NCs, it is highly desirable [...] Read more.
Lead halide perovskite nanocrystals (NCs), especially the all-inorganic perovskite NCs, have drawn substantial attention for both fundamental research and device applications in recent years due to their unique optoelectronic properties. To build high-performance nanophotonic devices based on perovskite NCs, it is highly desirable to couple the NCs to photonic nanostructures for enhancing the radiative emission rate and improving the emission directionality of the NCs. In this work, we synthesized high-quality CsPbI3 NCs and further coupled them to dielectric circular Bragg gratings (CBGs). The efficient couplings between the perovskite NCs and the CBGs resulted in a 45.9-fold enhancement of the photoluminescence (PL) intensity and 3.2-fold acceleration of the radiative emission rate. Our work serves as an important step for building high-performance nanophotonic light emitting devices by integrating perovskite NCs with photonic nanostructures. Full article
(This article belongs to the Special Issue Micro-Nano Science and Engineering)
Show Figures

Figure 1

Back to TopTop