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Abstract: All-inorganic lead halide perovskite nanocrystals have great potential in optoelectronics
and photovoltaics. However, their biological applications have not been explored much owing to their
poor stability and shallow penetration depth of ultraviolet (UV) excitation light into tissues. Interest-
ingly, the combination of all-inorganic halide perovskite nanocrystals (IHP NCs) with nanoparticles
consisting of lanthanide-doped matrix (Ln NPs, such as NaYF4:Yb,Er NPs) is stable, near-infrared
(NIR) excitable and emission tuneable (up-shifting emission), all of them desirable properties for
biological applications. In addition, luminescence in inorganic perovskite nanomaterials has recently
been sensitized via lanthanide doping. In this review, we discuss the progress of various Ln-doped
all-inorganic halide perovskites (LnIHP). The unique properties of nanoheterostructures based on the
interaction between IHP NCs and Ln NPs as well as those of LnIHP NCs are also detailed. Moreover,
a systematic discussion of basic principles and mechanisms as well as of the recent advancements in
bio-imaging based on these materials are presented. Finally, the challenges and future perspectives of
bio-imaging based on NIR-triggered sensitized luminescence of IHP NCs are discussed.

Keywords: inorganic perovskite; lanthanide-doped nanocrystals; upconversion photoluminescence;
nanoheterostructure

1. Introduction

Nowadays, IHP NCs are considered prospective materials not only for photovoltaic
applications but also for nanophotonics and nonlinear optics. Moreover, these nanoma-
terials have steadily attracted the research communities because of their unique physical
properties such as high photoluminescence quantum yield (PLQY), tuneable PL and defect
tolerance [1,2]. In particular, lead halide perovskite NCs are especially attractive for high-
performance solar cells, lasers, photodetectors and light-emitting diodes (LEDs) owing to
their superior optical properties including high PLQY, large absorption cross-section and
tuneable emission throughout the entire visible spectrum [3–7], though these perovskites
have poor stability, which limit their general application. IHP NCs usually exhibit linear
optical properties under UV and visible light. It is important to note that near-infrared
(NIR) photon upconversion is a unique process that converts two or more NIR photons into
one of a higher energy, thus leading to anti-Stokes emissions. It is very difficult to achieve
nonlinear upconversion (UC) emissions in IHP materials because of their low multiphoton
efficiency and lack of intermediate energy levels [8–11].

Nanoparticles comprising an inorganic matrix such as NaYF4 and NaYbF4 with two or
more lanthanide ions as dopants such as Yb/Tm, Yb/Er, etc., present higher stability than
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that of IHP NCs as well as higher multiphoton absorption efficiency [12]. The NIR-excitation
of Ln NPs using a continuous-wave laser as an excitation source yielded UC emissions
in the NIR-to-UV range. Ln NPs have generally been used in biological applications
such as bio-imaging and phototherapy owing to the considerable penetration depth of
NIR light into biological systems [13–16]. However, the fluorescence emissions of Ln
NPs have fixed wavelengths as well as non-tuneable emission colours due to limited
energy levels of lanthanide ions, which restricted their usage in multiplexed bioimaging or
bioassays [17,18]. The wavelength tuning of Ln NP emissions requires select Ln ions and
suitable doping concentrations.

Although the optoelectronic applications of IHP NCs have been well explored, their
bio-applications are limited by the lead toxicity and their low stability under humidity,
light and heat. Clearly, the major drawback of the perovskites is their poor stability, which
accumulates decomposition. Perovskites can cause toxicity in biological applications since
they degrade when exposed to water due to their ionic nature [19–21]. However, the
superior optical properties of IHP NCs provide several advantages to be used in the field
of bioimaging. Nevertheless, there are many issues, such as the stability of these materials
under physiological conditions, their integration in biomolecules during circulation, their
epigenetic interaction and their possible toxicity during degradation processes, to be clari-
fied before real life implementation [22]. Interestingly, the combination of perovskites and
Ln NPs can solve the abovementioned issues through the formation of nanoheterostruc-
tures with superior optical properties. Tuning the UC emission wavelengths under NIR
light excitation is a promising strategy [23–25]. In addition, the combination of IHP NCs
and Ln NPs achieved UC emissions, and it can also endow perovskite NCs with long-term
stability [26].

The aim of this work is to review the unique properties of nanoheterostructures based
on the interactions between IHP NCs and Ln NPs as well as of those of LnIHP NCs. Here,
we present a systematic discussion on basic principles and mechanisms as well as on the
recent advancements in bioimaging based on these materials and the challenges for facing
future developments in bioimaging.

2. Metal Halide Perovskite Nanocrystals

Perovskite materials generally have a chemical formula of ABC3, in which A and
B represent the cations of dissimilar sizes and C denotes the anions such as oxygen and
halogens. The ideal perovskite structure is cubic symmetrical, which consists of corner
sharing BC6 octahedra as a backbone with cuboctahedral voids occupied by A-cations, as
depicted in Figure 1 [27]. If the A-ion is small or the B-ion is large, the tolerance factor
decreases to <1, which favours orthorhombic, rhombohedral or tetragonal structures rather
than a cubic structure.
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Figure 1. Structural features for metal halide perovskites. (a) Unit cell of general cubic perovskite;
(b) MAPbI3 with octahedral coordination around lead ions; (c) MAPbI3 with cuboctahedra coordination
around organic ions. Reprinted with permission [27]. Copyright 2017, Royal Society of Chemistry.
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Hybrid perovskites, such as methylammonium/formamidium lead halides (MA/FAPbX3)
have attracted the interest of researchers because of their excellent performance in opto-
electronic devices. This is based on their superior properties: tuneable bandgap, high light
absorption capability, long carrier diffusion length and inexpensive raw materials for their
preparation. However, they have been affected by instability issues not only in solar cells
but also in other applications, such as in LEDs and bioimaging. Inorganic perovskites have
been introduced into optoelectronic devices to overcome these issues [28–30]. Inorganic per-
ovskite oxide, lead-free inorganic perovskites and inorganic perovskites with mixed halides
have also been developed in past decades [31–38]. All-inorganic halide perovskites have
also received great attention from various fields such as solar cells [39,40], lasers [41,42],
LEDs [43,44], water splitting [45,46], etc. because of their high performance and stability.

2.1. All-Inorganic Halide Perovskites (IHP)

According to the literature, oxide-based perovskites are the most actively studied
materials in the perovskite family due to their excellent magnetic, ferro-electric and super-
conductive properties [47]. Interestingly, the first halide-based perovskite structures were
obtained by Moller in caesium lead halides (CsPbX3) [48]. The photoconductive properties
of halide-based perovskites are tuneable by varying the halide components, which helps to
achieve different spectral responses. They have interesting optical properties, including
tuneable emission, defect tolerance, quantum confinement effect and high PL quantum
efficiency. Remarkably, the emission of CsPbX3 (X = Cl, Br, I or their mixture) NCs can be
tuned from 400 nm to 700 nm, as shown in Figure 2 [1,49].
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(b) corresponding PL spectra (λexc = 400 nm for all but 350 nm for CsPbCl3 NCs); (c) optical absorp-
tion, PL spectra and inset images for CsPbCl3, CsPbBr3 and CsPbI3 nanoplatelets. Reprinted with
permission [49,50]. Copyright 2016, John Wiley & Sons and 2015, American Chemical society.

2.2. Ln-Doped Inorganic Halide Perovskites (LnIHPs)

Lanthanide ions have unique properties that come from their 4f electrons and make
them an attractive tool for optical applications owing to their large quantum numbers (n = 4,
1 = 3) with rich spectroscopic properties [51]. Interestingly, they have advantageous optical
properties such as sharp band emissions, large Stokes/anti-Stokes shifts, high luminescent
lifetimes and excellent photostability [52,53]. These properties are desirable for their
applications in lighting and displays [54], bioimaging [55], therapy [56] and sensing [57].
Furthermore, Ln-doped NPs can serve as multifunctional platforms for bio-applications
either by doping or surface functionalization. Ln doping in hybrid perovskites also plays a
key role in their optoelectronic properties. For example, MAPbI3 with lanthanides has been
considered a desirable candidate for improving the permanence of perovskite solar cells.
The incorporation of various lanthanide ions (Ln3+ = Ce3+, Eu3+, Nd3+, Sm3+ or Yb3+) into
perovskite films largely enhances their performance, such as the efficiency and stability of
the device, which is attributed to an enlarged grain size and crystallinity [20].
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Interestingly, the inorganic perovskite NCs of CsPbX3 (X = Cl, Br and I) exhibited
efficient and narrow 4f–4f emissions through sensitization by lanthanide ions, which
achieved tremendous success in optoelectronics. Apart from normal Stokes spectral shifting
behaviour, the CsPbCl3 NCs with Yb3+ as a dopant exhibited excellent NIR PL with QY
of 200% due to quantum cutting phenomena. Beyond that, the IHP also possessed UC
photoluminescence with the presence of desirable Ln ions and this review article is mainly
focused on UC phenomenon. The crystal lattice of inorganic lead halide perovskites is
suitable for lanthanide ion doping due to their octahedral coordination (CN = 6). In
particular, CsPbX3 NCs showed strong absorption of visible light and intense emission,
which can be attributed to their excitonic transitions along with their desirable charge
transportation, and hence, they are considered ideal hosts for lanthanide ion doping [58].

Reinhard et al. [59] synthesized Yb3+-doped Rb2MnCl4 perovskite crystals to yield
up-conversion luminescence (UCL) under NIR excitation. The crystals exhibited very
intense yellow-orange UCL when excited at 15 K. The UC process comprises a sequence
of ground state and excited-state absorptions under an excitation with 10 ns pulses. The
UC mechanism is cooperative, and both Yb3+ and Mn2+ ions in the crystals can participate
in the process. The UC in Rb2MnCl4:Yb3+ with a linear arrangement of Yb3+-Cl−-Mn2+

proved to be three orders of magnitude, which is more efficient than that of the Yb3+-
(Br−)3-Mn2+ arrangement of face-sharing octahedra in CsMnBr3:Yb3+. However, three
loss processes were observed at temperatures above 50 K: one was intrinsic for Rb2MnCl4,
whereas the others were related to the presence of Yb3+ (thermal quenching and non-
radiative relaxation). All of these loss processes are governed by basic physical laws
and prevent materials containing Yb3+ and Mn2+ from being used as an upconverter at
room temperature.

Later on, Beurer et al. [60] prepared Tm2+-doped CsCaI3 and RbCaI3 single crystals
and compared their properties, such as absorption, light emission and UCL. Both com-
pounds possessed multiple emissions under an excitation at 21,834 cm−1 in the 10 to 300 K
temperature range but differed in the dominant UC processes. It can be demonstrated
that a slight chemical variation between CsCaI3:Tm2+ and RbCaI3:Tm2+ caused drastic
effects on their emissive properties. A relatively modest distortion of TmI6 octahedron in
RbCaI3:Tm2+ suggests that a reduction in relevant energy gaps between excited states gen-
erally influences the competition between radiative and nonradiative relaxation processes.

The combination of CsCaI3:Tm2+ with a low multi-phonon rate constant and
RbCaI3:Tm2+ with an efficient UC process can possibly yield an efficient UC phosphor.
On the one hand, it requires a smaller distortion of coordination octahedron than in
RbCaI3:Tm2+ to prevent a reduction in energy gap. On the other hand, the barycentre
of (4f)12(5d)1 states at low energies in RbCaI3: Tm2+ can enable efficient nonradiative
relaxation at the 2F5/2 crystal-field levels. The mixed crystals of Tm2+-doped RbCaI3 and
CsCaI3 can tune the energy gaps to optimal values.

Understanding the impact of dopant ions in host materials on energy transitions
via the UC process is crucial for further extending the properties and applications of UC
materials. In this regard, Gong et al. [61] reported the Er-doped PbTiO3 (PTO) perovskite
nanofibers as model systems for exploring the effects of tetragonality and polarization
on their UCL properties. A clear emission enhancement was observed in the UC green
band at 523 nm and in the red band at 656 nm of Er-doped PTO perovskite nanofibers
when compared with those in Er-doped BaTiO3 or PTO particles. This enhancement is
mainly attributed to UC processes assisted by low-energy phonons. These results pave a
way for further understanding the energy transition processes between lanthanide dopants
and host perovskite oxide matrices in UC processes and for extending the applications of
UC materials.

A single-band pure UC emission is beneficial for enhancing colour purity and bioimag-
ing. Interestingly, Wu et al. [62] reported a successful achievement of single-band red
UC emission in 2016 from Yb3+/Er3+ co-doped KMgF3 perovskite NCs. These NCs were
prepared by means of a non-equivalent substitution strategy, in which Ln3+ ions could
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aggregate as supported by density functional theory (DFT) calculations and UC dynamic
processes. The single-band emission under a laser excitation at 976 nm proved to be inde-
pendent of dopant concentration and pump power, as shown in Figure 3. The aggregation
of Ln3+ ions and the strong cross-relaxation between them in the KMgF3 matrix played
important roles for the occurrence of a single-band red emission.
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excitation powers; (d) the corresponding logarithmic plot between UC intensity and excitation power.
Reprinted with permission [62]. Copyright 2016, Royal Society of Chemistry.

Concomitantly, Ge et al. [63] synthesized the Er-doped perovskite single-crystals of
NaNbO3 nanorods using a hydrothermal method with different doping concentrations.
They demonstrated the successful incorporation of Er3+ ions into the B site of Nb5+ in the
ABO3 perovskite structure and then into the A site of Na+ by increasing the Er doping
concentration. High-resolution transmission electron microscopy (HRTEM) confirmed
the single-crystal features of NaNbO3 nanorods. These nanorods doped with 0.5 wt%
of Er3+ exhibited a strong green emission and weak red emission, and the studies on
the dependence of emission with a laser power corroborated the contribution of two
photons. Based on their luminescent properties, these nanorods can be applied in novel
multifunctional devices as well as in bioimaging.

Although UC nanostructures play a vital role in bioimaging applications, the enhance-
ment of the red/green UC emission ratio is still challenging. In 2018, Arumugam et al. [64]
prepared RbPbI3:Er3+,Yb3+ nanowires and combined them with surface plasmons to im-
prove the red UC emission at 652 nm which was slightly higher than that of green emission
at 548 nm (R/G ratio of 1.068). The UC emission and the mechanism shown in the partial
energy level diagram of Er3+ and Yb3+ are illustrated in Figure 4. Excitation at 980 nm pro-
motes Yb3+ ions to the 2F5/2 level which resonantly conveys its energy to nearby Er3+ ions
through energy transfer up-conversion (ETU) process and fosters them from ground state
to 4I11/2 state. Most of the populations relax down to the level of 4I13/2 via non-radiative
relaxation process. The populations at 4I11/2 and 4I13/2 levels absorb a second incident
photon to reach 4F7/2 and 4F9/2 levels via excited state absorption (ESA) process. Hence,
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the populations from 2H11/2/4S3/2 and 4F9/2 levels relax down to the ground state of 4I15/2
radiatively, resulting in bright red emission with weak-to-moderate green emissions.
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The red emission was about eight times greater when introducing an oleate complex
(to become a surface ligand) in the formation of the RbPbI3:Er3+,Yb3+ nanowires (NWs). In
addition, the decoration of a UC system with AuNPs as surface plasmons greatly improved
the red emission, reaching a R/G ratio of 26:1. The reduced green emission lifetime of
NWs was consistent with resonance energy transfer from NWs to surface plasmons of
Au NPs. By contrast, the addition of surface plasmons accumulated a longer lifetime of
the red band emission. The red UC emission enhancement was caused by the addition
of surface plasmons, which was assisted by a surface plasmon resonance (SPR) band at
660 nm. Therefore, RbPbI3:Er3+,Yb3+/Au NPs are suitable candidates for bioimaging due
to their desirable lifetime and enhanced red UC emission.

3. Lanthanide-Doped Matrices (NaLnF4 Matrices, Ln NPs)

UC is an interesting phenomenon of bioimaging as it is a more efficient process than
that of two-photon absorption and high harmonic generation. In past decades, numerous
bio-probes have been reported, such as fluorescent proteins, dyes and quantum dots,
although they are not suitable for life science applications.

UC nanostructures are considered promising materials for bioprobes [65], and in
particular, Er3+/Yb3+ co-doped NaYF4 has been recognized as an efficient UC system
although it presents some undesirable background radiation because of its prominent green
emission with a lower signal–noise ratio. These drawbacks have encouraged investigations
into other UC perovskite matrices. Compared with perovskite oxide materials, the inorganic
halide perovskites are suitable for bioimaging because of their excellent photo-stability and
higher chemical durability [59]. Host lattices with heavier halides are beneficial for the
stabilization of dopant ions [60]. Inorganic halide perovskites are considered promising
UC materials for bioimaging because of their adjustable crystal structure, optical stability,
resistance to photo-bleaching and photo-blinking, spectral distinguishability and chemical
durability [66].

Nanoparticles consisting of lanthanide-doped matrices such as NaYF4:Yb,Er NPs have
attracted the interest of research communities due to their advantageous properties such as
narrow band gap emission, reasonable optical stability and high chemical stability when
compared with traditional luminescent materials, e.g., organic dyes and NCs. Moreover,
Ln NPs have been widely used in the field of biology owing to their deep penetration into
biological tissues without any damage and high signal-to-noise ratio under NIR excitation.
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Doping of matrices with lanthanides is the most attractive tool for their optical applications
because of large quantum numbers (n = 4, l = 3) of lanthanide ions and rich spectroscopic
properties [51]. Lanthanides are mostly stable in the +3 oxidation state except for Ce4+,
Tb4+ and Yb2+ ions. In addition, the size and morphology of Ln NPs play key roles in
biomedical applications [67,68].

In early NIR-to-visible UCL bioimaging investigations, it was difficult to achieve
tissue penetration depths in the scale of millimetres. However, Yin et al., reported UCL
imaging for the first time with considerable tissue depth (a penetration depth of 1 cm) using
a luminescent probe of NaYF4:Yb,Er NPs in nude mice [69]. Concomitantly, Jing et al.,
compared the UCL imaging of pork muscle tissues at different depths (0–1 cm) through
injections of polymer-modified NaYF4:Yb,Er and KMnF3:Yb,Er. For the former, the image
was detected at a depth of about 0.5 cm, whereas KMnF3:Yb,Er exhibited a very strong red
emission, which was detected at a tissue depth of 1 cm [70]. Xiang et al., have reported the
importance of antigen-loaded Ln NPs in labelling and stimulating dendritic cells (DCs),
and the Ln NP-labelled DCs achieved high-sensitivity in vivo UCL imaging [71].

Subsequently, Hesse et al. [72] reported the rapid preparation of sub-10 nm level
pure hexagonal (β-phase) NaYF4-based Ln NPs using a simple one-pot method, in which
therminol 66 was used as a co-solvent and monodispersed Ln NPs were obtained in very
short reaction times. The UCL properties of these NPs were tuned by varying the dopant
concentrations (Nd3+ and Yb3+ as sensitizers, and Er3+ as an activator). The enhancement
in UCL intensity was observed in Ln NPs with optimized concentrations of sensitizer
and activator ions as well as coating with inert/active shell. The UCL spectrum of core
β-NaYF4:Yb3+/Er3+ 20/2 % Ln NPs in cyclohexane exhibited three intense bands centred
at λ = 525 (2H11/2→ 4I15/2 transition, G1), 545 (4S3/2→4I15/2 transition, G2) and 660 nm
(4F9/2→4I15/2 transition, R) under an excitation of 976 nm.

The excitation of conventional Ln NPs such as NaYF4:Yb3+/Er3+(Tm3+) at 980 nm
caused overheating and damage of living tissues with a reduction in luminescence due to
water absorption at 980 nm. Interestingly, the incorporation of Nd3+ ions into Ln NPs shifted
the excitation wavelength to 808 nm, thus minimizing the absorption of water. Hence,
Kostiv et al. [73] designed the NaYF4:Yb3+/Er3+@NaYF4:Nd3+ core–shell NPs doped with
Yb3+ and Nd3+ as sensitizers, and Er3+ as an activator for bioimaging. The core was uniform,
with a thickness of 24 nm, whereas the core–shell particles had tuneable shell thicknesses
of ∼0.5–4 nm. They were coated with in-house synthesized poly ethyleneglycol (PEG)-
neridronate terminated with alkyne (Alk) to ensure their dispersibility in biological media.
The stability of NaYF4:Yb3+/Er3+@NaYF4:Nd3+-PEG-Alk NPs in water or 0.01 M PBS, and
the presence of PEG on the surface were determined. These Ln NPs were considered
non-invasive probes for specific bioimaging of cells and tissues.

4. Nanoheterostructures Based on IHP NCs and Ln NPs

In recent years, all-inorganic CsPbX3 (X = Cl, Br and I) perovskite NCs have proven
to be promising materials in the field of optoelectronics due to their outstanding linear
optical properties, even though the nonlinear properties of these perovskites are limited
due to their small multiphoton absorption cross section and requirement of high-power
density excitation. Interestingly, Zheng et al. [74] proposed a convenient strategy for
tuning the UCL in CsPbX3 perovskite NCs through the sensitization of Ln3+-doped NPs.
Particularly, CsPbX3 NCs and LiYbF4:0.5%Tm3+@LiYF4 core/shell Ln NPs were dispersed
in cyclohexane to lead a homogeneous colloid. The CsPbX3-concentration-dependent UCL
spectra for LiYbF4:0.5%Tm3+@LiYF4 core/shell NP-CsPbBr3 perovskite NCs were obtained
under excitation at 980 nm, as depicted in Figure 5. Full-colour emissions with wavelengths
beyond the availability of lanthanide ions were attained by adjusting the band gap of
IHP NCs. These results presented the first panorama for photon UC with high efficiency,
multiple colours and a tuneable lifetime of perovskite NCs under an excitation at low
power density. It is important to note that the IHP NC luminescent lifetime was lengthened
from the intrinsic nanosecond scale to milliseconds due to radiative energy transfer (RET)
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from Ln-doped NPs to IHP NC. This work opens a new avenue for the exploration of
perovskite NCs based on UCL toward versatile applications such as ultrasensitive bioassay
and high-resolution bioimaging.
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Figure 5. Investigation on the RET process in NP-sensitized CsPbX3 perovskite NCs. (a) CsPbBr3

concentration-dependent UCL spectra for LiYbF4:0.5%Tm3+@LiYF4 core/shell NP (1 mg·mL−1)-
sensitized CsPbBr3 perovskite NCs excited at 980 nm; (b) integrated intensities for Tm3+ emissions
and CsPbBr3 emission at 520 nm vs. the CsPbBr3 concentration from (a); (c) UCL decays from 1D2

of Tm3+ by monitoring the Tm3+ emission at 362 nm in NP-sensitized CsPbBr3 perovskite NCs
with various concentrations excited at 980 nm; (d) UCL lifetimes of 1I6, 1D2 and 1G4 of Tm3+ in NP-
sensitized CsPbBr3 perovskite NCs vs. the CsPbBr3 concentration. Reprinted with permission [74].
Copyright 2018, Nature Publishing.

Furthermore, there is a great need to develop heterostructured NCs based on inorganic
perovskites. More clearly, although perovskite QDs have excellent optical properties,
their biological applications have not been explored much because of their poor stability
and the short penetration depth of UV light into tissues. The combination of perovskite
QDs with Ln NPs has provided stable hybrid NCs, which are NIR excitable and emission
tuneable. Hence, Ruan et al. [75] synthesized perovskite–Ln NP hybrid NCs composed of
perovskite NCs with cubic phase and Ln NPs with hexagonal phase. The heterostructured
CsPbBr3–NaYF4:Yb,Tm NCs were synthesized in one pot and consisted of cubic-phase
CsPbBr3 QDs embedded in hexagonal-phase NaYF4:Yb,Tm NPs, which thus formed a
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watermelon structure with multiple seeds, and a cubic-phase NaYF4:Yb,Tm NP was used
as an intermediate transition phase. The hybrid NCs emitted the characteristic green
fluorescence of CsPbBr3 QDs under UV light and UV-blue fluorescence under NIR light
excitation of NaYF4:Yb,Tm NPs, thus revealing the co-existence of both CsPbBr3 and
NaYF4:Yb,Tm in the same structure. Moreover, a green fluorescence was obtained upon
NIR excitation when the NaYF4:Yb,Tm phase absorbed NIR light and transferred the energy
to the CsPbBr3 phase. This work opens a new way for synthesizing heterostructured NCs
that could be applied to many other materials.

Recently, Shao et al. [76] reported the sensitized emission of CsPbI3 perovskite NCs
after NIR excitation of CaF2:Yb3+/Ho3+ as hierarchical nanospheres (HNSs) in CsPbI3 and
CaF2:Yb3+/Ho3+ nanocomposite structures. By introducing an appropriate proportion
of Br ions into the perovskite, the luminescence was tuned between 695 nm and 655 nm,
as depicted in Figure 6. Moreover, the lifetime of CsPbI3 emissions was lengthened to
several milliseconds due to energy transfer from long-lived Ho3+ to CsPbI3 perovskite
NCs. The stability of CsPbI3 NCs was enhanced in the composites, which kept 90% of
its PL after 30 days. The composites were printed on flexible substrates for dual-mode
fluorescent encryption anti-counterfeiting application and possessed excellent fluorescence
under the excitation of both UV and NIR light. Moreover, the CsPbI3-CaF2:Yb3+/Ho3+

nanocomposites proved to be highly water-soluble, ultrastable and highly biocompatible
in cell imaging applications. This work provides a new strategy for developing photon UC
in perovskite NCs and a new trial for the development of multifunctional materials.
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Figure 6. (a) UC emission spectra for CaF2:Yb3+ (20%)/Ho3+ (x%) HNSs; (b) absorption and ex-
citonic emission spectra for CsPbI3 perovskite NCs; (c) UC emission spectra for HNS-perovskite
NCs; dynamics of emissions for CsPbI3 perovskite NCs at (d) 540 nm, (e) 695 nm and (f) 695 nm;
(g) calculated energy transfer efficiency of HNS-perovskite NCs with various times obtained from
(c,d); (h) mechanism of UC emission in CsPbI3 and CaF2:Yb3+/Ho3+ composites. Reprinted with
permission [76]. Copyright 2021, Elsevier.

Although the halide perovskite nanomaterials with superior linear properties are
greatly employed in optoelectronics and photonics, their strong multiphoton absorption
only makes them prospective for bioimaging applications. However, the instability of
perovskites in aqueous solutions limited their biological applications. Talianov et al. [77]
demonstrated their fluorescence and UCL imaging in living cells using CsPbBr3 NCs
with improved water resistance for at least 24 h after their coating as individual parti-
cles with various silica-based shells. The quality of phTEOS-TMOS@CsPbBr3 NCs was
confirmed by HRTM and SEM, X-ray diffraction analysis, Fourier-transform infrared and
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energy-dispersive X-ray spectroscopies as well as fluorescence optical microscopy. phTEOS-
TMOS@CsPbBr3 NCs have enhanced water stability, and consequently, they are of interest
for several bioimaging applications.

In addition, it is important to note that, Estebanez et al., designed 1D-ordered nanos-
tructures comprising Ln NPs and IHP NCs with open peapod-like shells, which were
provided by a PbSO4 polymer for the first time [78]. The sensitized emission of IHP was
achieved by NIR excitation of nearby Ln NPs. Ln NPs with a NaYF4 matrix doped with
Yb and Tm or Er and with an inert shell of NaYF4, in the case of core–shell Ln NPs, and
all-inorganic CsPbX3 NPs were selected for these studies. Interestingly, the lead sulphate
shell enhanced the luminescence of core–shell Ln NPs in the polymers by ≈20 fold, which
plays an important role in the efficiency of sensitized emission of LHNPs under NIR ex-
citation of Ln NP-IHP NC co-polymers as well as in the chemical stability of IHP NCs in
contact with water. In addition, the co-polymers were prepared as colloids and deposited
as solid films on a glass substrate. The lifetime of sensitized IHP emission and emission
efficiency entirely depended on irradiance and sample conditions. These co-polymers are
promising candidates for manufacturing the photonic devices. Table 1 summarizes the
various applications of Ln-doped and undoped IHPs by means of a UC process.

Table 1. Lanthanide-doped inorganic halide perovskite NCs and non-doped perovskites for
various applications.

S.No Perovskites Lanthanide Ions Description Application Ref.

1 CsPbCl3 NCs Ce3+, Sm3+, Eu3+,
Tb3+, Dy3+ and Er3+

The introduction of lanthanide ions can considerably improve the
PLQY of CsPbCl3 NCs and can provide visible light emissions and

even NIR emissions.

Light emitting and other
photoelectronic devices [79]

2 CsPbCl3 Bi3+/Mn2+

The co-doped perovskite exhibits tuneable emissions spanning the
wide range of correlated colour temperature (CCT) from 19,000 K

to 4250 K under UV excitation. This interesting spectroscopic
behaviour benefits from efficient energy transfer from the
perovskite NCs to intrinsic energy levels of Bi3+ or Mn2+

doping ions.

Lighting and displays [80]

3 CsPbCl3 NCs Yb3+ and
Yb3+/Er3+

The Yb3+-doped CsPbCl3 NCs emit strong NIR light at 986 nm,
whereas the Yb3+/Er3+ co-doped CsPbCl3 NCs emit at 1533 nm.

The total PLQY of the CsPbCl3 NCs changes from 5.0% to 127.8%
upon incorporating 2.0% Yb3+, resulting in a 25.6

enhancement factor.

Diode lasers and
photo-communications [81]

4 CsPbX3 NCs

CaF2: Ln
(Ln = Yb3+/Er3+,
Yb3+/Ho3+ and

Yb3+/Tm3+)

Owing to extremely high fluorescence resonance energy transfer
(FRET) efficiency (~99.7%), excitonic UCL from CsPbX3 is

performed under a low-power density of 980 nm diode
laser irradiation.

Opto-electronics and
photovoltaics [82]

5 CsPbI3
NaYF4:Yb/Tm

@NaYF4

An efficient single red band UC emission of CsPbI3 perovskite
quantum dots (PQDs) was observed. In addition, the emission

was easily regulated from 705 to 625 nm by introducing an
appropriate proportion of Br ions, which is very difficult to

achieve for traditional UCNPs. Moreover, benefiting from the
efficient downshifting (DS) red emission of CsPbI3 PQDs, the

composites displayed dual-wavelength excitation characteristics.

Dual-mode
anticounterfeiting

application
[83]

6 CsPbBrI2 w/o lanthanides

When photons only excite electrons in shallow trap states, some
excited photons are absorbed by the shallow trap state, thus

producing single-photon UCPL while the remaining photons are
absorbed by the valence band, resulting in electron transfer from

the valence band to the conduction band. Hence, the UC process is
gradually dominated by a two-photon process as the energy of the

incident photons decreases.

Optoelectronics [84]

7 CsPbBr1 × 2 PQDs NaYF4 Ln NPs

To improve the lattice matching between UCNPs and PQDs by
replacing Y instead of Gd, the heterostructured

CsPbBr3-NaGdF4:Yb,Tm NCs are obtained. They exhibit
enhanced luminescence as well as stability at high temperatures,

in polar solvents and under continuous UV excitation when
compared with CsPbBr3-NaYF4:Yb,Tm nanocrystals and

pure PQDs.

Optoelectronics [85]

8 CsPbA3 (A = Cl, Br
and I) w/o lanthanides

An efficient UCPL with a striking phonon-assisted energy gain of
~8 kBT is obtained with high-quality, all-inorganic CsPbA3
perovskite NCs. In non-equilibrium conditions, the acoustic

phonon UC recycles the population of optical modes and boosts
the efficiency of photon UC.

Optoelectronics [86]



Nanomaterials 2022, 12, 2130 11 of 17

Table 1. Cont.

S.No Perovskites Lanthanide Ions Description Application Ref.

9 CsPbBr3 w/o lanthanides

Vapor-phase epitaxial CsPbBr3 microplatelets are obtained with
high crystallinity; self-formed high-quality microcavities; and
great thermal stability, low-threshold and high-quality factor

whispering-gallery mode lasing under one, two and three-photon
excitation, and the lasing action is very stable under continuous

pulsed laser irradiation (~3.6 Å~107 laser shots).

Lasing [87]

5. Other UC Luminescence Materials

Li et al. [88] designed superstructures comprising a metal-organic framework as the
core and Nd3+-sensitized Ln NPs as satellites using an electrostatic self-assembly strategy.
This double photosensitizer superstructure has a three-mode imaging function, including
magnetic resonance, UCL and fluorescence, as well as an excellent anti-tumour effect under
NIR excitation (at 808 nm) according to in vitro and in vivo experiments. Thus, the red
blood cells did not deteriorate in the presence of the superstructure. Moreover, exposure
of BALB/c mice to a 808 nm laser for 5 min demonstrated a lower temperature of the
irradiated area, at about 42 ◦C, which did not result in damage to the mice. By contrast, the
temperature of the irradiated area was raised to above 50 ◦C when using a laser excitation
at 980 nm, and consequently, the mice skin was severely burned. Then, it can be proposed
that the laser excitation at 808 nm is more adequate for biological applications since it
produces a much weaker tissue thermal effect.

At the same time, Sun et al. [89] synthesized Ln3+-doped nanocomposites, specifically
NaYF4:Yb3+,Er3+@NaYF4-Ce6@mSiO2-CuS nanohybrids for the applications of sensing
and therapy, which provided temperature feedback in the phototherapy treatment (PTT)
and were involved in photodynamic therapy treatment (PDT). NaYF4:Yb3+,Er3+@NaYF4
NPs were coated with mesoporous SiO2 combined with a Chlorin e6 (Ce6) photosensitizer,
which can be excited by the red emission of Er3+ to lead to NaYF4:Yb3+,Er3+@NaYF4-
Ce6@mSiO2. Then, the citrate-capped CuS (Cit-CuS) NPs as a photothermal conversion
agent were attached to the composite surface. The temperature of the PTT site was mon-
itored by recording the I525/I545 ratio of green emissions, as depicted in Figure 7. Based
on the guidance obtained from spectral experiments, the dual-modal tumour therapy and
real-time temperature monitoring were investigated both in vitro and in vivo, obtaining
reasonable results.
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Figure 7. (a) Schematic diagram for the detection of temperature and emission spectrum of Ln
NP-Ce6@mSiO2-CuS incubated with cells in physiological range; (b) UC emission spectra for Ln NP-
Ce6@mSiO2-CuS incubated with cells at various temperatures by external heating; (c) finite impulse
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of Ln NP-Ce6@mSiO2-CuS incubated with cells (inset: AFM image of cell after spectral detection);
(d) a plot of ln(I525/I545) versus 1/T to calibrate the thermometric scale for Ln NP-Ce6@mSiO2-CuS
incubated with cells. Reprinted with permission [89]. Copyright 2019, Elsevier.

6. Conclusions and Perspective

In this review article, the UC emission properties of Ln-doped inorganic perovskite
NPs as UC materials have been discussed. We summarized the advances in the develop-
ment of these materials among others UC nanomaterials relevant for biological applications.
The major challenge for transforming UC nanotechnology into real-world applications is to
enhance both the brightness and emission efficiency of Ln-doped NPs.

It is important to note that the unique optical properties of Ln-doped NPs have at-
tracted enormous scientific and technological interests. Intentional doping with higher
concentration of Ln ions into different sections across a single Ln-doped NP has been
explored to enhance the desirable optical properties as well as to introduce multifunction-
ality. Thus far, only spherical core@shell nanostructures have been reported to modulate
the energy transfer, and hence, further investigations on heterogeneous one-dimensional
structures, including rods, plates and dumbbells, are still needed. Importantly, controlled
growth towards atomic precision is highly recommended for a clear understanding of these
sophisticated energy transfer processes and the tuning of UC emissions. More clearly, the
arrangement of dopants with higher concentrations into a host matrix along one direction
could confine a direction of energy transfer and, consequently, may create new properties
and enable novel applications.

The unique optical properties of highly doped LnIHPs have a great impact in the
biological and biomedical fields. It is noteworthy that small-sized and bright Ln-doped
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NPs are needed to those applications, but owing to brightness issues, most of the currently
developed Ln-doped NPs are relatively large (ranging between 20 and 50 nm). The synthesis
of highly doped sub-10 nm level Ln-doped NPs with desirable emissions comparable with
that of quantum dots and organic dyes is an extraordinarily challenging issue. Recently, the
fine-tuning of Ln-doped NP with sizes below 10 nm has been achieved via homogeneous
doping at high-doping concentrations. Nevertheless, the fabrication of sub-10 nm level
Ln-doped NPs with heterogeneously doped core@shell nanostructures is challenging.

Despite the abovementioned advantages of Ln-doped NPs, their biological applica-
tions are limited due to their low water dispersibility. In this regard, modification of the
NP surface is essential for improving their hydrophilicity and biocompatibility. There are
mainly two types of modifiers: (i) organic surfactants, including cetyl-trimethyl ammonium
bromide and ethylene diamine tetraacetic acid, which are mostly used as ligands to control
both particle growth and stabilization against aggregation, and (ii) bifunctional polymers,
such as polyvinylpyrrolidone, chitosanpolyethylenimine, polyacrylic acid sodium salt and
polyethylene glycol, which are often used as chelating and stabilizing agents to render
Ln-doped NPs hydrophilic and to provide functional groups for bio-conjugations.

The surface molecules not only play a crucial role in the controlled synthesis of
nanomaterials but also significantly alter the luminescence properties of nanomaterials.
Therefore, the recent developments in dye-sensitized Ln-doped NPs and surface phonon-
enhanced Ln-doped NPs in the thermal field have become a hot topic. Usually, Ln-doped
NCs exhibit a narrow band and low absorption coefficient. Interestingly, organic dyes
have more than 10 times broader absorption spectra and 103–104-fold higher absorption
cross sections than that of Yb3+ sensitizer ions in Ln NPs. Therefore, despite photostability
issues, the dye-sensitized UC system may enhance the UC performance. The phonons
at the surface of a highly Yb3+-doped UC system can control thermal quenching and
significantly enhance the UC brightness, particularly in sub-10 nm level NPs. Moreover,
the surface plasmons on Ln-doped NPs produce greatly enhanced UC emissions, especially
red emission due to the local field enhancement effect. However, further studies based on
biological applications are still needed.

Furthermore, the hierarchical structures mostly possessed superior optical properties
when compared with traditional NPs; specifically, core–shell composites of hydrophobic
Ln-doped NPs encapsulated within a SiO2 layer have recently received extensive scien-
tific and technological interest. The surface silica prevented NPs from flocculation and
provides room for decoration with functional groups such as thiol, amino and carboxyl
groups, which allowed for greater control in conjugation protocols even though precise
control of both the thickness and uniformity of SiO2 layers is rather difficult and, hence,
most Ln-doped NPs may be packed together in a single layer of SiO2, which will result
in aggregation. In addition, the stability of organic capping on Ln-doped NPs is crucial
for efficient luminescence in aqueous solutions. Interestingly, polysulfonate (PSS) capping
on a Ln-doped NP surface has been shown to be useful for preventing NP disintegration
in water and provided superior stability in a highly acidic medium. For comparison, the
bare Ln NPs progressively disintegrated into their compositional ions and thus caused
undesirable interference in chemical or biological environments. Additionally, the PSS
capping layer can be further functionalized to lead new functional Ln-doped nanohybrids.
The heterostructured NCs of perovskite with Ln NPs exhibited enhanced water stability,
and consequently, they are of interest for several bioimaging applications. Interestingly,
Ln-doped NPs with thin PSS coating and their functionalization with DNA have recently
been reported. Both Ln-doped NPs and DNA preserved their full functionality, as demon-
strated by Förster resonance energy transfer hybridization assays with Cy3-conjugated
complementary DNA. Ratiometric FRET from Ln-doped NP to Cy3 demonstrated that
these nanohybrids are able to quantify miR20a in the 0.01–10× 10−9 M concentration range
with a detection limit of 30 × 10−12 M (4.5 fmol of miR20a) [90].

While great progress has been made in the biomedical field based on Ln-doped NPs
for the last few years, there remain issues that hinder the potential applications of Ln
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doped NPs as therapeutic and bioimaging agents. Specifically, nanotoxicology and safety
assessments are the most essential studies for clinical applications. In vitro and in vivo
toxicity assessments can be used to prove that Ln-doped NPs exhibit no obvious toxicity,
but the effects of Ln-doped NPs on small animals used for longer duration as well as the
interaction between Ln-doped NPs and the immune system are still unknown; moreover,
the interaction between Ln-doped NPs and proteins in blood is still unclear. Therefore,
much more systematic investigations are still needed. For the toxicity problem, lead-free
perovskite could be a promising candidate as a future research direction.
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