Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (111)

Search Parameters:
Keywords = alkaline phosphatase (AP)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 7168 KiB  
Article
Enhancing Soil Phosphorus Availability in Intercropping Systems: Roles of Plant Growth Regulators
by Chunhua Gao, Weilin Kong, Fengtao Zhao, Feiyan Ju, Ping Liu, Zongxin Li, Kaichang Liu and Haijun Zhao
Agronomy 2025, 15(7), 1748; https://doi.org/10.3390/agronomy15071748 - 20 Jul 2025
Viewed by 341
Abstract
Plant growth regulators (PGRs) enhance crop stress resistance but their roles in microbial-mediated phosphorus cycling within intercropping systems are unclear. Thus, We conducted a two-year field study using corn (Zea mays L. cv. Denghai 605) and soybean (Glycine max L. cv. [...] Read more.
Plant growth regulators (PGRs) enhance crop stress resistance but their roles in microbial-mediated phosphorus cycling within intercropping systems are unclear. Thus, We conducted a two-year field study using corn (Zea mays L. cv. Denghai 605) and soybean (Glycine max L. cv. Hedou 22) in fluvisols and luvisols soil according to World Reference Base for Soil Resources (WRB) standard. Under a 4-row corn and 6-row soybean strip intercropping system, three treatments were applied: a water control (CK), and two plant growth regulators—T1 (EC: ethephon [300 mg/L] + cycocel [2 g/L]) and T2 (ED: ethephon [300 mg/L] + 2-Diethyl aminoethyl hexanoate [10 mg/L]). Foliar applications were administered at the V7 stage (seventh leaf) of intercropped corn plants to assess how foliar-applied PGRs (T1/T2) modulated the soil phosphorus availability, microbial communities, and functional genes in maize intercropping systems. PGRs increased the soil organic phosphorus and available phosphorus contents, and alkaline phosphatase activity, but not total phosphorus. PGRs declined the α-diversity in fluvisols soil but increased the α-diversity in luvisols soil. The major taxa changed from Actinobacteria (CK) to Proteobacteria (T1) and Saccharibacteria (T2) in fluvisols soil, and from Actinobacteria/Gemmatimonadetes (CK) to Saccharibacteria (T1) and Acidobacteria (T2) in luvisols soil. Functional gene dynamics indicated soil-specific regulation, where fluvisols soil harbored more phoD (organic phosphorus mineralization) and relA (polyphosphate degradation) genes, whereas phnP gene dominated in luvisols soil. T1 stimulated organic phosphorus mineralization and inorganic phosphorus solubilization in fluvisols soil, upregulating regulation genes, and T2 enhanced polyphosphate synthesis and transport gene expression in luvisols soil. Proteobacteria, Nitrospirae, and Chloroflexi were positively correlated with organic phosphorus mineralization and polyphosphate cycling genes, whereas Bacteroidetes and Verrucomicrobia correlated with available potassium (AP), total phosphorus (TP), and alkaline phosphatase (ALP) activity. Thus, PGRs activated soil phosphorus by restructuring soil type-dependent microbial functional networks, connecting PGRs-induced shifts with microbial phosphorus cycling mechanisms. These findings facilitate the targeted use of PGRs to optimize microbial-driven phosphorus efficiency in strategies for sustainable phosphorus management in diverse agricultural soils. Full article
(This article belongs to the Section Innovative Cropping Systems)
Show Figures

Figure 1

24 pages, 4922 KiB  
Article
Effects of Tillage Systems and Bacterial Inoculation on Enzyme Activities and Selected Soil Chemical Properties
by Ana Ursu, Irina Gabriela Cara, Geanina Bireescu, Mariana Rusu, Gabriel Dumitru Mihu, Segla Serginho Cakpo, Denis Țopa and Gerard Jităreanu
Agriculture 2025, 15(12), 1285; https://doi.org/10.3390/agriculture15121285 - 14 Jun 2025
Viewed by 718
Abstract
Excessive tillage and chemical fertilization are the primary attributes of conventional farming and the main causes of soil degradation. This research focused on the comparative study of two tillage systems: conventional (CT) and no-tillage (NT), as well as on the effect of chemical [...] Read more.
Excessive tillage and chemical fertilization are the primary attributes of conventional farming and the main causes of soil degradation. This research focused on the comparative study of two tillage systems: conventional (CT) and no-tillage (NT), as well as on the effect of chemical fertilizers and different Bacillus megaterium var. phosphaticum inoculum rates (75, 100 and 125%) on soil properties. This short-term experiment was conducted under field conditions in Northeastern Romania from 2023 to 2024. Soil dehydrogenase, catalase, acid, and alkaline phosphatase activities, pH, organic carbon content (SOC), total nitrogen (TN), total phosphorus, and available phosphorus (TP and AP) were determined. Bacillus treatments generally inhibited soil enzyme activity by 0.35 to 57%, depending on the enzyme type. Under NT, activity increased by up to 59% for dehydrogenase, 43% for acid phosphatase, and 70% for alkaline phosphatase compared to the CT system. An opposite trend was found for catalase, along with a negative correlation with the other enzymes. There were positive differences in TP concentration at 125% Ecofertil + N in both CT (0.0577 ppm) and NT (0.0578 ppm) in 2023 compared to the control (0.0346–0.0374 ppm). In the same year, after the first inoculation, AP increased significantly with bacterial treatments in CT, from 32.34% (T0) to 47.94% (T4), and at crop harvest in NT in 2024, from 34.18% (T0) to 91.06% (T3). The results suggest that enzymatic activities and soil chemical properties were more influenced by soil management than the interaction between inoculated bacteria and chemical fertilizers. Full article
(This article belongs to the Special Issue Land Use Change Impacts on Crop Yield and Agricultural Soils)
Show Figures

Figure 1

21 pages, 3404 KiB  
Article
Bacillus subtilis B579 Controls Cucumber Fusarium Wilt by Improving Rhizosphere Microbial Community
by Zongqiang Fan, Jinghan Feng, Lixue Zheng, Yanru Chen, Minglei Wang, Xiangqian Peng, Shuo Wang and Fang Chen
Microorganisms 2025, 13(6), 1382; https://doi.org/10.3390/microorganisms13061382 - 13 Jun 2025
Viewed by 565
Abstract
With continuous improvements in people’s environmental awareness, biological control agents have garnered considerable attention owing to their advantageous impacts on improving soil fertility and alleviating plant diseases. Bacillus subtilis (B. subtilis) B579, isolated from the rhizosphere soil of cucumber, has effectively [...] Read more.
With continuous improvements in people’s environmental awareness, biological control agents have garnered considerable attention owing to their advantageous impacts on improving soil fertility and alleviating plant diseases. Bacillus subtilis (B. subtilis) B579, isolated from the rhizosphere soil of cucumber, has effectively suppressed the growth of pathogenic Fusarium oxysporum. Our study investigates the effects of B. subtilis B579 on the properties of the rhizosphere soil (its physicochemical properties and enzymatic activities) and microbial community of cucumber under Fusarium oxysporum infection. An amplicon sequencing analysis of the microorganisms in the rhizosphere soil was conducted, and the soil’s properties were measured. The findings demonstrated that B. subtilis B579 exhibited 73.68% efficacy in controlling cucumber Fusarium wilt disease. B579 pretreatment substantially increased the bacterial and fungi diversity and improved the soil’s physicochemical properties (pH level and OC, TN, TP, AK, and AP contents) and enzyme activities, especially those of urease and alkaline phosphatase, which exhibited significant increases of 77.22% and 64.77%, respectively, in comparison to those under the pathogen treatment. Furthermore, the utilization of B579 reduced the abundance of Fusarium while simultaneously increasing the abundance of beneficial groups, including the Bacillus, Paenibacillus, Sphingomonas, Pseudomonas, Microbacterium, Mortierella, and Trichoderma genera. The RDA showed that the abundance of Bacillus, Paenibacillus, Sphingomonas, and Mortierella in the rhizosphere showed positive correlations with most of the soil properties, whereas Fusarium abundance was negatively correlated with most of the soil’s properties. This study provides novel insights into the disease suppression mechanisms of Bacillus subtilis B579, laying the theoretical foundation for its development as a biocontrol agent. Full article
(This article belongs to the Section Microbiomes)
Show Figures

Figure 1

19 pages, 2261 KiB  
Article
Impact of Microplastic Contamination on Phosphorus Availability, Alkaline Phosphatase Activity, and Polymer Degradation in Soil
by Efsun Dindar
Polymers 2025, 17(12), 1586; https://doi.org/10.3390/polym17121586 - 6 Jun 2025
Viewed by 575
Abstract
Microplastics (MPs) are emerging contaminants that can significantly impact soil nutrient dynamics, particularly phosphorus (P) cycling, which is critical for maintaining soil fertility and ecosystem productivity. However, limited information is available on how different microplastic types and concentrations specifically influence phosphorus dynamics and [...] Read more.
Microplastics (MPs) are emerging contaminants that can significantly impact soil nutrient dynamics, particularly phosphorus (P) cycling, which is critical for maintaining soil fertility and ecosystem productivity. However, limited information is available on how different microplastic types and concentrations specifically influence phosphorus dynamics and microbial enzyme activity in soils. Microplastic contamination may alter P cycling by directly supplying phosphorus or indirectly influencing microbial activity and enzyme function through changes in soil structure and aggregation. This study examined the short-term impacts of three widely used microplastic polymers—polyethylene (PE), polypropylene (PP), and polyethylene terephthalate (PET)—on soil phosphorus forms and alkaline phosphatase activity (APA), a key enzyme in phosphorus transformation. Incubation experiments were conducted at two concentrations (0.5% and 5%) over 30 and 60 days. The results indicated that the impact of microplastics on soil phosphorus dynamics varied according to both polymer type and contamination dose. Microplastics increased available phosphorus (AP) and APA levels compared to control soils, indicating a stimulatory effect on microbial processes. This may be due to the temporary accumulation of phosphorus on MP surfaces, which can stimulate phosphatase activity. Over time, however, both AP and APA levels declined, suggesting that degradation products released from MPs and organic matter may have altered the activity of the microbial communities responsible for P cycling. FTIR analysis revealed clear degradation of microplastics, with PET showing the most pronounced chemical transformation. PP exhibited moderate degradation, while PE demonstrated the highest resistance to environmental breakdown. These degradation processes likely released functional groups (e.g., carboxyl, carbonyl, hydroxyl) and low-molecular-weight compounds into the soil, modifying microbial processes and phosphorus chemistry. Particularly in PET-amended soils, these degradation products may have enhanced phosphate complexation or mobilization, contributing to higher levels of available phosphorus at the end of the incubation time. Understanding the polymer-specific and concentration-dependent effects of microplastics is critical for accurate ecological risk assessment in terrestrial ecosystems. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Figure 1

21 pages, 3120 KiB  
Article
Bacillus tropicus YJ33 and Medicago sativa L. Synergistically Enhance Soil Aggregate Stability in Saline–Alkali Environments
by Jingjing Li, Yajuan Che, Shiyang Chen, Mengge Liu, Mengmeng Diao, Chao Yang and Wenke Jia
Microorganisms 2025, 13(6), 1291; https://doi.org/10.3390/microorganisms13061291 - 31 May 2025
Viewed by 617
Abstract
Soil salinization represents a significant global environmental challenge, necessitating the urgent amelioration of saline–alkali lands. As a critical functional component of the soil system, soil aggregates play a pivotal role in enhancing soil structure and are essential for nutrient cycling and plant growth. [...] Read more.
Soil salinization represents a significant global environmental challenge, necessitating the urgent amelioration of saline–alkali lands. As a critical functional component of the soil system, soil aggregates play a pivotal role in enhancing soil structure and are essential for nutrient cycling and plant growth. However, the synergistic effects of plants and microorganisms on alterations in soil aggregate composition, stability, and nutrient content in saline–alkali soils remain inadequately understood. In this study, three saline soil gradients from the Yellow River Delta were analyzed: low saline soil (S1, 1.65 g/kg), medium saline soil (S2, 4.54 g/kg), and high saline soil (S3, 6.57 g/kg). For each gradient, four experimental treatments were established: (1) inoculation of Bacillus tropicus YJ33 alone (B), (2) planting of alfalfa alone (M), (3) combined alfalfa cultivation with B. tropicus YJ33 inoculation (MB), and (4) an unamended control (CK). These treatments were implemented in controlled laboratory pot experiments to evaluate the individual and synergistic impacts of alfalfa and B. tropicus YJ33 on saline soil aggregate stability and structural organization. Overall, B. tropicus YJ33 inoculation significantly promoted the growth and nutritional quality of alfalfa. B, M, and MB treatment increased the contents of total carbon (TC), total nitrogen (TN), and available phosphorus (AP) and promoted the activities of soil alkaline phosphatase (S-ALP) and soil urease (S-UE) in the soil. Simultaneously, these treatments resulted in a reduction in the proportion of micro-aggregates, an increase in the proportion of large and small aggregates, and significantly enhanced mean weight diameter (MWD) and geometric mean diameter (GMD), improving the stability of soil aggregates. Random forest analysis identified AP, B. tropicus YJ33, salinity, TC, and available nitrogen (AN) as key determinants of alfalfa biomass. Partial least squares (PLS) modeling further corroborated the role of B. tropicus YJ33 in enhancing soil nutrient content, improving aggregate stability, and increasing alfalfa yield. In conclusion, B. tropicus YJ33 was demonstrated to enhance the stability of soil aggregates and nutrient availability in saline–alkali soils, thereby significantly promoting the growth, yield, and nutritional quality of alfalfa. Full article
Show Figures

Figure 1

20 pages, 2829 KiB  
Article
Actinobacteria Emerge as Novel Dominant Soil Bacterial Taxa in Long-Term Post-Fire Recovery of Taiga Forests
by Siyu Jiang, Huijiao Qu, Zhichao Cheng, Xiaoyu Fu, Libin Yang and Jia Zhou
Microorganisms 2025, 13(6), 1262; https://doi.org/10.3390/microorganisms13061262 - 29 May 2025
Cited by 1 | Viewed by 487
Abstract
The long-term post-fire recovery phase is a critical stage for forest ecosystems to progress toward regeneration and mature succession. During this process, soil bacteria exhibit greater environmental adaptability, rapidly driving nutrient cycling and facilitating vegetation restoration. This study investigated the community structure and [...] Read more.
The long-term post-fire recovery phase is a critical stage for forest ecosystems to progress toward regeneration and mature succession. During this process, soil bacteria exhibit greater environmental adaptability, rapidly driving nutrient cycling and facilitating vegetation restoration. This study investigated the community structure and diversity of soil bacteria during long-term recovery after forest fires in the cold temperate zone, focusing on soils from the 2000 fires in Daxing’anling. Soil samples were classified into Low (L), Moderate (M), and High (H) fire damage intensity, with bacterial community composition and diversity analyzed using Illumina sequencing technology. After long-term fire recovery, the contents of soil organic carbon, black carbon, total nitrogen, alkaline nitrogen, available phosphorus, and available potassium were significantly higher elevated (p < 0.05), and water content was significantly lower, compared with that in the control check (CK) group. Soil urease, fluorescein diacetate, soil acid phosphatase, and soil dehydrogenase activities were significantly higher, and soil sucrase activity was significantly lower in H. There was a significant difference in the Alpha diversity index among the groups. Compared with CK, the Shannon index was significantly increased (p < 0.05) in L, while both Chao1 and Shannon indices were significantly decreased (p < 0.05) in M and significantly higher in H than CK. The results of the PCoA showed that there was a significant difference in the Beta diversity of the bacterial community among the groups (R2 = 0.60 p = 0.001). The dominant bacteria groups were Proteobacteria and Acidobacteriota, while Actinobacteria became the new dominant group during the long-term post-fire recovery. AP, WC, DOC, MBC, S-DHA, and S-SC were significantly and positively correlated with soil bacterial diversity (p < 0.05). The results of the co-occurrence network analysis showed that all groups were dominated by symbiotic relationships, with M having the highest network complexity and strongest competitive effects. This study found that the physicochemical properties of soils recovered over a long period of time after fire returned to or exceeded the unfired forest condition. The Actinobacteria phylum became a new dominant bacterial group, with stronger network complexity and competition, in the process of forest recovery after moderate fire. Full article
(This article belongs to the Special Issue Advances in Genomics and Ecology of Environmental Microorganisms)
Show Figures

Figure 1

19 pages, 3204 KiB  
Article
Metagenomics Reveals the Effects of Organic Material Co-Application on Phosphorus Cycling Functional Genes and Bioavailable Phosphorus
by Wei Wang, Yue Jiang, Shanshan Cai, Yumei Li, Lei Sun and Juanjuan Qu
Agronomy 2025, 15(5), 1187; https://doi.org/10.3390/agronomy15051187 - 14 May 2025
Viewed by 649
Abstract
Phosphorus is essential for crop growth, but excessive use of chemical fertilizers can lead to environmental issues. The incorporation of organic materials has the potential to enhance phosphorus availability and promote soil phosphorus cycling. This study investigated the effects of chemical fertilizer co-application [...] Read more.
Phosphorus is essential for crop growth, but excessive use of chemical fertilizers can lead to environmental issues. The incorporation of organic materials has the potential to enhance phosphorus availability and promote soil phosphorus cycling. This study investigated the effects of chemical fertilizer co-application with two organic materials on soil properties and functions. Four treatments were established: (1) chemical fertilizer alone (SC, consisting of urea, ammonium phosphate, and potassium sulfate), (2) chemical fertilizer with corn-straw-derived biochar (SCB), (3) chemical fertilizer with composted manure-based organic fertilizer (SCF), and (4) chemical fertilizer with both biochar and organic fertilizer (SCBF). This study focused on changes in soil properties, bioavailable phosphorus, phosphorus cycling functional genes, and related microbial communities. Compared to SC, the combined application of organic materials significantly increased available phosphorus (AP), alkaline hydrolysis nitrogen (AN), and available potassium (AK), with the SCBF exhibiting the highest increases of 78.76%, 47.47%, and 336.61%, respectively. However, applying organic materials reduced alkaline phosphatase (ALP) and acid phosphatase (ACP) activities, except for the increase in ACP in SCBF. Additionally, bioavailable phosphorus increased by up to 157.00% in SCBF. Adding organic materials significantly decreased organic phosphorus mineralization genes (phoA, phoD, phnP) and phosphate degradation genes (ppk2), while increasing inorganic phosphorus solubilization genes (pqqC, gcd), which subsequently increased CaCl2-P and Citrate-P contents in SCB and in SCBF. In summary, organic material application significantly enhances phosphorus bioavailability by improving soil physicochemical properties and phosphorus-related gene abundance. These findings provide new insights into sustainable soil fertility management and highlight the potential of integrating organic materials with chemical fertilizers to improve soil nutrient availability, thereby contributing to increased soybean yield. Moreover, this study advances our understanding of the underlying mechanisms driving phosphorus cycling under combined fertilization strategies, offering a scientific basis for optimizing fertilization practices in agroecosystems. Full article
(This article belongs to the Special Issue Effects of Arable Farming Measures on Soil Quality—2nd Edition)
Show Figures

Figure 1

9 pages, 660 KiB  
Article
Dietary Supplementation of Astragalus Polysaccharides Modulates Growth Physiology, Metabolic Homeostasis, and Innate Immune Responses in Rice Field Eels (Monopterus albus)
by Chengcheng Wu, Hang Yang, Yutong Yang, Quan Yuan, Weiwei Lv, Gelana Urgesa Ayana, Mingyou Li, Di Su, Wenzong Zhou and Qinghua Zhang
Fishes 2025, 10(5), 213; https://doi.org/10.3390/fishes10050213 - 6 May 2025
Viewed by 1055
Abstract
To investigate the dietary effects of Astragalus polysaccharides (APSs) on the growth performance, lipid metabolism, antioxidant activity, and non-specific immunity of Asian swamp eel (Monopterus albus) during the domestication stage, fish were randomly allocated into quadruplicate groups receiving Tenebrio molitor-based [...] Read more.
To investigate the dietary effects of Astragalus polysaccharides (APSs) on the growth performance, lipid metabolism, antioxidant activity, and non-specific immunity of Asian swamp eel (Monopterus albus) during the domestication stage, fish were randomly allocated into quadruplicate groups receiving Tenebrio molitor-based diets supplemented with Astragalus polysaccharides (APSs) at graded concentrations of 0 (CON), 700 (APS1), 1400 (APS2), and 2100 (APS3) mg/kg body weight for 28 days. The results showed that dietary APSs at 700–1400 mg/kg·bw significantly enhanced the weight gain rate (WG) and decreased the feed conversion ratio (FCR) of M. albus (p < 0.05). Concurrently, hematological analysis revealed that hemoglobin levels increased by 19.9% and 23.0% in the 700 and 1400 mg/kg APS groups, respectively (p < 0.05). In terms of lipid metabolism, supplementation with APSs significantly increased the serum high-density lipoprotein (HDL) content in all treatment groups (p < 0.05). Lower serum triglyceride (TG) levels were found in the APS2 group (p < 0.05), and decreased triglyceride (TG), cholesterol (CHO), and low-density lipoprotein (LDL) levels were displayed in the APS3 group (p < 0.05). Among the antioxidant parameters, the supplementation with 700 mg/kg·bw APSs significantly increased the glutathione peroxidase (GSH-Px) and catalase (CAT) activity levels of M. albus (p < 0.05). The APS2 group had a significantly increased total antioxidant capacity (T-AOC) and CAT activity levels (p < 0.05), and the APS3 group had significantly increased CAT activity levels (p < 0.05). In addition, the APS1 and APS3 groups had significantly reduced malondialdehyde (MDA) levels (p < 0.05). In terms of non-specific immunity, the APS1 and APS2 groups showed significantly increased superoxide dismutase (SOD) and lysozyme (LZM) activity levels of M. albus (p < 0.05), and the addition of 700 mg/kg·bw APSs significantly increased the levels of alkaline phosphatase (AKP) activity (p < 0.05). Furthermore, the levels of acid phosphatase (ACP) activity were significantly increased in all experimental groups (p < 0.05). In conclusion, the optimal APS addition for T. molitor as biocarrier bait is 700 mg/kg, corresponding to 352 mg/kg, which elicits improvements in the growth parameters, lipid homeostasis regulation, oxidative stress mitigation, and innate immune potentiation of M. albus during the domestication stage. Full article
(This article belongs to the Special Issue Advances in Aquaculture Feed Additives)
Show Figures

Figure 1

17 pages, 6119 KiB  
Article
Phosphorus Functional Genes Control Rice Yield via Microbial Biomass Phosphorus and Plant Phosphorus Uptake in a Rice–Oilseed Rape Rotation System Compared with a Rice–Wheat Rotation System
by Qingyue Zhang, Weijia Yu, Min Li, Wenlong Cheng, Shengchang Huai, Yuwen Jin, Guihua Li, Ji Wu and Changai Lu
Agronomy 2025, 15(4), 866; https://doi.org/10.3390/agronomy15040866 - 30 Mar 2025
Viewed by 1394
Abstract
Crop rotation and microbial driving force significantly influence soil phosphorus (P) bioavailability and crop yield. However, differences in underlying microbial mechanisms in rotations remain unclear. We examined rice yield, P uptake, soil and microbial P contents, enzyme activity, and P functional genes over [...] Read more.
Crop rotation and microbial driving force significantly influence soil phosphorus (P) bioavailability and crop yield. However, differences in underlying microbial mechanisms in rotations remain unclear. We examined rice yield, P uptake, soil and microbial P contents, enzyme activity, and P functional genes over six years (2016–2022) to elucidate microbial mechanisms driving rice yield in rice–wheat (RW) and rice–oilseed rape (RO) rotations. RO significantly increased rice yield and plant P uptake by 9.17% and 20.70%, respectively, compared to RW. Soil total (TP) and available (AP) P contents were significantly lower (4.83% and 18.31%, respectively) under RO than RW, whereas microbial biomass phosphorus (MBP) and acid phosphatase activity (EP) were greater (39.40% and 128.45%, respectively). PICRUSt2 results revealed that RO increased phoA phoB (alkaline phosphatase), phnX (phosphonoacetaldehyde hydrolase [EC:3.11.1.1]), gcd (Quinoprotein glucose dehydrogenase [EC:1.1.5.2]), and ppaC (manganese-dependent inorganic pyrophosphatase) and decreased phnD (phosphonate transport system substrate-binding protein), ugpE (sn-glycerol 3-phosphate transport system permease protein), ugpA (sn-glycerol 3-phosphate transport system permease protein), and phnO ((aminoalkyl)phosphonate N-acetyltransferase [EC:2.3.1.280]) abundance. Random forest analysis showed that ppaC, phnD, gcd, and phnX were important for rice yield and plant P uptake. Partial least squares analysis revealed that RO indirectly increased rice yield by influencing MBP and affecting plant P uptake through P functional genes. Overall, RO improves rice yield and P bioavailability by altering P functional genes (ppaC, phnD, gcd, and phnX), providing new perspectives on crop–microorganism interactions and resource use efficiency. Full article
Show Figures

Figure 1

18 pages, 4862 KiB  
Article
Effects of Alfalfa–Grass Mixed Sowing on Grass Yield and Rhizosphere Soil Characteristics
by Shiwen Wu, Lili Nan and Kun Wang
Agronomy 2025, 15(4), 830; https://doi.org/10.3390/agronomy15040830 - 27 Mar 2025
Viewed by 750
Abstract
This research investigated the impact of various mixed sowing combinations on soil nutrients and grass yield within the rhizosphere across different seasons. Three varieties of leguminous forages—Medicago sativa ‘Gannong No. 3’ (GN3), M. sativa ‘Gannong No. 9’ (GN9), and M. sativa ‘Juneng [...] Read more.
This research investigated the impact of various mixed sowing combinations on soil nutrients and grass yield within the rhizosphere across different seasons. Three varieties of leguminous forages—Medicago sativa ‘Gannong No. 3’ (GN3), M. sativa ‘Gannong No. 9’ (GN9), and M. sativa ‘Juneng No. 7’ (JN7)—as well as three varieties of grasses—Leymus chinensis ‘Longmu No. 1’ (LC), Agropyron mongolicum ‘Mengnong No. 1’ (AC), and Bromus inermis ‘Yuanye’ (BI)—were used as experimental materials for mixed sowing combinations; the monocultures of each material served as controls. We explored the seasonal effects of different legumes and grasses intercropping combinations on rhizosphere soil nutrients and grass yield in the Hexi Corridor region of China. The results indicated that the levels of soil enzyme activity, microbial biomass, and soil nutrients in the rhizosphere across the various treatments followed the following sequence: summer > spring > autumn. The soil enzyme activities and microbial biomass of various mixed sowing combinations were significantly higher than those of the monocultures within the same growing season (p < 0.05). Specifically, the activities of alkaline phosphatase (APA), catalase (CAT), soil microbial biomass carbon (SMBC), soil microbial biomass nitrogen (SMBN), soil microbial biomass phosphorus (SMBP), soil organic matter (SOM), available nitrogen (AN), available phosphorus (AP), and available potassium (AK) within the GN9+BI group were the highest among all treatments. The hay yields of GN3, GN9, and JN7 were markedly greater than those of their respective mixed sowing combinations (p < 0.05). Correlation analysis revealed a positive relationship between enzyme activities, microbial biomass, and soil nutrient levels. This comprehensive evaluation indicated that the mixed sowing combinations of GN9 + BI and GN9 + LC are particularly well suited for widespread adoption in the Hexi Oasis irrigation area. Full article
(This article belongs to the Section Grassland and Pasture Science)
Show Figures

Figure 1

18 pages, 4540 KiB  
Article
Response of Extracellular Enzyme Stoichiometric Properties and Microbial Metabolic Limitations to the Ecosystem Transition Mode Employed in Red Jujube Economic Forests on the Loess Plateau
by Chunheng Mu, Jiaqi Li, Fuchao Huang, Zhiyu Zhang, Jing Qin and Gailing Wang
Microorganisms 2025, 13(4), 729; https://doi.org/10.3390/microorganisms13040729 - 24 Mar 2025
Viewed by 596
Abstract
Soil carbon (C), nitrogen (N), and phosphorus (P) cycling and microbial metabolism limitations are key factors affecting nutrient cycling and vegetation development. Extracellular enzyme activity (EEA) plays a key role in carbon and nutrient cycling in ecosystems, and their activities can serve as [...] Read more.
Soil carbon (C), nitrogen (N), and phosphorus (P) cycling and microbial metabolism limitations are key factors affecting nutrient cycling and vegetation development. Extracellular enzyme activity (EEA) plays a key role in carbon and nutrient cycling in ecosystems, and their activities can serve as indicators of microbial nutrient requirements. At present, there is insufficient research on the nutrient limitations of microorganisms during ecosystem transition in abandoned jujube forests on the Loess Plateau. Four modes were selected: jujube forest replanted with Pinus tabulaeformis (CP), with Platycladus orientalis (PO), with medicinal materials (MM), and with alfalfa (AL). An abandoned jujube forest (CK) was used as a control. Soil physical and chemical properties, microbial biomass carbon, nitrogen, and phosphorus, as well as changes in the activities of β-1,4-glucosidase (BG), leucine aminopeptidase (LAP), N-acetylglucosamine (NAG), and alkaline phosphatase (AP), were studied. Analysis of changes in soil microbial nutrient limitations was performed. Compared with those in the CK treatment, the activities of soil C, N, and P extracellular enzymes significantly increased (p < 0.05) in the forest transition treatments, and the C:NEEA, C:PEEA, and N:PEEA ratios of extracellular enzymes tended to decrease. Within the treatments, the activities of soil C, N, and P extracellular enzymes decreased as the soil layer deepened, whereas the enzyme stoichiometric ratio increased as the soil layer deepened, with significant differences observed between the soil layers. The vector model was used to quantify nutrient limitations in microbial metabolism and revealed that microbial metabolism in surface soil was limited mainly by C and P and that in the 10–20 cm and 20–40 cm layers, soil microbial metabolism was limited mainly by C and N. Correlation analysis revealed that SOC, pH, MBC, and MBN were the main factors affecting soil extracellular enzyme activity. Mantel’s test revealed that (NAG + LAP), AP, C:NEEA, and C:PEEA were important factors affecting vector length and angle. RAD analysis revealed that microbial properties had a greater impact on enzyme stoichiometry and microbial metabolic limitations than physicochemical indicators did. This study highlights the importance of vegetation in determining microbial metabolic processes and enhances our understanding of how ecological changes in jujube forests affect soil nutrient cycling and microbial metabolic constraints on the Loess Plateau. Forest transformation modes have important impacts on soil extracellular enzyme activity and microbial nutrient limitation. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

16 pages, 3897 KiB  
Case Report
A Novel Homozygous Missense Variant of PIGT Related to Multiple Congenital Anomalies-Hypotonia Seizures Syndrome 3 with Elevated of Serum ALP Level in a Thai Newborn Patient
by Jeerawan Klangjorhor, Natrujee Wiwattanadittakul, Thanapak Jaimalai, Patcharawadee Thongkumkoon, Pitiporn Noisagul, Ratchadaporn Khiaomai, Nutnicha Sirikaew, Nonthanan Moonsan, Arnat Pasena, Pathacha Suksakit, Pimpisa Teeyakasem, Parunya Chaiyawat and Maliwan Tengsujaritkul
Int. J. Mol. Sci. 2025, 26(6), 2790; https://doi.org/10.3390/ijms26062790 - 20 Mar 2025
Viewed by 521
Abstract
Phosphatidylinositol glycan class T (PIGT) is part of the glycosylphosphatidylinositol transamidase (GPI-TA) complex, crucial for various cell functions. Biallelic pathogenic variants in PIGT are associated with Multiple Congenital Anomalies-Hypotonia Seizures Syndrome 3 (MCAHS3), a rare neonatal hypotonia syndrome characterized by dysmorphic features and [...] Read more.
Phosphatidylinositol glycan class T (PIGT) is part of the glycosylphosphatidylinositol transamidase (GPI-TA) complex, crucial for various cell functions. Biallelic pathogenic variants in PIGT are associated with Multiple Congenital Anomalies-Hypotonia Seizures Syndrome 3 (MCAHS3), a rare neonatal hypotonia syndrome characterized by dysmorphic features and seizures. Diagnosing neonatal hypotonia, which has diverse congenital and acquired causes, is challenging, particularly in syndromic monogenic cases. Next-generation sequencing is essential for accurate diagnosis. This study reports a term newborn with hypotonia, dysmorphic features, seizures, and severe skeletal issues, including a humeral fracture at birth, consistent with MCAHS3. Trio whole exome sequencing (WES) analysis revealed a novel homozygous missense variant in PIGT, expanding the clinical spectrum of MCAHS3 and marking the first such case in the Thai population. The identified c.257A>G (p.His86Arg) variant manifests a severe MCAHS3 phenotype, as evidenced by reduced CD59 expression in western blot analysis, indicating impaired GPI-AP synthesis. Computational predictions suggest this mutation causes protein instability, potentially affecting GPI anchor attachment. While alkaline phosphatase (ALP), a GPI-AP crucial for skeletal mineralization, was elevated in this case, suggesting a late-stage GPI synthesis defect. The His86Arg mutation in PIGT may disrupt GPI-TA function, hindering proper protein attachment and leading to cleaved protein secretion. Further functional studies are needed to elucidate the impact of this mutation on PIGT function and MCAHS3 phenotypes. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

16 pages, 8664 KiB  
Article
Visualizing the Cellular and Subcellular Distribution of Fms-like Tyrosine Kinase 3 (Flt3) and Other Neuronal Proteins Using Alkaline Phosphatase (AP) Immunolabeling
by Yuqin Yin, Kathleen Z. He, Jane Kirby, Ishraq A. Haque and Xin Tang
Int. J. Mol. Sci. 2025, 26(5), 2284; https://doi.org/10.3390/ijms26052284 - 4 Mar 2025
Viewed by 841
Abstract
Precisely localizing the spatial distribution of proteins within various brain cell types and subcellular compartments, such as the synapses, is essential for generating and testing hypotheses to elucidate their roles in brain function. While the fms-like tyrosine kinase-3 (Flt3) has been extensively studied [...] Read more.
Precisely localizing the spatial distribution of proteins within various brain cell types and subcellular compartments, such as the synapses, is essential for generating and testing hypotheses to elucidate their roles in brain function. While the fms-like tyrosine kinase-3 (Flt3) has been extensively studied in the context of blood cell development and leukemia pathogenesis, its role in the brain remains poorly understood. Previous efforts to address this issue were hindered by the low expression levels of Flt3 and the limited sensitivity of the standard immunolabeling method, which were insufficient to reliably detect Flt3 protein in brain tissue. In this study, we systematically characterized Flt3 protein localization during brain development using a highly sensitive immunolabeling method based on alkaline phosphatase (AP) polymer biochemistry. This approach revealed a previously unrecognized neuron-selective Flt3 expression pattern in both mouse and human cerebella, with a developmental increase in total protein levels accompanied by a shift from a cytosolic to a dendritic subcellular distribution. Combining AP-polymer-based immunohistochemistry (AP-IHC) for Flt3 with conventional immunostaining of cell type marker proteins revealed parvalbumin- and calbindin-positive Purkinje cells to be the main cell type expressing Flt3 in the cerebellum. To validate the versatility of the AP-IHC method for detecting low-abundance neuronal proteins, we demonstrated robust labeling of Kir2.1, a potassium channel protein, in brain tissue sections from mouse, pig, and human samples. We further applied the AP-IHC method to human stem cell-derived neurons, effectively visualizing the postsynaptic density scaffold protein PSD95 within synapses. To our knowledge, this is the first study to employ an AP-IHC method combined with other standard immunofluorescent staining to co-detect weakly expressed neuronal proteins and other cellular markers in brain tissue and cultured neurons. Additionally, our findings uncover a previously unrecognized neuron-specific pattern of Flt3 expression in the cerebellum, laying the foundation for future mechanistic studies on its role in normal brain development and neurological disorders. Full article
(This article belongs to the Special Issue Molecular Research of Therapeutic Target Enzymes)
Show Figures

Figure 1

14 pages, 888 KiB  
Article
Obeticholic Acid Improves Cholestasis, Liver Fibrosis, and Liver Function in Patients with Primary Biliary Cholangitis with Inadequate Response to Ursodeoxycholic Acid
by Matthias Buechter, Paul Manka, Kerem Bulut, Guido Gerken and Alisan Kahraman
J. Pers. Med. 2025, 15(3), 79; https://doi.org/10.3390/jpm15030079 - 21 Feb 2025
Viewed by 1244
Abstract
Background and Aims: Primary biliary cholangitis (PBC) leads to the slow, progressive destruction of the small bile ducts with consecutive cholestasis and intrahepatic cholangitis. If this disease remains untreated, liver parenchyma will be damaged resulting in fibrosis and end-stage liver disease with the [...] Read more.
Background and Aims: Primary biliary cholangitis (PBC) leads to the slow, progressive destruction of the small bile ducts with consecutive cholestasis and intrahepatic cholangitis. If this disease remains untreated, liver parenchyma will be damaged resulting in fibrosis and end-stage liver disease with the need for transplantation. The approval of the Farnesoid X receptor agonist obeticholic acid (Ocaliva; OCA) in early 2017 expanded the drug therapy options of PBC, which previously consisted primarily of the administration of ursodeoxycholic acid (UDCA). Patients and Methods: Included in our prospective pilot study were 16 patients with a confirmed diagnosis of PBC who were treated with an add-on therapy with OCA (5 mg/d). None of the patients had an overlap to autoimmune hepatitis. Patients were investigated between 09/2022 and 09/2023. Results: The majority of patients was female (15/16, 93.75%), and the mean age was 57.63 ± 9.59 (43–77) years. OCA treatment led to a statistically significant decrease in aspartate aminotransferase (AST; AST baseline: 38.50 [26.25; 50.00] IU/L vs. AST 6-month follow-up: 23.50 [21.50; 44.25] IU/L, p = 0.0012), alanine aminotransferase (ALT; ALT baseline: 55.50 [28.75; 97.00] IU/L vs. ALT 6-month follow-up: 36.50 [28.00; 57.25] IU/L, p = 0.0035), and gamma-glutamyl transferase (GGT; GGT baseline: 168.00 [100.30; 328.50] IU/L vs. GGT 6-month follow-up: 88.00 [44.50; 259.80] IU/L, p = 0.0063), while the decrease in alkaline phosphatase (AP) was not statistically significant (AP baseline: 197.00 [170.00; 253.30] IU/L vs. AP 6-month follow-up: 196.00 [134.00; 227.00] IU/L, p = 0.0915). In addition, liver stiffness measurement (LSM) showed a statistically significant decrease after six months of treatment with OCA (LSM baseline: 7.85 [5.55; 10.13] kPa vs. LSM 6-month follow-up: 5.95 [4.55; 8.225] kPa, p = 0.0001). However, the increase in enzymatic liver function measured by LiMAx failed to reach statistical significance, but showed a positive trend (LiMAx baseline: 402.50 [341.50; 469.80] μg/kg/h vs. LiMAx 6-month follow-up: 452.50 [412.50; 562.00] μg/kg/h, p = 0.0625). In none of our patients did therapy with obeticholic acid have to be stopped due to pruritus or poor tolerability. Conclusions: In patients with PBC without adequate response to UDCA, OCA is a promising alternative, which in our group of 16 patients led to a significant improvement of liver enzymes, the amelioration of liver fibrosis, and an increase in liver function capacity in a short-term clinical course. Full article
(This article belongs to the Section Personalized Therapy and Drug Delivery)
Show Figures

Figure 1

19 pages, 3539 KiB  
Article
Optimizing Straw and Manure Co-Substitution Regimes to Maintain Stable Crop Yields Through Enhanced Soil Stoichiometric Balance
by Peipei Li, Yuanyi Shang, Hui Li, Fang Li, Yi Wang, Xueqiang Zhu, Shiying Li, Xiaolin Wang and Yanlai Han
Agriculture 2025, 15(4), 429; https://doi.org/10.3390/agriculture15040429 - 18 Feb 2025
Viewed by 720
Abstract
The benefits of partially substituting inorganic fertilizers with organic fertilizers have been extensively acknowledged. However, the key mechanisms behind nutrient transformation and supply for stable crop yields are still not fully understood. Based on an 11-year field experiment with a wheat–maize rotation system, [...] Read more.
The benefits of partially substituting inorganic fertilizers with organic fertilizers have been extensively acknowledged. However, the key mechanisms behind nutrient transformation and supply for stable crop yields are still not fully understood. Based on an 11-year field experiment with a wheat–maize rotation system, this study explored the advantages of combined straw and manure substitution under various organic substitution regimes. These regimes included an unfertilized control (CK), inorganic nitrogen, phosphorus, and potassium fertilizers (NPK), NPK substituted with straw (NPKS), NPK substituted with manure (NPKM), and NPK substituted with both straw and manure (NPKSM). Compared to NPK and NPKS, NPKM and NPKSM significantly improved wheat yield by 12.8% and 13.8%, respectively. Bulk soil organic carbon (SOC), total nitrogen (TN), available superphosphate (AP), β-glucosidase (βG), urease (URE), and alkaline phosphatase (ALP) were all higher in the NPKM treatment than in the NPKSM treatment. However, compared to NPKM, NPKSM significantly decreased the potential nitrification rate by 31.0% and increased the soil NH4+-N content. Correspondingly, the functional genes of nitrification were also found to be decreased in the NPKSM treatment. In the rhizosphere, most soil factors increased compared to bulk soil, but treatment differences were smaller. However, the differences among treatments were reduced in the rhizosphere. The high amount of manure applied in the NPKM treatment caused excessive soil phosphorus accumulation, reaching over 46.7 mg/kg, resulting in lower N/P and C/P ratios. The soil quality index (SQI), based on soil nutrients, enzymes, functional genes, and C:N:P stoichiometry, was 9.9% higher in NPKSM than in NPKM. Bulk soil SQIs showed stronger correlations with wheat yields than rhizosphere SQIs, highlighting that bulk soil was superior to rhizosphere in predicting crop yield. Partial least squares path modeling showed that C/N, N/P, and C/P ratios strongly influenced SQIs. The NPKSM treatment, which improved soil nutrients, biological factors, and balanced C:N:P stoichiometry, is an effective strategy for sustainable agriculture. Future practices should focus on maintaining stoichiometric balance to sustain soil quality and crop yields. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

Back to TopTop