Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = alkali-activated binder (AAB)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 4661 KiB  
Article
Microstructural, Mechanical and Fresh-State Performance of BOF Steel Slag in Alkali-Activated Binders: Experimental Characterization and Parametric Mix Design Method
by Lucas B. R. Araújo, Daniel L. L. Targino, Lucas F. A. L. Babadopulos, Heloina N. Costa, Antonio E. B. Cabral and Juceline B. S. Bastos
Buildings 2025, 15(12), 2056; https://doi.org/10.3390/buildings15122056 - 15 Jun 2025
Viewed by 520
Abstract
Alkali-activated binders (AAB) are a suitable and sustainable alternative to ordinary Portland cement (OPC), with reductions in natural resource usage and environmental emissions in regions where the necessary industrial residues are available. Despite its potential, the lack of mix design methods still limits [...] Read more.
Alkali-activated binders (AAB) are a suitable and sustainable alternative to ordinary Portland cement (OPC), with reductions in natural resource usage and environmental emissions in regions where the necessary industrial residues are available. Despite its potential, the lack of mix design methods still limits its applications. This paper proposes a systematic parametric validation for AAB mix design applied to pastes and concretes, valorizing steel slag as precursors. The composed binders are based on coal fly ash (FA) and Basic Oxygen Furnace (BOF) steel slag. These precursors were activated with sodium silicate (Na2SiO3) and sodium hydroxide (NaOH) alkaline solutions. A parametric investigation was performed on the mix design parameters, sweeping the (i) alkali content from 6% to 10%, (ii) silica modulus (SiO2/Na2O) from 0.75 to 1.75, and (iii) ash-to-slag ratios in the proportions of 75:25 and 50:50, using parametric intervals retrieved from the literature. These variations were analyzed using response surface methodology (RSM) to develop a mechanical model of the compressive strength of the hardened paste. Flowability, yield stress, and setting time were evaluated. Statistical analyses, ANOVA and the Duncan test, validated the model and identified interactions between variables. The concrete formulation design was based on aggregates packing analysis with different paste contents (from 32% up to 38.4%), aiming at self-compacting concrete (SCC) with slump flow class 1 (SF1). The influence of the curing condition was evaluated, varying with ambient and thermal conditions, at 25 °C and 65 °C, respectively, for the initial 24 h. The results showed that lower silica modulus (0.75) achieved the highest compressive strength at 80.1 MPa (28 d) for pastes compressive strength, densifying the composite matrix. The concrete application of the binder achieved SF1 fluidity, with 575 mm spread, 64.1 MPa of compressive strength, and 26.2 GPa of Young’s modulus in thermal cure conditions. These findings demonstrate the potential for developing sustainable high-performance materials based on parametric design of AAB formulations and mix design. Full article
(This article belongs to the Special Issue Advances in Cementitious Materials)
Show Figures

Figure 1

14 pages, 1741 KiB  
Article
Mechanical Strength, Mineralogical Characteristics and Leaching Behavior of Iron Ore Tailings Stabilized with Alkali-Activated Rice Husk Ash and Eggshell Lime Binder
by William Mateus Kubiaki Levandoski, Jonas Duarte Mota, Carolina Menegolla, Suéllen Tonatto Ferrazzo, Giovani Jordi Bruschi and Eduardo Pavan Korf
Minerals 2025, 15(6), 567; https://doi.org/10.3390/min15060567 - 27 May 2025
Viewed by 463
Abstract
An alternative to conventional methods for mine tailings disposal is stabilization with alkali-activated binders (AABs), developed from agro-industrial waste. Despite increasing interest in this topic, there is still a lack of studies focusing on the stabilization of iron ore tailings (IOTs) using AABs, [...] Read more.
An alternative to conventional methods for mine tailings disposal is stabilization with alkali-activated binders (AABs), developed from agro-industrial waste. Despite increasing interest in this topic, there is still a lack of studies focusing on the stabilization of iron ore tailings (IOTs) using AABs, particularly those that combine the characterization of cementitious gels with an evaluation of leaching behavior. This study assessed the strength, mineralogy, and leaching performance of IOTs stabilized with AABs formulated from rice husk ash (RHA) and hydrated eggshell lime (HEL), using sodium hydroxide as the alkaline activator. Tests included unconfined compressive strength (UCS), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and metal leaching analyses. The IOT–AAB mixture with the highest AAB content and dry unit weight achieved an average UCS of 2.14 MPa after 28 days of curing. UCS increased with AAB content, followed by dry unit weight and curing time, the latter showing a non-linear influence. The formation of C–S–H gel was confirmed after 28 days, while N–A–S–H gel was detected as early as 7 days of curing. The cemented IOT–AAB mixtures showed no metal toxicity and effectively encapsulated barium originating from the RHA. Full article
Show Figures

Graphical abstract

24 pages, 4894 KiB  
Article
Microstructural Characterization of Expansive Soil Stabilized with Coconut Husk Ash: A Multi-Technique Investigation into Mineralogy, Pore Architecture, and Surface Interactions
by Ankur Abhishek, Anasua GuhaRay, Toshiro Hata and Hossam Abuel-Naga
Minerals 2025, 15(5), 516; https://doi.org/10.3390/min15050516 - 14 May 2025
Cited by 1 | Viewed by 757
Abstract
Black cotton soil (BCS) is unsuitable for construction due to its high plasticity, low shear strength, and significant volume changes upon wetting and drying. The present study investigates the effectiveness of an alkali-activated coconut husk ash (CHA) binder in improving the geotechnical properties [...] Read more.
Black cotton soil (BCS) is unsuitable for construction due to its high plasticity, low shear strength, and significant volume changes upon wetting and drying. The present study investigates the effectiveness of an alkali-activated coconut husk ash (CHA) binder in improving the geotechnical properties of BCS. CHA is derived from coconut husk and serves as a sustainable binder. Microstructural characterization of untreated and CHA-treated BCS was carried out using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and Fourier transform infrared spectroscopy (FTIR). The specific surface area (SSA) and porosity were evaluated using nitrogen gas adsorption methods based on the Brunauer–Emmett–Teller (BET) and Langmuir techniques. The Barrett–Joyner–Halenda (BJH) method demonstrated a decrease in mean pore diameter from 6.7 nm to 6.2 nm following CHA treatment. The SSA diminished from 40.94 m2/g to 25.59 m2/g, signifying the development of calcium silicate hydrate (C-S-H) gels that occupied the pore spaces. The formation of pozzolanic reaction products enhanced the microstructural integrity of the treated soil. Unconfined compressive strength (UCS) test results at 24 h and 28 days of curing for CHA-treated soil have been incorporated to analyze the optimum binder content. The UCS values enhanced significantly from 182 kPa to 305 kPa and 1030 kPa, respectively, at 9% binder content after 24 h and 28 days of curing. The microstructural and mechanical strength test analysis results indicated that CHA is a feasible and environmentally sustainable substitute for BCS stabilization. CHA-based AAB will be an eco-friendly alternative to cement and lime, reducing CO2 emissions and construction costs. Full article
Show Figures

Figure 1

24 pages, 4359 KiB  
Review
MSW Incineration Bottom Ash-Based Alkali-Activated Binders as an Eco-Efficient Alternative for Urban Furniture and Paving: Closing the Loop Towards Sustainable Construction Solutions
by Josep Maria Chimenos, Fabian Cuspoca, Alex Maldonado-Alameda, Jofre Mañosa, Joan Ramon Rosell, Ana Andrés, Gerard Faneca and Luisa F. Cabeza
Buildings 2025, 15(9), 1571; https://doi.org/10.3390/buildings15091571 - 7 May 2025
Viewed by 718
Abstract
Innovative approaches in the Portland cement industry, aligned with circular economy principles, offer a promising solution to reduce the environmental impacts. These methods can initially target the architectural elements with lower structural demands, such as urban furniture and paving, before being applied to [...] Read more.
Innovative approaches in the Portland cement industry, aligned with circular economy principles, offer a promising solution to reduce the environmental impacts. These methods can initially target the architectural elements with lower structural demands, such as urban furniture and paving, before being applied to areas with higher cement usage. Alkali-activated binders (AABs) made from secondary resources present a sustainable alternative to Portland cement (PC), promoting resource recovery, conservation, and a low-carbon economy. Incinerator bottom ash (IBA), traditionally landfilled, has shown potential as a precursor for AABs due to its aluminosilicate content. Repurposing IBA for urban furniture and paving transforms it into a valuable secondary resource. Accordingly, this is the first study to utilize IBA as the sole precursor for urban furniture or paving applications. Research, including state-of-the-art studies and proof of concept developed in this work, demonstrates that IBA-based AABs can produce cast concrete suitable for non-structural urban elements, meeting the technical, environmental, and ecotoxicological standards. Using IBA in AAB formulations not only reduces the reliance on primary raw materials but also contributes to significant energy savings in binder production and lowers greenhouse gas (GHG) emissions, resulting in a reduced carbon footprint. Furthermore, producing concrete from local residual resources, such as IBA, facilitates the reintegration of municipal waste into the production cycle at its point of origin, fostering a sustainable approach to urban development and supporting the circular economy. Full article
(This article belongs to the Special Issue Advances in the Implementation of Circular Economy in Buildings)
Show Figures

Figure 1

21 pages, 6357 KiB  
Article
Impact of Curing Temperature and Steel Slag Aggregates on High-Strength Self-Compacting Alkali-Activated Concrete
by Lucas B. R. Araújo, Daniel L. L. Targino, Lucas F. A. L. Babadopulos, Antonin Fabbri, Antonio Eduardo. B. Cabral, Rime Chehade and Heloina N. Costa
Buildings 2025, 15(3), 457; https://doi.org/10.3390/buildings15030457 - 1 Feb 2025
Cited by 6 | Viewed by 1186
Abstract
There is a growing demand for sustainable solutions in civil engineering concerning the carbon footprint of cementitious composites. Alkali-Activated Binders (AAB) are materials with great potential to replace ordinary Portland cement (OPC), with similar strength levels and lower environmental impact. Despite their improved [...] Read more.
There is a growing demand for sustainable solutions in civil engineering concerning the carbon footprint of cementitious composites. Alkali-Activated Binders (AAB) are materials with great potential to replace ordinary Portland cement (OPC), with similar strength levels and lower environmental impact. Despite their improved environmental performance, their durability remains a gap in the literature, influenced by aspects of mechanical behavior, physical properties, and microstructure. This paper aims to assess the impact of steel slag aggregates and curing temperature of a proposed AAB based concrete formulation by characterizing fresh state, mechanical behavior, and microstructure. The proposed AAB is composed of fly ash (FA) and basic oxygen furnace (BOF) steel slag (SS) as precursors, sodium silicate and sodium hydroxide solution as activators, in total replacement of OPC, using baosteel slag short flow (BSSF) SS as aggregate in comparison with natural aggregate. The concrete formulation was designed to achieve a high-performance concrete (HPC) and a self-compacting concrete (SCC) behavior. Mechanical characterization encompassed hardened (compressive strength and Young’s modulus), fresh state (J-ring, slump flow, and T50), and durability tests (scanning electronic microscopy, water penetration under pressure, and chloride ion penetration). The compressive strength (64.1 ± 3.6 MPa) achieves the requirements of HPC, while the fresh state results fulfill the SCC requirements as well, with a spread diameter from 550 mm to 650 mm (SF-1 class). However, the flow time ranges from 3.5 s to 13.8 s. There was evidence of high chloride penetrability, affected by the lower electrical resistance inherent to the material. Otherwise, there was a low water penetration under pressure (3.5 cm), which indicates a well-consolidated microstructure with low connected porosity. Therefore, the durability assessment demonstrated a divergence in the results. These results indicate that the current durability tests of cementitious materials are not feasible for AAB, requiring adapted procedures for AAB composite characterization. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

19 pages, 3989 KiB  
Article
Systematic Mix Design Study on Geopolymers—Prediction of Compressive Strength
by Henning Kruppa and Anya Vollpracht
Buildings 2023, 13(10), 2617; https://doi.org/10.3390/buildings13102617 - 17 Oct 2023
Cited by 6 | Viewed by 2532
Abstract
Due to the demand for decarbonization of the construction sector, research on alkali-activated binders and material-minimized carbon-reinforced structures has gained momentum in recent years. Most of the research into alkali-activated binders is focused on developing market-ready alternatives, mainly using a trial-and-error approach. In [...] Read more.
Due to the demand for decarbonization of the construction sector, research on alkali-activated binders and material-minimized carbon-reinforced structures has gained momentum in recent years. Most of the research into alkali-activated binders is focused on developing market-ready alternatives, mainly using a trial-and-error approach. In this study, an attempt is made to identify and quantify the factors influencing compressive strength development. Due to their worldwide availability, investigations are being carried out into binders based on calcined clays and natural pozzolans. The goal is to develop a method to produce tailor-made AAB for continuous manufacturing methods to combine carbon reinforcement and alkali-activated materials. For this purpose, an experimental matrix with 20 variation parameters was set up, in which the activator solution and the precursor composition varied. The design of the experiments was used to minimize the number of experiments. It was shown that no single factor is responsible for the development of compressive strength but instead involves several interacting factors. It was possible to find empirical formulas for predicting the compressive strength after 2, 7, and 28 days. Full article
(This article belongs to the Special Issue Research on the Performance of Non-metallic Reinforced Concrete)
Show Figures

Figure 1

21 pages, 7482 KiB  
Article
Effects of Superplasticizer and Water–Binder Ratio on Mechanical Properties of One-Part Alkali-Activated Geopolymer Concrete
by Thanh-Tung Pham, Ngoc-Linh Nguyen, Tuan-Trung Nguyen, Trung-Tu Nguyen and Thai-Hoan Pham
Buildings 2023, 13(7), 1835; https://doi.org/10.3390/buildings13071835 - 20 Jul 2023
Cited by 7 | Viewed by 3183
Abstract
This study presents an investigation of the mix proportion and mechanical properties of one-part alkali-activated geopolymer concrete (GPC). The procedure for determining the mix proportion of one-part alkali-activated GPC, which uses a solid alkali activator in crystal form, is proposed. The proposed procedure [...] Read more.
This study presents an investigation of the mix proportion and mechanical properties of one-part alkali-activated geopolymer concrete (GPC). The procedure for determining the mix proportion of one-part alkali-activated GPC, which uses a solid alkali activator in crystal form, is proposed. The proposed procedure was applied to a series of mixed proportions of GPC with different amounts of solid crystalline alkali activator (AA), water (W), and superplasticizer (SP), using the ratio between them to the total amount of binder (B, fly ash, and granulated blast furnace slag) by weight in order to evaluate their effect on the workability and compressive strength of the GPC. The slump, compressive and tensile strength, and elastic modulus of the one-part alkali-activated GPC were tested in various ways. The test results showed that solid crystalline alkali activators, water, and superplasticizers have significant effects on both the workability and compressive strength of GPC. The amount of one-part alkali activator should not exceed 12.0% of the total binder amount by weight (AA/B = 0.12) in order not to lose the workability of GPC. The minimum W–B ratio should be at least 0.43 to ensure the workability of the sample when no superplasticizer is added. An amount of 2.5% can be considered as the upper bound when using superplasticizer-based polysilicate for GPC. In addition, the elastic modulus and various types of tensile strength values of the one-part alkali-activated GPC were evaluated and compared with that predicted from compressive strength using equations given by two common ACI and Eurocode2 codes for ordinary Portland cement (OPC) concrete. Modifications of the equations showing the relationships between splitting tensile strength and compressive strength, as well as between elastic modulus and compressive strength and the development of compressive strength under the time provided by ACI and Eurocode2 for OPC concrete, were also made for one-part alkali-activated GPC. Full article
(This article belongs to the Special Issue Machine Learning Applications in Sustainable Buildings)
Show Figures

Graphical abstract

15 pages, 7512 KiB  
Article
Expansive Soil Stabilization Using Alkali-Activated Fly Ash
by Huan Wang, Tengjiao Liu, Chao Yan and Jianqi Wang
Processes 2023, 11(5), 1550; https://doi.org/10.3390/pr11051550 - 18 May 2023
Cited by 15 | Viewed by 3542
Abstract
Expansive soil swells with water and shrinks with water loss, causing serious safety problems for construction projects. This study emphasizes alkali-activated binder (NaOH excited fly ash) stabilized expansive soil. We found that swelling decreased with an increase in the amount of NaOH in [...] Read more.
Expansive soil swells with water and shrinks with water loss, causing serious safety problems for construction projects. This study emphasizes alkali-activated binder (NaOH excited fly ash) stabilized expansive soil. We found that swelling decreased with an increase in the amount of NaOH in alkali-activated binder. It was found that the alkali-activated binder stabilized expansive soils (AABS) had higher shear strength than untreated expansive soils (US), manifested by increased cohesion and friction angle. In AABS, the highest cohesion and the highest shear strength were found when the NaOH mass was 6% of the fly ash mass. The strength of AABS was similar to that of US without curing. AABS had higher strength than US after 7 and 14 days of curing. The unconfined compressive strength increased with extension of curing time. Combined with XRD and SEM analysis, it was shown that the mechanism of AABS was the formation of C–S–H and (C,N)–A–S–H and the change in the internal structure of expansive soil. This investigation can solve both the expansive soil problem and provide new concepts for green development. Full article
(This article belongs to the Special Issue Advances in Solid Waste Treatment and Design)
Show Figures

Figure 1

29 pages, 3525 KiB  
Review
The Obstacles to a Broader Application of Alkali-Activated Binders as a Sustainable Alternative—A Review
by Amina Dacić, Katalin Kopecskó, Olivér Fenyvesi and Ildiko Merta
Materials 2023, 16(8), 3121; https://doi.org/10.3390/ma16083121 - 15 Apr 2023
Cited by 12 | Viewed by 2947
Abstract
This paper aims to raise awareness regarding the obstacles limiting alkali-activated binders’ (AABs) application as a sustainable solution in the construction industry. Such an evaluation is essential in this industry, which has been introducing a wide range of alternatives to cement binders yet [...] Read more.
This paper aims to raise awareness regarding the obstacles limiting alkali-activated binders’ (AABs) application as a sustainable solution in the construction industry. Such an evaluation is essential in this industry, which has been introducing a wide range of alternatives to cement binders yet achieved limited utilisation. It has been recognised that technical, environmental, and economic performance should be investigated for the broader adoption of alternative construction materials. Based on this approach, a state-of-the-art review was conducted to identify the key factors to consider when developing AABs. It was identified that AABs’ adverse performance compared to conventional cement-based materials mainly depends on the choice of which precursors and alkali activators to employ and the regionalised practices adopted (i.e., transportation, energy sources, and data on raw materials). In light of the available literature, increasing attention to incorporating alternative alkali activators and precursors by utilising agricultural and industrial by-products and/or waste seems to be a viable option for optimising the balance between AABs’ technical, environmental, and economic performance. With regard to improving the circularity practices in this sector, employing construction and demolition waste as raw materials has been acknowledged as a feasible strategy. Full article
Show Figures

Figure 1

16 pages, 3732 KiB  
Article
Life Cycle Assessment of the Sustainability of Alkali-Activated Binders
by Mohammad Alhassan, Ayah Alkhawaldeh, Nour Betoush, Mohammad Alkhawaldeh, Ghasan Fahim Huseien, Layla Amaireh and Ahmad Elrefae
Biomimetics 2023, 8(1), 58; https://doi.org/10.3390/biomimetics8010058 - 1 Feb 2023
Cited by 26 | Viewed by 3585
Abstract
Limiting the consumption of nonrenewable resources and minimizing waste production and associated gas emissions are the main priority of the construction sector to achieve a sustainable future. This study investigates the sustainability performance of newly developed binders known as alkali-activated binders (AABs). These [...] Read more.
Limiting the consumption of nonrenewable resources and minimizing waste production and associated gas emissions are the main priority of the construction sector to achieve a sustainable future. This study investigates the sustainability performance of newly developed binders known as alkali-activated binders (AABs). These AABs work satisfactorily in creating and enhancing the concept of greenhouse construction in accordance with sustainability standards. These novel binders are founded on the notion of utilizing ashes from mining and quarrying wastes as raw materials for hazardous and radioactive waste treatment. The life cycle assessment, which depicts material life from the extraction of raw materials through the destruction stage of the structure, is one of the most essential sustainability factors. A recent use for AAB has been created, such as the use of hybrid cement, which is made by combining AAB with ordinary Portland cement (OPC). These binders are a successful answer to a green building alternative if the techniques used to make them do not have an unacceptable negative impact on the environment, human health, or resource depletion. The Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) software was employed for choosing the optimal materials’ alternative depending on the available criteria. The results revealed that AAB concrete provided a more ecologically friendly alternative than OPC concrete, higher strength for comparable water/binder ratio, and better performance in terms of embodied energy, resistance to freeze–thaw cycles, high temperature resistance, and mass loss due to acid attack and abrasion. Full article
(This article belongs to the Special Issue Bioinspired Materials)
Show Figures

Figure 1

32 pages, 15390 KiB  
Article
High-Temperature, Bond, and Environmental Impact Assessment of Alkali-Activated Concrete (AAC)
by Kruthi Kiran Ramagiri, Patricia Kara De Maeijer and Arkamitra Kar
Infrastructures 2022, 7(9), 119; https://doi.org/10.3390/infrastructures7090119 - 8 Sep 2022
Cited by 11 | Viewed by 3441
Abstract
Alkali-activated binders (AABs) offer the opportunity to upcycle a variety of residues into products that can have added value. Although AABs are reported to have a superior high-temperature performance, their thermal behavior is heavily governed by their microstructure. The present study, therefore, evaluates [...] Read more.
Alkali-activated binders (AABs) offer the opportunity to upcycle a variety of residues into products that can have added value. Although AABs are reported to have a superior high-temperature performance, their thermal behavior is heavily governed by their microstructure. The present study, therefore, evaluates the effect of varying fly ash:slag ratios, activator modulus (Ms), and high temperatures on the microstructure of AAB using X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy coupled with energy-dispersive spectroscopy. Furthermore, the mechanical properties of alkali-activated concrete (AAC) are investigated through compressive, bond, flexural, and split tensile strengths. A life cycle assessment of AAC is performed using the ReCiPe 2016 methodology. The results from microstructural experiments show the formation of new crystalline phases and decomposition of reaction products on high temperature exposure, and they correlate well with the observed mechanical performance. The 28-days compressive strength with slag content is enhanced by 151.8–339.7%. AAC with a fly ash:slag ratio of 70:30 and Ms of 1.4 is proposed as optimal from the obtained results. The results reveal that the biggest impact on climate change comes from transport (45.5–48.2%) and sodium silicate (26.7–35.6%). Full article
(This article belongs to the Special Issue IOCI 2022 Special Issue Session 4: Materials and Sustainability)
Show Figures

Figure 1

2 pages, 190 KiB  
Abstract
High-Temperature, Bond, and Environmental Impact Assessment of Alkali-Activated Concrete (AAC)
by Kruthi Kiran Ramagiri, Patricia Kara De Maeijer and Arkamitra Kar
Eng. Proc. 2022, 17(1), 24; https://doi.org/10.3390/engproc2022017024 - 2 May 2022
Viewed by 1021
Abstract
Alkali-activated binder (AAB) has been extensively researched in recent years due to its potential to replace Portland cement (PC) and lower carbon footprint [...] Full article
(This article belongs to the Proceedings of The 1st International Online Conference on Infrastructures)
22 pages, 4540 KiB  
Article
Experimental Investigation on Ambient-Cured One-Part Alkali-Activated Binders Using Combined High-Calcium Fly Ash (HCFA) and Ground Granulated Blast Furnace Slag (GGBS)
by Wee Teo, Kazutaka Shirai, Jee Hock Lim, Lynne B. Jack and Ehsan Nikbakht
Materials 2022, 15(4), 1612; https://doi.org/10.3390/ma15041612 - 21 Feb 2022
Cited by 14 | Viewed by 3139
Abstract
The challenges of handling user-hostile alkaline solutions in the conventional alkali-activated binders (AAB) have initiated the development of “just add water” or one-part solid-based AAB systems. This paper aims to present a preliminary investigation on the development of one-part ambient-cured alkali-activated binders produced [...] Read more.
The challenges of handling user-hostile alkaline solutions in the conventional alkali-activated binders (AAB) have initiated the development of “just add water” or one-part solid-based AAB systems. This paper aims to present a preliminary investigation on the development of one-part ambient-cured alkali-activated binders produced by synthesising high-calcium fly ash (HCFA) and ground granulated blast furnace slag (GGBS) using sodium metasilicate anhydrous. Three test series were conducted in this study to investigate the effects of GGBS/binder, activator/binder and water/binder ratios on the fresh and hardened properties of the one-part synthesis AAB system. It was found that the SiO2/Al2O3 molar ratio plays an important role in the attainment of compressive strength and limits the amounts of solid activators effective in contributing to the alkali-activation reaction process. The optimum SiO2/Al2O3 molar ratio was found between 3.20 and 3.30. The test results revealed that the optimum proportion between HCFA and GGBS was discovered at a GGBS/binder ratio of 0.50. The optimum activator/binder ratio was between 0.08 and 0.12, and it is recommended that the water/binder ratio should not exceed 0.50. This study demonstrated the potential of the one-part synthesis method in the production of alkali-activated binder for practical structural applications. Full article
(This article belongs to the Collection Alkali‐Activated Materials for Sustainable Construction)
Show Figures

Figure 1

28 pages, 7828 KiB  
Article
Strength, Shrinkage and Early Age Characteristics of One-Part Alkali-Activated Binders with High-Calcium Industrial Wastes, Solid Reagents and Fibers
by Dhruv Sood and Khandaker M. A. Hossain
J. Compos. Sci. 2021, 5(12), 315; https://doi.org/10.3390/jcs5120315 - 30 Nov 2021
Cited by 17 | Viewed by 3562
Abstract
Alkali-activated binders (AABs) are developed using a dry mixing method under ambient curing incorporating powder-form reagents/activators and industrial waste-based supplementary cementitious materials (SCMs) as precursors. The effects of binary and ternary combinations/proportions of SCMs, two types of powder-form reagents, fundamental chemical ratios (SiO [...] Read more.
Alkali-activated binders (AABs) are developed using a dry mixing method under ambient curing incorporating powder-form reagents/activators and industrial waste-based supplementary cementitious materials (SCMs) as precursors. The effects of binary and ternary combinations/proportions of SCMs, two types of powder-form reagents, fundamental chemical ratios (SiO2/Al2O3, Na2O/SiO2, CaO/SiO2, and Na2O/Al2O3), and incorporation of polyvinyl alcohol (PVA) fibers on fresh state and hardened characteristics of 16 AABs were investigated to assess their performance for finding suitable mix compositions. The mix composed of ternary SCM combination (25% fly-ash class C, 35% fly-ash class F, and 40% ground granulated blast furnace slag) with multi-component reagent combination (calcium hydroxide and sodium metasilicate = 1:2.5) was found to be the most optimum binder considering all properties with a 56 day compressive strength of 54 MPa. The addition of 2% v/v PVA fibers to binder compositions did not significantly impact the compressive strengths. However, it facilitated mitigating shrinkage/expansion strains through micro-confinement in both binary and ternary binders. This research bolsters the feasibility of producing ambient cured powder-based cement-free binders and fiber-reinforced, strain-hardening composites incorporating binary/ternary combinations of SCMs with desired fresh and hardened properties. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Composites Science in 2021)
Show Figures

Figure 1

21 pages, 4256 KiB  
Article
Cradle-to-Gate Life Cycle and Economic Assessment of Sustainable Concrete Mixes—Alkali-Activated Concrete (AAC) and Bacterial Concrete (BC)
by Kruthi Kiran Ramagiri, Ravali Chintha, Radha Kiranmaye Bandlamudi, Patricia Kara De Maeijer and Arkamitra Kar
Infrastructures 2021, 6(7), 104; https://doi.org/10.3390/infrastructures6070104 - 15 Jul 2021
Cited by 41 | Viewed by 6107
Abstract
The negative environmental impacts associated with the usage of Portland cement (PC) in concrete induced intensive research into finding sustainable alternative concrete mixes to obtain “green concrete”. Since the principal aim of developing such mixes is to reduce the environmental impact, it is [...] Read more.
The negative environmental impacts associated with the usage of Portland cement (PC) in concrete induced intensive research into finding sustainable alternative concrete mixes to obtain “green concrete”. Since the principal aim of developing such mixes is to reduce the environmental impact, it is imperative to conduct a comprehensive life cycle assessment (LCA). This paper examines three different types of sustainable concrete mixes, viz., alkali-activated concrete (AAC) with natural coarse aggregates, AAC with recycled coarse aggregates (RCA), and bacterial concrete (BC). A detailed environmental impact assessment of AAC with natural coarse aggregates, AAC with RCA, and BC is performed through a cradle-to-gate LCA using openLCA v.1.10.3 and compared versus PC concrete (PCC) of equivalent strength. The results show that transportation and sodium silicate in AAC mixes and PC in BC mixes contribute the most to the environmental impact. The global warming potential (GWP) of PCC is 1.4–2 times higher than other mixes. Bacterial concrete without nutrients had the lowest environmental impact of all the evaluated mixes on all damage categories, both at the midpoint (except GWP) and endpoint assessment levels. AAC and BC mixes are more expensive than PCC by 98.8–159.1% and 21.8–54.3%, respectively. Full article
(This article belongs to the Special Issue Innovative Solutions for Concrete Applications)
Show Figures

Graphical abstract

Back to TopTop