Mechanical Strength, Mineralogical Characteristics and Leaching Behavior of Iron Ore Tailings Stabilized with Alkali-Activated Rice Husk Ash and Eggshell Lime Binder
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Approach
2.2. Materials
2.3. Experimental Program
2.4. Molding and Curing Procedures
2.5. Unconfined Compressive Strength (UCS) Test
2.6. Microstructural Analysis
2.7. Leaching Test
3. Results
3.1. Mechanical Behavior
3.2. Mineralogical Behavior
3.3. Leaching Behavior
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
IOT | Iron Ore Tailings |
ABB | Alkali-activated Binders |
HEL | Hydrated Eggshell Lime |
UCS | Unconfined Compressive Strength |
XRD | X-ray Diffraction |
FTIR | Fourier-transform Infrared |
References
- Nishijima, M.; Rocha, F.F. An Economic Investigation of the Dengue Incidence as a Result of a Tailings Dam Accident in Brazil. J. Environ. Manag. 2020, 253, 109748. [Google Scholar] [CrossRef] [PubMed]
- IBRAM. Instituto Brasileiro de Mineração Mineração Em Números; IBRAM: Belo Horizonte, Brazil, 2023. [Google Scholar]
- Senado Federal Eco Senado. Available online: https://www12.senado.leg.br/tv/programas/ecosenado/2023/10/responsavel-por-4-do-pib-mineracao-encontra-maneiras-de-ser-mais-sustentavel-no-brasil (accessed on 11 August 2024).
- Nadig, S. Managing Mining’s Environmental Waste. Available online: https://www.mining-technology.com/features/environmental-waste-management/?cf-view (accessed on 11 August 2024).
- Saldanha, R.B.; Caicedo, A.M.L.; de Araújo, M.T.; Scheuermann Filho, H.C.; Moncaleano, C.J.; Silva, J.P.S.; Consoli, N.C. Potential Use of Iron Ore Tailings for Binder Production: A Life Cycle Assessment. Constr. Build. Mater. 2023, 365, 130008. [Google Scholar] [CrossRef]
- Consoli, N.C.; Vogt, J.C.; Silva, J.P.S.; Chaves, H.M.; Filho, H.C.S.; Moreira, E.B.; Lotero, A. Behaviour of Compacted Filtered Iron Ore Tailings–Portland Cement Blends: New Brazilian Trend for Tailings Disposal by Stacking. Appl. Sci. 2022, 12, 836. [Google Scholar] [CrossRef]
- Leão, S.R.; dos Santos Santiago, A.M. Tailings Dam Scenario: Knowing to Avoid New Catastrophes. Ambiente Soc. 2022, 25, 1–20. [Google Scholar] [CrossRef]
- Servi, S.; Lotero, A.; Silva, J.P.S.; Bastos, C.; Consoli, N.C. Mechanical Response of Filtered and Compacted Iron Ore Tailings with Different Cementing Agents: Focus on Tailings-Binder Mixtures Disposal by Stacking. Constr. Build. Mater. 2022, 349, 128770. [Google Scholar] [CrossRef]
- Franks, D.M.; Stringer, M.; Torres-Cruz, L.A.; Baker, E.; Valenta, R.; Thygesen, K.; Matthews, A.; Howchin, J.; Barrie, S. Tailings Facility Disclosures Reveal Stability Risks. Sci. Rep. 2021, 11, 5353. [Google Scholar] [CrossRef]
- Oldecop, L.A.; Rodari, G.J. Unsaturated Mine Tailings Disposal. Soils Rocks 2021, 44, 1–12. [Google Scholar] [CrossRef]
- Schatzmayr Welp Sá, T.; Oda, S.; Karla Castelo Branco Louback Machado Balthar, V.; Dias Toledo Filho, R. Use of Iron Ore Tailings and Sediments on Pavement Structure. Constr. Build. Mater. 2022, 342, 128072. [Google Scholar] [CrossRef]
- de Oliveira, M.; de Oliveira, G.V.; Moura, B.F. Monitoramento Através de Sensores Das Emissões de Gases Do Efeito Estufa Na Indústria Cimenteira: Uma Revisão. Braz. J. Prod. Eng. 2023, 9, 51–59. [Google Scholar] [CrossRef]
- Bao, J.; Wang, L.; Xiao, M. Changes in Speciation and Leaching Behaviors of Heavy Metals in Dredged Sediment Solidified/Stabilized with Various Materials. Environ. Sci. Pollut. Res. 2016, 23, 8294–8301. [Google Scholar] [CrossRef]
- An, X.; Zuo, D.; Wang, F.; Liang, C. Investigation on Stabilization/Solidification Characteristics of Lead-Contaminated Soil Using Innovative Composite Model of Cement and Soda Residue. Environ. Earth Sci. 2022, 81, 508. [Google Scholar] [CrossRef]
- Khoeurn, K.; Sasaki, A.; Tomiyama, S.; Igarashi, T. Distribution of Zinc, Copper, and Iron in the Tailings Dam of an Abandoned Mine in Shimokawa, Hokkaido, Japan. Mine Water Environ. 2019, 38, 119–129. [Google Scholar] [CrossRef]
- Bruschi, G.J.; dos Santos, C.P.; Levandoski, W.M.K.; Ferrazzo, S.T.; Korf, E.P.; Saldanha, R.B.; Consoli, N.C. Leaching Assessment of Cemented Bauxite Tailings through Wetting and Drying Cycles of Durability Test. Environ. Sci. Pollut. Res. 2022, 29, 59247–59262. [Google Scholar] [CrossRef]
- Pereira dos Santos, C.; Bruschi, G.J.; Mattos, J.R.G.; Consoli, N.C. Stabilization of Gold Mining Tailings with Alkali-Activated Carbide Lime and Sugarcane Bagasse Ash. Transp. Geotech. 2022, 32, 100704. [Google Scholar] [CrossRef]
- Pan, Z.; Zhang, C.; Li, Y.; Yang, C. Solidification/Stabilization of Gold Ore Tailings Powder Using Sustainable Waste-Based Composite Geopolymer. Eng. Geol. 2022, 309, 106793. [Google Scholar] [CrossRef]
- Akinyemi, B.A.; Alaba, P.A.; Rashedi, A. Selected Performance of Alkali-Activated Mine Tailings as Cementitious Composites: A Review. J. Build. Eng. 2022, 50, 104154. [Google Scholar] [CrossRef]
- He, X.; Yuhua, Z.; Qaidi, S.; Isleem, H.F.; Zaid, O.; Althoey, F.; Ahmad, J. Mine Tailings-Based Geopolymers: A Comprehensive Review. Ceram. Int. 2022, 48, 24192–24212. [Google Scholar] [CrossRef]
- Zhang, D.; Cao, Z.; Zhang, T.; Su, X. Effect of Carbonation on Leaching Behavior, Engineering Properties and Microstructure of Cement-Stabilized Lead-Contaminated Soils. Environ. Earth Sci. 2017, 76, 724. [Google Scholar] [CrossRef]
- Provis, J.L. Alkali-Activated Materials. Cem. Concr. Res. 2018, 114, 40–48. [Google Scholar] [CrossRef]
- Cristelo, N.; Glendinning, S.; Fernandes, L.; Pinto, A.T. Effects of Alkaline-Activated Fly Ash and Portland Cement on Soft Soil Stabilisation. Acta Geotech. 2013, 8, 395–405. [Google Scholar] [CrossRef]
- Levandoski, W.M.K.; Ferrazzo, S.T.; Bruschi, G.J.; Consoli, N.C.; Korf, E.P. Mechanical and Microstructural Properties of Iron Mining Tailings Stabilized with Alkali-Activated Binder Produced from Agro-Industrial Wastes. Sci. Rep. 2023, 13, 15754. [Google Scholar] [CrossRef] [PubMed]
- Ferrazzo, S.T.; Tonini de Araújo, M.; Bruschi, G.J.; Korf, E.P.; Levandoski, W.M.K.; Pereira dos Santos, C.; Consoli, N.C. Metal Encapsulation of Waste Foundry Sand Stabilized with Alkali-Activated Binder: Batch and Column Leaching Tests. J. Environ. Manag. 2023, 348, 119287. [Google Scholar] [CrossRef] [PubMed]
- Levandoski, W.M.K.; Ferrazzo, S.T.; Piovesan, M.A.; Bruschi, G.J.; Consoli, N.C.; Korf, E.P. Long-Term Performance: Strength and Metal Encapsulation in Alkali-Activated Iron Ore Tailings. Environ. Sci. Pollut. Res. 2024, 31, 47071–47083. [Google Scholar] [CrossRef]
- Kiventerä, J.; Sreenivasan, H.; Cheeseman, C.; Kinnunen, P.; Illikainen, M. Immobilization of Sulfates and Heavy Metals in Gold Mine Tailings by Sodium Silicate and Hydrated Lime. J. Environ. Chem. Eng. 2018, 6, 6530–6536. [Google Scholar] [CrossRef]
- Pelisser, G.; Ferrazzo, S.T.; Mota, J.D.; dos Santos, C.P.; Pelisser, C.; Rosa, F.D.; Korf, E.P. Rice Husk Ash-Carbide Lime as an Alternative Binder for Waste Foundry Sand Stabilization. Environ. Sci. Pollut. Res. 2023, 30, 42176–42191. [Google Scholar] [CrossRef]
- Chen, R.; Congress, S.S.C.; Cai, G.; Duan, W.; Liu, S. Sustainable Utilization of Biomass Waste-Rice Husk Ash as a New Solidified Material of Soil in Geotechnical Engineering: A Review. Constr. Build. Mater. 2021, 292, 123219. [Google Scholar] [CrossRef]
- Consoli, N.; Saldanha, R.; Lotero, A.; Scheuermann Filho, H.C.; Moncaleano, C. Eggshell Produced Limes: Innovative Materials for Soil Stabilization. J. Mater. Civ. Eng. 2020, 32, 06020018. [Google Scholar] [CrossRef]
- Tonini de Araújo, M.; Tonatto Ferrazzo, S.; Jordi Bruschi, G.J.; Consoli, N.C. Mechanical and Environmental Performance of Eggshell Lime for Expansive Soils Improvement. Transp. Geotech. 2021, 31, 100681. [Google Scholar] [CrossRef]
- Pompermaier, C.L.; Ferrazzo, S.T.; Levandoski, W.M.K.; Bruschi, G.J.; Prietto, P.D.M.; Korf, E.P. Stabilization of Waste Foundry Sand with Alkali-Activated Binder: Mechanical Behavior, Microstructure and Leaching. Constr. Build. Mater. 2024, 444, 137772. [Google Scholar] [CrossRef]
- Reis, J.B.; Pelisser, G.; Levandoski, W.M.K.; Ferrazzo, S.T.; Mota, J.D.; Silveira, A.A.; Korf, E.P. Experimental Investigation of Binder Based on Rice Husk Ash and Eggshell Lime on Soil Stabilization under Acidic Attack. Sci. Rep. 2022, 12, 7542. [Google Scholar] [CrossRef]
- ABNT NBR 10004; Resíduos Sólidos—Classificação. Associação Brasileira de Normas Técnicas (ABNT): Rio Janeiro, Brazil, 2004.
- Montgomery, D.; St, C. Design and Analysis of Experiments, 9th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2022; ISBN 9781119113478 (PBK)/9781119299455 (EVALC). [Google Scholar]
- Consoli, N.C.; Rosa, A.D.; Saldanha, R.B. Parameters Controlling Strength of Industrial Waste-Lime Amended Soil. Soils Found. 2011, 51, 265–273. [Google Scholar] [CrossRef]
- ASTM D2166-16; Standard Test Method for Unconfined Compressive Strength of Cohesive Soil. ASTM International: West Conshohocken, PA, USA, 2016.
- ABNT NBR 10005; Procedimento Para Obtenção de Extrato Lixiviado de Resíduos Sólidos. Associação Brasileira de Normas Técnicas (ABNT): Rio Janeiro, Brazil, 2004; Volume 16.
- USEPA. 1992 Method 1311: Toxicity Characteristic Leaching Procedure; US Environmental Protection Agency: Boston, MA, USA, 1992.
- CONAMA—CONSELHO NACIONAL DE MEIO AMBIENTE. Resolução nº 460, de 30 de Dezembro de 2013. Altera a Resolução no 420, de 28 de Dezembro de 2009, do Conselho Nacional do Meio Ambiente-CONAMA, que Dispõe Sobre Critérios e Valores Orientadores de Qualidade do solo Quanto à Presença de Substâncias Químicas e dá Outras Providências. Diário Oficial da República Federativa do Brasil, Brasília, DF, 31 dez. 2013. Available online: https://conama.mma.gov.br/?option=com_sisconama&task=arquivo.download&id=676 (accessed on 5 February 2025).
- Van Volkshuisvesting, M. Circular on Target Values and Intervention Values for Soil Remediation-Dutch Target and Intervention Values; Netherlands Government Gazette: Amsterdam, The Netherlands, 2000.
- USEPA. 2022 Ground Water and Drinking Water: National Primary Drinking Water Regulations [WWW Document]. Available online: https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations (accessed on 4 February 2025).
- Bruschi, G.J.; dos Santos, C.P.; Tonini de Araújo, M.; Ferrazzo, S.T.; Marques, S.F.V.; Consoli, N.C. Green Stabilization of Bauxite Tailings: Mechanical Study on Alkali-Activated Materials. J. Mater. Civ. Eng. 2021, 33, 06021007. [Google Scholar] [CrossRef]
- Garcia-Lodeiro, I.; Palomo, A.; Fernández-Jiménez, A. An Overview of the Chemistry of Alkali-Activated Cement-Based Binders. In Handbook of Alkali-Activated Cements, Mortars and Concretes; Elsevier Inc.: Amsterdam, The Netherlands, 2015; pp. 19–47. ISBN 9781782422884. [Google Scholar]
- Carvalho, J.V.d.A.; Wagner, A.C.; Scheuermann Filho, H.C.; Chaves, H.M.; Silva, J.P.S.; Delgado, B.G.; Consoli, N.C. Evaluation of Strength Parameters for Application in Cemented Iron Ore Tailings Stacks. Indian Geotech. J. 2023, 53, 775–788. [Google Scholar] [CrossRef]
- Consoli, N.C.; Collatto, D.; de Azambuja Carvalho, J.V.; Wagner, A.C.; de Sousa Silva, J.P.; Marçal de Sousa, G.; Scheuermann Filho, H.C. Resilience of Compacted Iron Ore Tailings-Binder Blends for Dry Stacking. Geotech. Geol. Eng. 2025, 43, 164. [Google Scholar] [CrossRef]
- U.S. Department of Defense. UFC 3-250-11: Soil Stabilization and Modification for Pavements; U.S. Department of Defense: Washington, DC, USA, 2020. Available online: https://www.wbdg.org/FFC/DOD/UFC/ufc_3_250_11_2020.pdf (accessed on 6 February 2025).
- Ferrazzo, S.T.; de Araújo, M.T.; Bruschi, G.J.; Chaves, H.M.; Korf, E.P.; Consoli, N.C. Mechanical and Environmental Behavior of Waste Foundry Sand Stabilized with Alkali-Activated Sugar Cane Bagasse Ash-Eggshell Lime Binder. Constr. Build. Mater. 2023, 383, 131313. [Google Scholar] [CrossRef]
- Ferreira, F.A.; Desir, J.M.; de Lima, G.E.S.; Pedroti, L.G.; Franco de Carvalho, J.M.; Lotero, A.; Consoli, N.C. Evaluation of Mechanical and Microstructural Properties of Eggshell Lime/Rice Husk Ash Alkali-Activated Cement. Constr. Build. Mater. 2023, 364, 129931. [Google Scholar] [CrossRef]
- Li, W.; Wang, J.; Chen, Y.; Li, R.; Xiao, H. Treating Sulfate-Bearing Soil by Using Sodium Silicate and NaOH-Activated Ground Granulated Blast-Furnace Slag. Acta Geotech. 2024, 19, 3129–3138. [Google Scholar] [CrossRef]
- García Lodeiro, I.; Fernández-Jimenez, A.; Palomo, A.; Macphee, D.E. Effect on Fresh C-S-H Gels of the Simultaneous Addition of Alkali and Aluminium. Cem. Concr. Res. 2010, 40, 27–32. [Google Scholar] [CrossRef]
- Garcia-Lodeiro, I.; Palomo, A.; Fernández-Jiménez, A.; MacPhee, D.E. Compatibility Studies between N-A-S-H and C-A-S-H Gels. Study in the Ternary Diagram Na2O-CaO-Al2O3-SiO2-H2O. Cem. Concr. Res. 2011, 41, 923–931. [Google Scholar] [CrossRef]
- Zhou, G.; Li, H.; Ozturk, I.; Ullah, S. Shocks in Agricultural Productivity and CO2 Emissions: New Environmental Challenges for China in the Green Economy. Econ. Res.-Ekon. Istraz. 2022, 35, 5790–5806. [Google Scholar] [CrossRef]
- Queiroz, L.; Batista, L.; Souza, L.; Lima, M.; Danieli, S.; Bruschi, G.; Bergmann, C. Alkali-Activated System of Carbide Lime and Rice Husk for Granular Soil Stabilization. Proc. Inst. Civ. Eng. Ground Improv. 2022, 176, 279–294. [Google Scholar] [CrossRef]
- Chukanov, N.V. Infrared Spectra of Mineral Species: Extended Library; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013; ISBN 9400771282. [Google Scholar]
- Kaze, R.C.; Beleuk à Moungam, L.M.; Fonkwe Djouka, M.L.; Nana, A.; Kamseu, E.; Chinje Melo, U.F.; Leonelli, C. The Corrosion of Kaolinite by Iron Minerals and the Effects on Geopolymerization. Appl. Clay Sci. 2017, 138, 48–62. [Google Scholar] [CrossRef]
- Moukannaa, S.; Loutou, M.; Benzaazoua, M.; Vitola, L.; Alami, J.; Hakkou, R. Recycling of Phosphate Mine Tailings for the Production of Geopolymers. J. Clean. Prod. 2018, 185, 891–903. [Google Scholar] [CrossRef]
- García-Lodeiro, I.; Fernández-Jiménez, A.; Blanco, M.T.; Palomo, A. FTIR Study of the Sol–Gel Synthesis of Cementitious Gels: C–S–H and N–A–S–H. J. Solgel Sci. Technol. 2008, 45, 63–72. [Google Scholar] [CrossRef]
- Srinivasamurthy, L.; Chevali, V.S.; Zhang, Z.; Wang, H. Effect of Fly Ash to Slag Ratio and Na2O Content on Leaching Behaviour of Fly Ash/Slag Based Alkali Activated Materials. Constr. Build. Mater. 2023, 383, 131234. [Google Scholar] [CrossRef]
- Sun, K.; Ali, H.A.; Xuan, D.; Poon, C.S. Sulfuric Acid Resistance Behaviour of Alkali-Activated Slag and Waste Glass Powder Blended Precursors. Cem. Concr. Compos. 2024, 145, 105319. [Google Scholar] [CrossRef]
- Nkwaju, R.Y.; Nouping, J.N.F.; Bachirou, S.; Abo, T.M.; Deutou, J.G.N.; Djobo, J.N.Y. Effective Stabilization of Cadmium and Copper in Iron-Rich Laterite-Based Geopolymers and Influence on Physical Properties. Materials 2023, 16, 7605. [Google Scholar] [CrossRef]
- Feng, Y.S.; Zhou, S.J.; Xia, W.Y.; Du, Y.J. Solidify/Stabilise a Heavy Metal-Contaminated Soil Using a Novel Steel Slag-Based Binder. Environ. Geotech. 2020, 10, 303–318. [Google Scholar] [CrossRef]
- Komonweeraket, K.; Cetin, B.; Aydilek, A.H.; Benson, C.H.; Edil, T.B. Effects of PH on the Leaching Mechanisms of Elements from Fly Ash Mixed Soils. Fuel 2015, 140, 788–802. [Google Scholar] [CrossRef]
- Mahedi, M.; Cetin, B.; Dayioglu, A.Y. Effect of Cement Incorporation on the Leaching Characteristics of Elements from Fly Ash and Slag Treated Soils. J. Environ. Manag. 2020, 253, 109720. [Google Scholar] [CrossRef]
- Cornelis, G.; Johnson, C.A.; Gerven, T.V.; Vandecasteele, C. Leaching Mechanisms of Oxyanionic Metalloid and Metal Species in Alkaline Solid Wastes: A Review. Appl. Geochem. 2008, 23, 955–976. [Google Scholar] [CrossRef]
- Giels, M.; Iacobescu, R.I.; Cappuyns, V.; Pontikes, Y.; Elsen, J. Understanding the Leaching Behavior of Inorganic Polymers Made of Iron Rich Slags. J. Clean. Prod. 2019, 238, 117736. [Google Scholar] [CrossRef]
Factors | Levels | ||
---|---|---|---|
Curing time (days) | 7 | 17.5 | 28 |
Binder content (%) | 15 | 20 | 25 |
Dry unit weight (kN/m3) | 13.3 | 14.3 | 15.3 |
Moisture content (%) | 22.8 |
Metal | Raw Materials | IOT+AAB | NBR 10004 Annex 1 | EPA 1 | CONAMA 460 2 | Dutch List 2 | EPA 3 | ||
---|---|---|---|---|---|---|---|---|---|
IOT (Levandoski et al., 2023) [24] | RHA (Reis et al., 2022) [33] | 7 d | 28 d | ||||||
Ag | ❋ | ❋ | ❋ | ❋ | 5 | 5 | 0.5 | – | – |
As | ❋ | ❋ | ❋ | ❋ | 1 | 5 | 0.01 | 0.01 | 0.01 |
Ba | ❋ | 0.55 | ❋ | ❋ | 70 | 100 | 0.7 | 0.05 | 2 |
Cd | ❋ | ❋ | 0.01 | 0.01 | 0.5 | 0.5 | 0.005 | 0.0004 | 0.005 |
Cr | ❋ | ❋ | 0.01 | 0.03 | 5 | 5 | 0.05 | 0.001 | 0.1 |
Fe | ❋ | ❋ | ❋ | ❋ | – | – | 2.45 | – | – |
Hg | ❋ | ❋ | ❋ | ❋ | 0.1 | 0.2 | 0.001 | 0.00005 | 0.002 |
Pb | ❋ | ❋ | ❋ | ❋ | 1 | 5 | 0.01 | – | 0.015 |
Se | ❋ | ❋ | ❋ | ❋ | 1 | 1 | 0.01 | 0.015 | 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kubiaki Levandoski, W.M.; Mota, J.D.; Menegolla, C.; Tonatto Ferrazzo, S.; Bruschi, G.J.; Pavan Korf, E. Mechanical Strength, Mineralogical Characteristics and Leaching Behavior of Iron Ore Tailings Stabilized with Alkali-Activated Rice Husk Ash and Eggshell Lime Binder. Minerals 2025, 15, 567. https://doi.org/10.3390/min15060567
Kubiaki Levandoski WM, Mota JD, Menegolla C, Tonatto Ferrazzo S, Bruschi GJ, Pavan Korf E. Mechanical Strength, Mineralogical Characteristics and Leaching Behavior of Iron Ore Tailings Stabilized with Alkali-Activated Rice Husk Ash and Eggshell Lime Binder. Minerals. 2025; 15(6):567. https://doi.org/10.3390/min15060567
Chicago/Turabian StyleKubiaki Levandoski, William Mateus, Jonas Duarte Mota, Carolina Menegolla, Suéllen Tonatto Ferrazzo, Giovani Jordi Bruschi, and Eduardo Pavan Korf. 2025. "Mechanical Strength, Mineralogical Characteristics and Leaching Behavior of Iron Ore Tailings Stabilized with Alkali-Activated Rice Husk Ash and Eggshell Lime Binder" Minerals 15, no. 6: 567. https://doi.org/10.3390/min15060567
APA StyleKubiaki Levandoski, W. M., Mota, J. D., Menegolla, C., Tonatto Ferrazzo, S., Bruschi, G. J., & Pavan Korf, E. (2025). Mechanical Strength, Mineralogical Characteristics and Leaching Behavior of Iron Ore Tailings Stabilized with Alkali-Activated Rice Husk Ash and Eggshell Lime Binder. Minerals, 15(6), 567. https://doi.org/10.3390/min15060567