Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (34)

Search Parameters:
Keywords = air-launched vehicle

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4275 KiB  
Article
Novel Hybrid Aquatic–Aerial Vehicle to Survey in High Sea States: Initial Flow Dynamics on Dive and Breach
by Matthew J. Ericksen, Keith F. Joiner, Nicholas J. Lawson, Andrew Truslove, Georgia Warren, Jisheng Zhao and Ahmed Swidan
J. Mar. Sci. Eng. 2025, 13(7), 1283; https://doi.org/10.3390/jmse13071283 - 30 Jun 2025
Viewed by 367
Abstract
Few studies have examined Hybrid Aquatic–Aerial Vehicles (HAAVs), autonomous vehicles designed to operate in both air and water, especially those that are aircraft-launched and recovered, with a variable-sweep design to free dive into a body of water and breach under buoyant and propulsive [...] Read more.
Few studies have examined Hybrid Aquatic–Aerial Vehicles (HAAVs), autonomous vehicles designed to operate in both air and water, especially those that are aircraft-launched and recovered, with a variable-sweep design to free dive into a body of water and breach under buoyant and propulsive force to re-achieve flight. The novel design research examines the viability of a recoverable sonar-search child aircraft for maritime patrol, one which can overcome the prohibitive sea state limitations of all current HAAV designs in the research literature. This paper reports on the analysis from computational fluid dynamic (CFD) simulations of such an HAAV diving into static seawater at low speeds due to the reverse thrust of two retractable electric-ducted fans (EDFs) and its subsequent breach back into flight initially using a fast buoyancy engine developed for deep-sea research vessels. The HAAV model entered the water column at speeds around 10 ms−1 and exited at 5 ms−1 under various buoyancy cases, normal to the surface. Results revealed that impact force magnitudes varied with entry speed and were more acute according to vehicle mass, while a sufficient portion of the fuselage was able to clear typical wave heights during its breach for its EDF propulsors and wings to protract unhindered. Examining the medium transition dynamics of such a novel HAAV has provided insight into the structural, propulsive, buoyancy, and control requirements for future conceptual design iterations. Research is now focused on validating these unperturbed CFD dive and breach cases with pool experiments before then parametrically and numerically examining the effects of realistic ocean sea states. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

14 pages, 7431 KiB  
Article
Vertical Temperature Profile Test by Means of Using UAV: An Experimental Methodology in a Karst Sinkhole of the Apulia Region (Italy)
by Cosimo Cagnazzo and Sara Angelini
Meteorology 2025, 4(2), 15; https://doi.org/10.3390/meteorology4020015 - 31 May 2025
Viewed by 688
Abstract
Atmospheric parameter acquisition along the vertical profile of the troposphere across different locations on the Earth is of primary importance in gaining knowledge of the evolution of large-scale meteorological systems and the relative movements of air masses. Normally, this happens thanks to the [...] Read more.
Atmospheric parameter acquisition along the vertical profile of the troposphere across different locations on the Earth is of primary importance in gaining knowledge of the evolution of large-scale meteorological systems and the relative movements of air masses. Normally, this happens thanks to the launch, into the atmosphere, of radiosondes connected to balloons filled with helium gas. However, on a small scale, and in particular geomorphological contexts, different and peculiar meteorological situations may arise, in which the air column in the lower layers can behave differently from normal, giving rise to the so-called thermal inversions. In this work, in a particular sinkhole in the Apulia region, the use of a multi-rotor UAV (Unmanned Aerial Vehicle) equipped with a temperature data logger was tested. The flight along the vertical, starting from the lowest point of the sinkhole, made it possible to archive the temperature data of the air column in the first 80 m of altitude. The data validation confirmed the goodness of the UAV acquisitions and their subsequent processing made it possible to extrapolate the vertical temperature profile of the sinkhole during the winter thermal inversion phenomenon. In addition to confirming the predisposition of this sinkhole to strong thermal inversions, the preliminary results of this work have highlighted the efficiency of this new methodology. It has proved to be useful in assessing small-scale vertical profiles of atmospheric variables in a relatively low altitude range. Furthermore, this methodology can represent a strong scientific and technological innovation applicable in the meteorological field and in that of environmental monitoring. Full article
(This article belongs to the Special Issue Early Career Scientists' (ECS) Contributions to Meteorology (2024))
Show Figures

Figure 1

22 pages, 4330 KiB  
Article
Assessing the Polarising Impacts of Low-Traffic Neighbourhoods: A Community Perspective from Birmingham, UK
by Isabelle Whelan, Carlo Luiu and Francis D. Pope
Int. J. Environ. Res. Public Health 2024, 21(12), 1638; https://doi.org/10.3390/ijerph21121638 - 9 Dec 2024
Cited by 1 | Viewed by 2061
Abstract
Globally, the transport sector is a major contributor to air pollution. Currently, in the UK, vehicle emissions contribute significant amounts of nitrogen oxide (NOx) and particulate matter (PM) pollution in urban areas. Low-emission-zone policies have been used as an intervention to tackle air [...] Read more.
Globally, the transport sector is a major contributor to air pollution. Currently, in the UK, vehicle emissions contribute significant amounts of nitrogen oxide (NOx) and particulate matter (PM) pollution in urban areas. Low-emission-zone policies have been used as an intervention to tackle air pollution, and in this context, the UK launched the Low-Traffic Neighbourhood scheme. This study investigates the impacts of the Low-Traffic Neighbourhood in Kings Heath, Birmingham, UK, to evaluate its impact in reducing air pollution and local community perspectives about the scheme and perceived impacts on health and well-being. This study employs a mixed-method approach comprising an air-quality-monitoring assessment and a survey questionnaire involving 210 residents. The findings reveal an increase in active travel and a reduction in air pollution levels in the years after the implementation of the scheme, although the area is still non-compliant with the 2021 WHO air quality guidelines. Nonetheless, the scheme has a polarising effect and created a division within the local community about the overall scheme acceptance and spatial distribution of the scheme’s benefits. This study underscores the importance of comprehensive baseline data, long-term community engagement, and integration with broader urban planning initiatives to enhance the success of future Low-Neighbourhood Traffic schemes. Full article
(This article belongs to the Section Environmental Health)
Show Figures

Figure 1

25 pages, 11917 KiB  
Article
Multi-Phase Trajectory Planning for Wind Energy Harvesting in Air-Launched UAV Swarm Rendezvous and Formation Flight
by Xiangsheng Wang, Tielin Ma, Ligang Zhang, Nanxuan Qiao, Pu Xue and Jingcheng Fu
Drones 2024, 8(12), 709; https://doi.org/10.3390/drones8120709 - 28 Nov 2024
Cited by 1 | Viewed by 1409
Abstract
Small air-launched unmanned aerial vehicles (UAVs) face challenges in range and endurance due to their compact size and lightweight design. To address these issues, this paper introduces a multi-phase wind energy harvesting trajectory planning method designed to optimize the onboard electrical energy consumption [...] Read more.
Small air-launched unmanned aerial vehicles (UAVs) face challenges in range and endurance due to their compact size and lightweight design. To address these issues, this paper introduces a multi-phase wind energy harvesting trajectory planning method designed to optimize the onboard electrical energy consumption during rendezvous and formation flight of air-launched fixed-wing swarms. This method strategically manages gravitational potential energy from air-launch deployments and harvests wind energy that aligns with the UAV’s flight speed. We integrate wind energy harvesting strategies for single vehicles with the spatial–temporal coordination of the swarm system. Considering the wind effects into the trajectory planning allows UAVs to enhance their operational capabilities and extend mission duration without changes on the vehicle design. The trajectory planning method is formalized as an optimal control problem (OCP) that ensures spatial–temporal coordination, inter-vehicle collision avoidance, and incorporates a 3-degree of freedom kinematic model of UAVs, extending wind energy harvesting trajectory optimization from an individual UAV to swarm-level applications. The cost function is formulized to comprehensively evaluate electrical energy consumption, endurance, and range. Simulation results demonstrate significant energy savings in both low- and high-altitude mission scenarios. Efficient wind energy utilization can double the maximum formation rendezvous distance and even allow for rendezvous without electrical power consumption when the phase durations are extended reasonably. The subsequent formation flight phase exhibits a maximum endurance increase of 58%. This reduction in electrical energy consumption directly extends the range and endurance of air-launched swarm, thereby enhancing the mission capabilities of the swarm in subsequent flight. Full article
Show Figures

Figure 1

18 pages, 9233 KiB  
Article
Peregrine Falcon: Design and Experimentation of a Folding and Launchable Quadcopter Drone
by Guangxin Wu, Xinbiao Pei, Dong Wang, Lijun Nan, Dong Wang, Hejia Zhou and Yue Bai
Drones 2024, 8(10), 565; https://doi.org/10.3390/drones8100565 - 10 Oct 2024
Cited by 1 | Viewed by 2223
Abstract
This article describes a quadcopter drone with foldable arms, which we have named the Peregrine Falcon. It can take off from a moving vehicle by barrel launching and perform its mission in the air after autonomously spreading its arms. The design helps the [...] Read more.
This article describes a quadcopter drone with foldable arms, which we have named the Peregrine Falcon. It can take off from a moving vehicle by barrel launching and perform its mission in the air after autonomously spreading its arms. The design helps the drone to be put into operation quickly, which is a great advantage for applications in industries such as forest fire reconnaissance. This paper introduces the design process of the Peregrine Falcon from the aspects of structure, avionics and control algorithm, and proposes control compensation methods for the large attitude change generated during the barrel launching process and the vertical drift problem after impact, respectively. The stability and feasibility of the Peregrine Falcon in the static and dynamic launching process are verified by flying experiments. Full article
Show Figures

Figure 1

12 pages, 2260 KiB  
Article
Launching Point Estimation Using Inverse First-Order Pitch Programming
by Sungjin Cho, Taek Lyul Song and Hyeok-Jin Choi
Mathematics 2024, 12(18), 2953; https://doi.org/10.3390/math12182953 - 23 Sep 2024
Viewed by 867
Abstract
This paper presents an estimation of the launching points of unmanned aerial vehicles (UAVs) equipped with boosters. When UAVs are detected and tracked by sensors such as radars, the fast identification of vehicle launching points is needed for air traffic control and defense [...] Read more.
This paper presents an estimation of the launching points of unmanned aerial vehicles (UAVs) equipped with boosters. When UAVs are detected and tracked by sensors such as radars, the fast identification of vehicle launching points is needed for air traffic control and defense systems. When UAVs in a boosting phase are controlled by first-order pitch programming, this paper leverages inverse first-order pitch programming to analytically solve launching points. Furthermore, a two-point robust measurement selection (T-RMS) scheme is developed to reduce errors such as random noise and bias by utilizing multiple moving average filters. The proposed work is verified by various simulation results. Full article
(This article belongs to the Section E2: Control Theory and Mechanics)
Show Figures

Figure 1

18 pages, 40951 KiB  
Article
Effects of the 2024 Total Solar Eclipse on the Structure of the Planetary Boundary Layer: A Preliminary Analysis
by Robert Pasken, Richard Woodford, Jimmy Bergmann, Carter Hickel, Margaret Ideker, Riley Jackson, Jack Rotter and Benjamin Schaefer
Atmosphere 2024, 15(8), 1008; https://doi.org/10.3390/atmos15081008 - 21 Aug 2024
Cited by 1 | Viewed by 1393
Abstract
A total solar eclipse provides an unparalleled opportunity to study the changes in the atmosphere’s planetary boundary layer (PBL) due to changes in radiative heating. Although previous eclipse studies have demonstrated that significant changes occur, few studies have explored the evolution of these [...] Read more.
A total solar eclipse provides an unparalleled opportunity to study the changes in the atmosphere’s planetary boundary layer (PBL) due to changes in radiative heating. Although previous eclipse studies have demonstrated that significant changes occur, few studies have explored the evolution of these changes. To better understand the changes in the lowest layers of the PBL during an eclipse, a multi-sensor sampling approach was taken. Radiosonde launches were used to explore the depth of the column, while Unmanned Aerial Vehicles (UAVs) were used to document with high-resolution the brief changes in the vertical structure of the PBL caused by the eclipse. These changes highlighted differences from previous studies that relied solely on radiosonde and/or mesonet data alone. Higher-resolution sampling of the lower PBL showed a delay in the local vertical mixing as well as changes in the PBL height from pre- to post-eclipse. Slow responses were noted at the top of the PBL while very rapid changes to the PBL profile were captured in the near-surface layer. These changes highlighted differences from previous studies that relied solely on radiosonde and/or mesonet data alone. A preliminary analysis of the collected data highlighted a slow response to the eclipse near the top of the planetary boundary layer (radiosonde data) with very rapid changes noted in the near surface layer (UAV data). Preliminary results show that PBL heights remained nearly constant until well after third contact when a 35 hPa lowering of the PBL heights was observed and were limited to the lowest 25 hPa. The UAV soundings demonstrated the development of a strong inversion where the air below 990 hPa rapidly cooled with a nearly 1 °C drop in temperature observed. These observed changes raise interesting questions about how the lower and upper parts of the planetary boundary layer interact. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

19 pages, 2761 KiB  
Article
Driving Factors of NOx Emissions in China: Insights from Spatial Regression Analysis
by Mahmoud M. Abdelwahab, Ohood A. Shalaby, H. E. Semary and Mohamed R. Abonazel
Atmosphere 2024, 15(7), 793; https://doi.org/10.3390/atmos15070793 - 30 Jun 2024
Cited by 5 | Viewed by 2387
Abstract
China’s rapid industrialization and urbanization have led to significant nitrogen oxide (NOx) emissions, contributing to severe atmospheric pollution. Understanding the driving factors behind these emissions is crucial for effective pollution control and environmental management. Therefore, this study is an attempt to provide insights [...] Read more.
China’s rapid industrialization and urbanization have led to significant nitrogen oxide (NOx) emissions, contributing to severe atmospheric pollution. Understanding the driving factors behind these emissions is crucial for effective pollution control and environmental management. Therefore, this study is an attempt to provide insights into the influence of socioeconomic factors and explore spatial dependencies of NOx emissions in China in 2022 employing spatial regression models (SRMs). Among the SRMs considered, the spatial Durbin model (SDM) is identified as the most suitable for analyzing regional NOx emissions. The study highlights the importance of controlling electricity consumption and vehicle emissions for addressing air pollution in Chinese regions. Specifically, a one billion kilowatt-hour increase in electricity consumption leads to approximately 549.6 tons of NOx emissions, and an increase of 1000 vehicles in a region results in an average increase of 7113.4 tons of NOx emissions in the same region. Furthermore, per capita consumption expenditure (PCEXP) and research and development (R&D) expenditure exhibit negative direct and spillover impacts. Contrary to previous studies, this research finds that changes in urban population density do not have a significant direct or indirect effect on NOx emissions within the studied areas. Moreover, we conducted additional investigations to assess the effectiveness of government action plans in reducing NOx emissions. Specifically, we evaluated the impact of Phases 1 and 2 of the Clean Air Action Plan, launched in 2013 and 2018, respectively, on the socioeconomic drivers of NOx emissions. Therefore, the data were modeled for the years 2013 and 2017 and compared to the results obtained for 2022. The findings indicate that over the entire period (2013–2022), the emission controls mandated by the action plan resulted in significant reductions in the impact of many of the studied NOx drivers. In conclusion, based on the results, this study presents recommendations to mitigate NOx emissions. Full article
Show Figures

Figure 1

25 pages, 11392 KiB  
Article
Lift–Drag Performance of a New Unmanned Aerial Vehicle in Different Media and Ground Effect
by Wenhua Wang, Lijian Wang, Kedong Zhang and Yi Huang
J. Mar. Sci. Eng. 2024, 12(7), 1052; https://doi.org/10.3390/jmse12071052 - 22 Jun 2024
Cited by 1 | Viewed by 1590
Abstract
Water–air trans-media unmanned vehicle is a kind of aircraft, which can freely fly in the air, sail in the water and pass through free surface. For trans-media aircrafts, the development process from air–surface to air–underwater and from submarine-launched drive to autonomous drive is [...] Read more.
Water–air trans-media unmanned vehicle is a kind of aircraft, which can freely fly in the air, sail in the water and pass through free surface. For trans-media aircrafts, the development process from air–surface to air–underwater and from submarine-launched drive to autonomous drive is investigated. By analyzing the characteristic of manta ray, flying fish and existing aircraft, this paper proposes a new water–air trans-media unmanned vehicle with flat dish-airfoil-shaped main body and telescopic NACA-type wing. Then the numerical method to calculate the lift and drag forces is established and validated by the results of classic NACA cases. On this basis, the flow field around the new vehicle is numerically simulated, and its lift–drag performances in different media (air and water) and ground effect are analyzed, comparing it with a model inspired by the Blackwing Unmanned Aerial Vehicle (UAV). The findings illustrate the superior performance of the new vehicle in terms of lift and drag forces, offering an innovative design framework for water–air trans-media UAV applications. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

27 pages, 553 KiB  
Article
Impact of Higher Airspace Operations on Air Traffic in Europe
by Oliver Pohling, Lorenz Losensky, Sandro Lorenz and Sven Kaltenhäuser
Aerospace 2023, 10(10), 835; https://doi.org/10.3390/aerospace10100835 - 25 Sep 2023
Cited by 3 | Viewed by 2306
Abstract
Historically, higher airspace has been used for military exercises and as transit for space vehicles. Riding on commercial space operations’ coattails, more and more vehicles are under development that will make use of higher airspace resources. This will lead to increasing interactions with [...] Read more.
Historically, higher airspace has been used for military exercises and as transit for space vehicles. Riding on commercial space operations’ coattails, more and more vehicles are under development that will make use of higher airspace resources. This will lead to increasing interactions with conventional air traffic since these new vehicles will have to transit through lower airspaces. The management of these operations is necessary to ensure the safe and practicable shared usage of these airspaces. This paper outlines an assessment of the impact of higher airspace operations on conventional air traffic in Europe. Initially, a synthesis of possible use cases was performed, and demand scenarios were developed that served as input to a fast-time simulation. The impact on air traffic was measured by means of flight efficiency parameters. The simulation results showed that the impact is dependent on the type of operation. High-altitude platform system flights and orbital launches cause the largest deviations in flight distance, flight duration and fuel consumption. Higher airspace operation parameters, including location, time, and duration, strongly affect the impact on the conventional air traffic. Full article
(This article belongs to the Collection Air Transportation—Operations and Management)
Show Figures

Figure 1

18 pages, 13672 KiB  
Article
Numerical Analysis on Water-Exit Process of Submersible Aerial Vehicle under Different Launch Conditions
by Bing Liu, Xiaohan Chen, Enyi Li and Guigao Le
J. Mar. Sci. Eng. 2023, 11(4), 839; https://doi.org/10.3390/jmse11040839 - 15 Apr 2023
Cited by 6 | Viewed by 2345
Abstract
To study the influence of launch conditions and wave interference on the stability of submersible aerial vehicles at the water–air interface, a coupling model for water-exit motion of submersible aerial vehicles was established by using the RNG k-ε turbulence model and VOF method. [...] Read more.
To study the influence of launch conditions and wave interference on the stability of submersible aerial vehicles at the water–air interface, a coupling model for water-exit motion of submersible aerial vehicles was established by using the RNG k-ε turbulence model and VOF method. The water-exit processes of submersible aerial vehicles under different initial inclination angles and velocities were numerically simulated and the effects of initial inclination angle and velocity on the water-exit motion of submersible aerial vehicles were obtained. Based on the response surface function theory, a mathematical model for the motion stability of submersible aerial vehicles at the water–air interface was established, so that the submersible aerial vehicle’s pitch angle and velocity at the end of vehicle’s water-exit process, corresponding to any initial inclination angle and velocity, can be solved. The deviation between the simulated calculation result and the established fitting function model result was 2.7%. The minimum water-exit velocity of submarine aerial vehicles should be greater than 10.8 m/s. The research provides technical support for the trans-media motion stability analysis and hydrodynamic performance design of the submersible aerial vehicle. Full article
(This article belongs to the Special Issue Advances in Marine Applications of Computational Fluid Dynamics)
Show Figures

Figure 1

20 pages, 9545 KiB  
Article
Ground Test and Numerical Simulation of Aerodynamic Interference of the Marsupial UAS
by Huadong Li, Yiliang Liu, Daochun Li, Dawei Bie and Zi Kan
Aerospace 2023, 10(2), 175; https://doi.org/10.3390/aerospace10020175 - 14 Feb 2023
Cited by 7 | Viewed by 3027
Abstract
The marsupial unmanned aircraft system (UAS) consists of a large parent unmanned aerial vehicle (UAV) and multiple small children UAVs that can be launched and recovered in the air. The employment of marsupial UAS can expand the mission range of small UAVs and [...] Read more.
The marsupial unmanned aircraft system (UAS) consists of a large parent unmanned aerial vehicle (UAV) and multiple small children UAVs that can be launched and recovered in the air. The employment of marsupial UAS can expand the mission range of small UAVs and enhance the collaborative capabilities of small UAVs. However, the serious aerodynamic interference between the parent UAV and the child UAV will affect the flight safety during the launch and recovery process. In this paper, the interference characteristics of marsupial UAS is investigated through ground tests and CFD simulation. Ground tests compared the lift and power of the child UAV with and without parent UAV interference in different areas, and the simulation extended the experimental scope. Three specific interference regions above the parent UAV are defined, including the area above the rotors, the area above body and the transition area. In the first two aeras, the variation of the disturbed lift is more than 30% of the child UAV weight. In the transition aera, the child UAV will be subjected to significant lift variations and asymmetric moments. According to the interference characteristics of different regions, the safe flight boundaries and the appropriate paths of children UAVs are proposed. Full article
(This article belongs to the Collection Unmanned Aerial Systems)
Show Figures

Figure 1

24 pages, 8125 KiB  
Article
Real-Time Implementation of an Adaptive PID Controller for the Quadrotor MAV Embedded Flight Control System
by Aminurrashid Noordin, Mohd Ariffanan Mohd Basri and Zaharuddin Mohamed
Aerospace 2023, 10(1), 59; https://doi.org/10.3390/aerospace10010059 - 6 Jan 2023
Cited by 31 | Viewed by 6752
Abstract
This paper presents the real-time implementation of an altitude-embedded flight controller using proportional, integral, and derivative (PID) control, adaptive PID (APID) control, and adaptive PID control with a fuzzy compensator (APIDFC) for a micro air vehicle (MAV), specifically, for a Parrot Mambo Minidrone. [...] Read more.
This paper presents the real-time implementation of an altitude-embedded flight controller using proportional, integral, and derivative (PID) control, adaptive PID (APID) control, and adaptive PID control with a fuzzy compensator (APIDFC) for a micro air vehicle (MAV), specifically, for a Parrot Mambo Minidrone. In order to obtain robustness against disturbance, the adaptive mechanism, which was centered on the second-order sliding mode control, was applied to tune the classical parameters of the PID controller of the altitude controller. Additionally, a fuzzy compensator was introduced to diminish the existence of the chattering phenomena triggered by the application of the sliding mode control. Four simulation and experimental scenarios were conducted, which included hovering, as well as sine, square, and trapezium tracking. Moreover, the controller’s resilience was tested at 1.1 m above the ground by adding a mass of about 12.5 g, 15 s after the flight launch. The results demonstrated that all controllers were able to follow the reference altitude, with some spike or overshoot. Although there were slight overshoots in the control effort, the fuzzy compensator reduced the chattering phenomenon by about 6%. Moreover, it was found that in the experiment, the APID and APIDFC controllers consumed 2% and 4% less power, respectively, when compared to the PID controller used to hover the MAV. Full article
Show Figures

Figure 1

20 pages, 3958 KiB  
Article
Geolocation and Tracking by TDOA Measurements Based on Space–Air–Ground Integrated Network
by Jinzhou Li, Shouye Lv, Ying Jin, Chenglin Wang, Yang Liu and Shuai Liao
Remote Sens. 2023, 15(1), 44; https://doi.org/10.3390/rs15010044 - 22 Dec 2022
Cited by 6 | Viewed by 3411
Abstract
Due to the development of manufacturing and launch technologies for satellites, there are now more and more satellite networks. Hence, cooperative reconnaissance is possible to implement among satellite networks, aerial vehicles and ground stations. In this paper, we study the method of geolocation [...] Read more.
Due to the development of manufacturing and launch technologies for satellites, there are now more and more satellite networks. Hence, cooperative reconnaissance is possible to implement among satellite networks, aerial vehicles and ground stations. In this paper, we study the method of geolocation and tracking by time difference of arrival (TDOA) measurements based on space–air–ground integrated (SAGI) network. We first analyze the Cramer Rao lower bound (CRLB) for the source localization accuracy in different coordinate systems. Then, we compare the effects of different system errors, such as clock synchronization error, position bias of the observers, elevation bias of the target and non-horizontal velocity of the target. Further, we also develop a maximum likelihood (ML) estimator for target position and velocity. Finally, the theoretical performance of the proposed estimator is validated via computer simulations. Full article
Show Figures

Graphical abstract

17 pages, 7813 KiB  
Article
Estimating the Useful Energy of a Launcher’s Pneumatic Launch System UAV
by Grzegorz Jastrzębski and Leszek Ułanowicz
Energies 2022, 15(22), 8424; https://doi.org/10.3390/en15228424 - 10 Nov 2022
Cited by 2 | Viewed by 3139
Abstract
The motivation behind solving the issue of estimating the flow parameters of the pneumatic system of a launcher was the need to obtain the take-off energy with a value exceeding 80 kJ. The take-off energy and the initial speed of the unmanned aerial [...] Read more.
The motivation behind solving the issue of estimating the flow parameters of the pneumatic system of a launcher was the need to obtain the take-off energy with a value exceeding 80 kJ. The take-off energy and the initial speed of the unmanned aerial vehicle (UAV) depends on the pressure drop time in the launcher’s pneumatic system. The aim of the research was to estimate the flow parameters of the trigger system of the UAV launchers in order to achieve the shortest time of its operation. Due to the lack of a description of the selection of pneumatic elements and their flow characteristics in the available literature, the article attempts to analytically describe the air flow through pneumatic units. The trigger system is described using the sonic conductivity and the critical pressure ratio. Due to the lack of numerical data on the flow parameters of pneumatic units, a test stand was designed and constructed to determine these parameters. The values of the sound conductivity and the critical pressure ratio were determined for each of the pneumatic units and for the entire system. The proposed method makes it possible to determine the relationship between the operating time and the values of the flow parameters of the pneumatic launch tube release system. It also provides guidelines for design and technological solutions for the trigger system of any pneumatic launcher. Full article
Show Figures

Figure 1

Back to TopTop