Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,372)

Search Parameters:
Keywords = air pollution distribution

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 9610 KiB  
Article
Can the Building Make a Difference to User’s Health in Indoor Environments? The Influence of PM2.5 Vertical Distribution on the IAQ of a Student House over Two Periods in Milan in 2024
by Yong Yu, Marco Gola, Gaetano Settimo and Stefano Capolongo
Atmosphere 2025, 16(8), 936; https://doi.org/10.3390/atmos16080936 (registering DOI) - 4 Aug 2025
Abstract
This study investigates indoor and outdoor air quality monitoring in a student dormitory located in northern Milan (Italy) using low-cost sensors. This research compares two monitoring periods in June and October 2024 to examine common PM2.5 vertical patterns and differences at the [...] Read more.
This study investigates indoor and outdoor air quality monitoring in a student dormitory located in northern Milan (Italy) using low-cost sensors. This research compares two monitoring periods in June and October 2024 to examine common PM2.5 vertical patterns and differences at the building level, as well as their influence on the indoor spaces at the corresponding positions. In each period, around 30 sensors were installed at various heights and orientations across indoor and outdoor spots for 2 weeks to capture spatial variations around the building. Meanwhile, qualitative surveys on occupation presence, satisfaction, and well-being were distributed in selected rooms. The analysis of PM2.5 data reveals that the building’s lower floors tended to have slightly higher outdoor PM2.5 concentrations, while the upper floors generally had lower PM2.5 indoor/outdoor (I/O) ratios, with the top-floor rooms often below 1. High outdoor humidity reduced PM infiltration, but when outdoor PM fell below 20 µg/m3 in these two periods, indoor sources became dominant, especially on the lower floors. Air pressure I/O differences had minimal impact on PM2.5 I/O ratios, though slightly positive indoor pressure might help prevent indoor PM infiltration. Lower ventilation in Period-2 possibly contributed to more reported symptoms, especially in rooms with higher PM from shared kitchens. While outdoor air quality affects IAQ, occupant behavior—especially window opening and ventilation management—remains crucial in minimizing indoor pollutants. Users can also manage exposure by ventilating at night based on comfort and avoiding periods of high outdoor PM. Full article
(This article belongs to the Special Issue Air Quality in Metropolitan Areas and Megacities (Second Edition))
Show Figures

Figure 1

15 pages, 1919 KiB  
Article
Degradation of Microplastics in an In Vitro Ruminal Environment
by Sonia Tassone, Rabeb Issaoui, Valentina Balestra, Salvatore Barbera, Marta Fadda, Hatsumi Kaihara, Sara Glorio Patrucco, Stefania Pragliola, Vincenzo Venditto and Khalil Abid
Fermentation 2025, 11(8), 445; https://doi.org/10.3390/fermentation11080445 - 31 Jul 2025
Viewed by 222
Abstract
Microplastic (MP) pollution is an emerging concern in ruminant production, as animals are exposed to MPs through air, water, and feeds. Ruminants play a key role in MP transmission to humans via animal products and contribute to MP return to agricultural soil through [...] Read more.
Microplastic (MP) pollution is an emerging concern in ruminant production, as animals are exposed to MPs through air, water, and feeds. Ruminants play a key role in MP transmission to humans via animal products and contribute to MP return to agricultural soil through excreta. Identifying effective strategies to mitigate MP pollution in the ruminant sector is crucial. A promising yet understudied approach involves the potential ability of rumen microbiota to degrade MPs. This study investigated the in vitro ruminal degradation of three widely distributed MPs—low-density polyethylene (LDPE), polyethylene terephthalate (PET), and polyamide (PA)—over 24, 48, and 72 h. PET MP exhibited the highest degradation rates (24 h: 0.50 ± 0.070%; 48 h: 0.73 ± 0.057%; and 72 h: 0.96 ± 0.082%), followed by LDPE MP (24 h: 0.03 ± 0.020%; 48 h: 0.25 ± 0.053%; and 72 h: 0.56 ± 0.066%) and PA MP (24 h: 0.10 ± 0.045%; 48 h: 0.02 ± 0.015%; and 72 h: 0.14 ± 0.067%). These findings suggest that the ruminal environment could serve as a promising tool for LDPE, PET, and PA MPs degradation. Further research is needed to elucidate the mechanisms involved, potentially enhancing ruminants’ natural capacity to degrade MPs. Full article
(This article belongs to the Special Issue Ruminal Fermentation: 2nd Edition)
Show Figures

Figure 1

17 pages, 11742 KiB  
Article
The Environmental and Grid Impact of Boda Boda Electrification in Nairobi, Kenya
by Halloran Stratford and Marthinus Johannes Booysen
World Electr. Veh. J. 2025, 16(8), 427; https://doi.org/10.3390/wevj16080427 - 31 Jul 2025
Viewed by 219
Abstract
Boda boda motorbike taxis are a primary mode of transport in Nairobi, Kenya, and a major source of urban air pollution. This study investigates the environmental and electrical grid impacts of electrifying Nairobi’s boda boda fleet. Using real-world tracking data from 118 motorbikes, [...] Read more.
Boda boda motorbike taxis are a primary mode of transport in Nairobi, Kenya, and a major source of urban air pollution. This study investigates the environmental and electrical grid impacts of electrifying Nairobi’s boda boda fleet. Using real-world tracking data from 118 motorbikes, we simulated the effects of a full-scale transition from internal combustion engine (ICE) vehicles to electric motorbikes. We analysed various scenarios, including different battery charging strategies (swapping and home charging), motor efficiencies, battery capacities, charging rates, and the potential for solar power offsetting. The results indicate that electrification could reduce daily CO2 emissions by approximately 85% and eliminate tailpipe particulate matter emissions. However, transitioning the entire country’s fleet would increase the national daily energy demand by up to 6.85 GWh and could introduce peak grid loads as high as 2.40 GW, depending on the charging approach and vehicle efficiency. Battery swapping was found to distribute the grid load more evenly and better complement solar power integration compared to home charging, which concentrates demand in the evening. This research provides a scalable, data-driven framework for policymakers to assess the impacts of transport electrification in similar urban contexts, highlighting the critical trade-offs between environmental benefits and grid infrastructure requirements. Full article
Show Figures

Figure 1

26 pages, 6390 KiB  
Article
The Impact of Land Use Patterns on Nitrogen Dioxide: A Case Study of Klaipėda City and Lithuanian Resort Areas
by Aistė Andriulė, Erika Vasiliauskienė, Remigijus Dailidė and Inga Dailidienė
Sustainability 2025, 17(15), 6939; https://doi.org/10.3390/su17156939 - 30 Jul 2025
Viewed by 304
Abstract
Urban air pollution remains a significant environmental and public health issue, especially in European coastal cities such as Klaipėda. However, there is still a lack of local-scale knowledge on how land use structure influences pollutant distribution, highlighting the need to address this gap. [...] Read more.
Urban air pollution remains a significant environmental and public health issue, especially in European coastal cities such as Klaipėda. However, there is still a lack of local-scale knowledge on how land use structure influences pollutant distribution, highlighting the need to address this gap. This study addresses this by examining the spatial distribution of nitrogen dioxide (NO2) concentrations in Klaipėda’s seaport city and several inland and coastal resort towns in Lithuania. The research specifically asks how different land cover types and demographic factors affect NO2 variability and population exposure risk. Data were collected using passive sampling methods and analyzed within a GIS environment. The results revealed clear air quality differences between industrial/port zones and greener resort areas, confirmed by statistically significant associations between land cover types and pollutant levels. Based on these findings, a Land Use Pollution Pressure index (LUPP) and its population-weighted variant (PLUPP) were developed to capture demographic sensitivity. These indices provide a practical decision-support tool for sustainable urban planning, enabling the assessment of pollution risks and the forecasting of air quality changes under different land use scenarios, while contributing to local climate adaptation and urban environmental governance. Full article
(This article belongs to the Special Issue Sustainable Land Use and Management, 2nd Edition)
Show Figures

Figure 1

19 pages, 15535 KiB  
Article
Impact of Landfill Sites on Coastal Contamination Using GIS and Multivariate Analysis: A Case from Al-Qunfudhah in Western Saudi Arabia
by Talal Alharbi, Abdelbaset S. El-Sorogy, Naji Rikan and Hamdi M. Algarni
Minerals 2025, 15(8), 802; https://doi.org/10.3390/min15080802 - 30 Jul 2025
Viewed by 189
Abstract
The contamination due to coastal landfill is a growing environmental concern, particularly in fragile marine ecosystems, where leachate can mobilize toxic elements into soil, water, air, and sediment. This study aims to assess the impact of a coastal landfill in Al-Qunfudhah, western Saudi [...] Read more.
The contamination due to coastal landfill is a growing environmental concern, particularly in fragile marine ecosystems, where leachate can mobilize toxic elements into soil, water, air, and sediment. This study aims to assess the impact of a coastal landfill in Al-Qunfudhah, western Saudi Arabia, on nearby coastal sediments by identifying the concentration, distribution, and ecological risk of potentially toxic elements (PTEs) using geospatial and multivariate analysis tools. The results indicate significant accumulation of Pb, Zn, Cu, and Fe, with Pb reaching alarming levels of up to 1160 mg/kg in the landfill area, compared to 120 mg/kg in the coastal sediments. Zn contamination also exhibited substantial elevation, with values reaching 278 mg/kg in landfill soil and 157 mg/kg in coastal sediment. The enrichment factor values indicate moderate to severe enrichment for Pb (up to 73.20) and Zn (up to 6.91), confirming anthropogenic influence. The contamination factor analysis categorized Pb contamination as very high (CF > 6), suggesting significant ecological risk. Comparison with sediment quality guidelines suggest that Pb, Zn, and Cu concentrations exceeded threshold effect levels (TEL) in some samples, posing potential risks to marine organisms. The spatial distribution maps revealed pollutant migration from the landfill toward the coastal zone, emphasizing the necessity of monitoring and mitigation strategies. As the first comprehensive study on landfill-induced PTEs contamination in Al-Qunfudhah, these findings provide essential insights for environmental management and pollution control policies along the Red Sea coast. Full article
Show Figures

Figure 1

41 pages, 4553 KiB  
Review
Global Distribution, Ecotoxicity, and Treatment Technologies of Emerging Contaminants in Aquatic Environments: A Recent Five-Year Review
by Yue Li, Yihui Li, Siyuan Zhang, Tianyi Gao, Zhaoyi Gao, Chin Wei Lai, Ping Xiang and Fengqi Yang
Toxics 2025, 13(8), 616; https://doi.org/10.3390/toxics13080616 - 24 Jul 2025
Viewed by 751
Abstract
With the rapid progression of global industrialization and urbanization, emerging contaminants (ECs) have become pervasive in environmental media, posing considerable risks to ecosystems and human health. While multidisciplinary evidence continues to accumulate regarding their environmental persistence and bioaccumulative hazards, critical knowledge gaps persist [...] Read more.
With the rapid progression of global industrialization and urbanization, emerging contaminants (ECs) have become pervasive in environmental media, posing considerable risks to ecosystems and human health. While multidisciplinary evidence continues to accumulate regarding their environmental persistence and bioaccumulative hazards, critical knowledge gaps persist in understanding their spatiotemporal distribution, cross-media migration mechanisms, and cascading ecotoxicological consequences. This review systematically investigates the global distribution patterns of ECs in aquatic environments over the past five years and evaluates their potential ecological risks. Furthermore, it examines the performance of various treatment technologies, focusing on economic cost, efficiency, and environmental sustainability. Methodologically aligned with PRISMA 2020 guidelines, this study implements dual independent screening protocols, stringent inclusion–exclusion criteria (n = 327 studies). Key findings reveal the following: (1) Occurrences of ECs show geographical clustering in highly industrialized river basins, particularly in Asia (37.05%), Europe (24.31%), and North America (14.01%), where agricultural pharmaceuticals and fluorinated compounds contribute disproportionately to environmental loading. (2) Complex transboundary pollutant transport through atmospheric deposition and oceanic currents, coupled with compound-specific partitioning behaviors across water–sediment–air interfaces. (3) Emerging hybrid treatment systems (e.g., catalytic membrane bioreactors, plasma-assisted advanced oxidation) achieve > 90% removal for recalcitrant ECs, though requiring 15–40% cost reductions for scalable implementation. This work provides actionable insights for developing adaptive regulatory frameworks and advancing green chemistry principles in environmental engineering practice. Full article
Show Figures

Graphical abstract

17 pages, 2076 KiB  
Article
Threefold Threshold: Synergistic Air Pollution in Greater Athens Area, Greece
by Aggelos Kladakis, Kyriaki-Maria Fameli, Konstantinos Moustris, Vasiliki D. Assimakopoulos and Panagiotis T. Nastos
Atmosphere 2025, 16(7), 888; https://doi.org/10.3390/atmos16070888 - 19 Jul 2025
Viewed by 383
Abstract
This study investigates the health impacts of air pollution in the Greater Athens Area (GAA), Greece, by estimating the Relative Risk (RR) of hospital admissions (HA) for cardiovascular (CVD) and respiratory diseases (RD) from 2018 to 2020. The analysis focuses on daily exceedances [...] Read more.
This study investigates the health impacts of air pollution in the Greater Athens Area (GAA), Greece, by estimating the Relative Risk (RR) of hospital admissions (HA) for cardiovascular (CVD) and respiratory diseases (RD) from 2018 to 2020. The analysis focuses on daily exceedances of key air pollutants—PM10, O3, and NO2—based on the “Fair” threshold and above, as defined by the European Union Air Quality Index (EU AQI). Data from ten monitoring stations operated by the Ministry of Environment and Energy were spatially matched with six hospitals across the GAA. A Distributed Lag Non-linear Model (DLNM) was employed to capture both the delayed and non-linear exposure–response (ER) relationships between pollutant exceedances and daily HA. Additionally, the synergistic effects of pollutant interactions were assessed to provide a more comprehensive understanding of cumulative health risks. The combined exposure term showed a peak RR of 1.49 (95% CI: 0.79–2.78), indicating a notable amplification of risk when multiple pollutants exceed thresholds simultaneously. The study utilizes R for data processing and statistical modeling. Findings aim to inform public health strategies by identifying critical exposure thresholds and time-lagged effects, ultimately supporting targeted interventions in urban environments experiencing air quality challenges. Full article
(This article belongs to the Special Issue Urban Air Pollution Exposure and Health Vulnerability)
Show Figures

Figure 1

10 pages, 332 KiB  
Article
An Empirical Theoretical Model for the Turbulent Diffusion Coefficient in Urban Atmospheric Dispersion
by George Efthimiou
Urban Sci. 2025, 9(7), 281; https://doi.org/10.3390/urbansci9070281 - 18 Jul 2025
Viewed by 713
Abstract
Turbulent diffusion plays a critical role in atmospheric pollutant dispersion, particularly in complex environments such as urban areas. This study proposes a novel theoretical approach to enhance the calculation of the turbulent diffusion coefficient in pollutant dispersion models. We propose a new expression [...] Read more.
Turbulent diffusion plays a critical role in atmospheric pollutant dispersion, particularly in complex environments such as urban areas. This study proposes a novel theoretical approach to enhance the calculation of the turbulent diffusion coefficient in pollutant dispersion models. We propose a new expression for the turbulent diffusion coefficient (KC), which incorporates both hydrodynamic and turbulence-related time scales. This formulation links the turbulent diffusion coefficient to pollutant travel time and turbulence intensity, offering more accurate predictions of pollutant concentration distributions. By addressing the limitations of existing empirical models, this approach improves the parameterization of turbulence and reduces uncertainties in predicting maximum individual exposure under various atmospheric conditions. The study presents a theoretical model designed to advance the current understanding of atmospheric dispersion modeling. Experimental validation, while recommended, is beyond the scope of this work and is suggested as a direction for future empirical research to confirm the practical utility of the model. This theoretical formulation could be integrated into urban air quality management frameworks, providing improved estimations of pollutant peaks in complex environments. Full article
Show Figures

Figure 1

18 pages, 1268 KiB  
Review
Perspectives on the Presence of Environmentally Persistent Free Radicals (EPFRs) in Ambient Particulate Matters and Their Potential Implications for Health Risk
by Senlin Lu, Jiakuan Lu, Xudong Wang, Kai Xiao, Jingying Niuhe, Xinchun Liu and Shinichi Yonemochi
Atmosphere 2025, 16(7), 876; https://doi.org/10.3390/atmos16070876 - 17 Jul 2025
Viewed by 202
Abstract
Environmental persistent free radicals (EPFRs) represent a class of long-lived, redox-active species with half lives spanning minutes to months. Emerging as critical environmental pollutants, EPFRs pose significant risks due to their persistence, potential for bioaccumulation, and adverse effects on ecosystems and human health. [...] Read more.
Environmental persistent free radicals (EPFRs) represent a class of long-lived, redox-active species with half lives spanning minutes to months. Emerging as critical environmental pollutants, EPFRs pose significant risks due to their persistence, potential for bioaccumulation, and adverse effects on ecosystems and human health. This review critically synthesizes recent advancements in understanding EPFR formation mechanisms, analytical detection methodologies, environmental distribution patterns, and toxicological impacts. While progress has been made in characterization techniques, challenges persist—particularly in overcoming limitations of electron paramagnetic resonance (EPR) spectroscopy and spin-trapping methods in complex environmental matrices. Key knowledge gaps remain, including molecular-level dynamics of EPFR formation, long-term environmental fate under varying geochemical conditions, and quantitative relationships between chronic EPFR exposure and health outcomes. Future research priorities could focus on: (1) atomic-scale mechanistic investigations using advanced computational modeling to resolve formation pathways; (2) development of next-generation detection tools to improve sensitivity and spatial resolution; and (3) integration of EPFR data into region-specific air-quality indices to enhance risk assessment and inform mitigation strategies. Addressing these gaps will advance our capacity to mitigate EPFR persistence and safeguard environmental and public health. Full article
Show Figures

Figure 1

19 pages, 2337 KiB  
Article
Gas–Particle Partitioning and Temporal Dynamics of Pesticides in Urban Atmosphere Adjacent to Agriculture
by Dani Khoury, Supansa Chimjarn, Olivier Delhomme and Maurice Millet
Atmosphere 2025, 16(7), 873; https://doi.org/10.3390/atmos16070873 - 17 Jul 2025
Viewed by 223
Abstract
Air pollution caused by pesticide residues is an emerging concern in urban environments influenced by nearby agricultural activities. In this study, weekly air samples were collected between May 2018 and March 2020 in Strasbourg, France, to quantify 104 pesticides in both gas and [...] Read more.
Air pollution caused by pesticide residues is an emerging concern in urban environments influenced by nearby agricultural activities. In this study, weekly air samples were collected between May 2018 and March 2020 in Strasbourg, France, to quantify 104 pesticides in both gas and particle phases using GC-MS/MS and LC-MS/MS. Herbicides and fungicides were the most frequently detected classes, appearing in 98% of both phases followed by insecticides. Key compounds such as metalaxyl-M, diphenylamine, and bifenthrin were present in over 90% of samples. Concentrations ranged from 2.5 to 63 ng m−3 weekly, with cumulative annual loads exceeding 1200 ng m−3. Gas–particle partitioning revealed that highly volatile compounds like azinphos-ethyl favored the gas phase, while less volatile ones like bifenthrin and tebuconazole partitioned >95% into particles. A third-degree polynomial regression (R2 of 0.74) revealed a nonlinear relationship between Kₚ and particle-phase concentrations, highlighting a threshold above Kₚ of 0.025 beyond which compounds accumulate disproportionately in the particulate phase. Seasonal variability showed that 36% of the annual pesticide load occurred in autumn, with total airborne levels peaking near 400 ng m−3, while the lowest load occurred during summer. Principal component analysis identified rainfall and total suspended particles as major drivers of pesticide phase distribution. The inhalation health risk assessed yielded hazard index values < 1 × 10−7 for all population groups, suggesting negligible non-cancer risk. This study highlights the prevalence, seasonal dynamics, and partition behavior of airborne pesticides in urban air and underscores the need for regulatory attention to this overlooked exposure route. Full article
(This article belongs to the Section Air Quality)
Show Figures

Figure 1

19 pages, 3993 KiB  
Article
Optical Monitoring of Particulate Matter: Calibration Approach, Seasonal and Diurnal Dependency, and Impact of Meteorological Vectors
by Salma Zaim, Bouchra Laarabi, Hajar Chamali, Abdelouahed Dahrouch, Asmae Arbaoui, Khalid Rahmani, Abdelfettah Barhdadi and Mouhaydine Tlemçani
Environments 2025, 12(7), 244; https://doi.org/10.3390/environments12070244 - 16 Jul 2025
Viewed by 483
Abstract
The worldwide air pollution situation reveals significant environmental challenges. In addition to being a major contributor to the deterioration of air quality, particulate matter (PM) is also an important factor affecting the performance of solar energy systems given its ability to decrease light [...] Read more.
The worldwide air pollution situation reveals significant environmental challenges. In addition to being a major contributor to the deterioration of air quality, particulate matter (PM) is also an important factor affecting the performance of solar energy systems given its ability to decrease light transmission to solar panels. As part of our research, the present investigation involves monitoring concentrations of PM using a high-performance optical instrument, the in situ calibration protocol of which is described in detail. For the city of Rabat, observations revealed significant variations in concentrations between day and night, with peaks observed around 8 p.m. correlating with high relative humidity and low wind speeds, and the highest levels recorded in February with a monthly average value reaching 75 µm/m3. In addition, an experimental protocol was set up for an analysis of the elemental composition of particles in the same city using SEM/EDS, providing a better understanding of their morphology. To assess the impact of meteorological variables on PM concentrations in two distinct climatic environments, a database from the city of Marrakech for the year 2024 was utilized. Overall, the distribution of PM values during this period did not fluctuate significantly, with a monthly average value not exceeding 45 µm/m3. The random forest method identified the most influential variables on these concentrations, highlighting the strong influence of the type of environment. The findings provide crucial information for the modeling of solar installations’ soiling and for improving understanding of local air quality. Full article
Show Figures

Graphical abstract

13 pages, 1476 KiB  
Article
Interactive Effects of Ambient Ozone and Meteorological Factors on Cerebral Infarction: A Five-Year Time-Series Study
by Yanzhe Chen, Songtai Yang, Hanya Que, Jiamin Liu, Zhe Wang, Na Wang, Yunkun Qin, Meng Li and Fang Zhou
Toxics 2025, 13(7), 598; https://doi.org/10.3390/toxics13070598 - 16 Jul 2025
Viewed by 345
Abstract
Objective: Our objective was to investigate the short-term effects of ambient ozone (O3) meteorological factors and their interactions on hospitalizations for cerebral infarction in Zhengzhou, China. Methods: Daily data on air pollutants, meteorological factors, and hospitalization of cerebral infarction patients [...] Read more.
Objective: Our objective was to investigate the short-term effects of ambient ozone (O3) meteorological factors and their interactions on hospitalizations for cerebral infarction in Zhengzhou, China. Methods: Daily data on air pollutants, meteorological factors, and hospitalization of cerebral infarction patients were collected from 1 January 2019 to 31 December 2023 in Zhengzhou, China. A generalized additive model was constructed to evaluate the association between ambient O3 levels and hospitalization for cerebral infarction. A distributed lag non-linear model was applied to capture lagged and non-linear exposure effects. We further examined the modifying roles of temperature, humidity, wind speed, and atmospheric pressure, and conducted stratified analyses by sex, age, and season. Results: O3 exposure was significantly associated with increased cerebral infarction risk, particularly during the warm season. A bimodal temperature-lag pattern was observed, as follows: moderate temperatures (10–20 °C) were associated with immediate effects, while cold (<10 °C) and hot (>30 °C) temperatures were linked to delayed risks. The association of O3 and hospitalizations for cerebral infarction appeared stronger under high humidity, low wind speed, and low atmospheric pressure. Conclusions: Short-term O3 exposure and adverse meteorological conditions are jointly associated with an elevated risk of cerebral infarction. Integrated air quality and weather-based warning systems are essential for targeted stroke prevention. Full article
(This article belongs to the Special Issue Ozone Pollution and Adverse Health Impacts)
Show Figures

Graphical abstract

18 pages, 6234 KiB  
Article
Autonomous System for Air Quality Monitoring on the Campus of the University of Ruse: Implementation and Statistical Analysis
by Maciej Kozłowski, Asen Asenov, Velizara Pencheva, Sylwia Agata Bęczkowska, Andrzej Czerepicki and Zuzanna Zysk
Sustainability 2025, 17(14), 6260; https://doi.org/10.3390/su17146260 - 8 Jul 2025
Viewed by 368
Abstract
Air pollution poses a growing threat to public health and the environment, highlighting the need for continuous and precise urban air quality monitoring. The aim of this study was to implement and evaluate an autonomous air quality monitoring platform developed by the University [...] Read more.
Air pollution poses a growing threat to public health and the environment, highlighting the need for continuous and precise urban air quality monitoring. The aim of this study was to implement and evaluate an autonomous air quality monitoring platform developed by the University of Ruse, “Angel Kanchev”, under Bulgaria’s National Recovery and Resilience Plan (project BG-RRP-2.013-0001), co-financed by the European Union through the NextGenerationEU initiative. The system, based on Libelium’s mobile sensor technology, was installed at a height of two meters on the university campus near Rodina Boulevard and operated continuously from 1 March 2024 to 30 March 2025. Every 15 min, it recorded concentrations of CO, CO2, NO2, SO2, PM1, PM2.5, and PM10, along with meteorological parameters (temperature, humidity, and pressure), transmitting the data via GSM to a cloud-based database. Analyses included a distributional assessment, Spearman rank correlations, Kruskal–Wallis tests with Dunn–Sidak post hoc comparisons, and k-means clustering to identify temporal and meteorological patterns in pollutant levels. The results indicate the high operational stability of the system and reveal characteristic pollution profiles associated with time of day, weather conditions, and seasonal variation. The findings confirm the value of combining calibrated IoT systems with advanced statistical methods to support data-driven air quality management and the development of predictive environmental models. Full article
Show Figures

Figure 1

12 pages, 1648 KiB  
Article
Spatiotemporal Distribution of Hand, Foot, and Mouth Disease and the Influence of Air Pollutants and Socioeconomic Factors on Incidence in Fujian, China
by Meirong Zhan, Shaojian Cai, Zhonghang Xie, Senshuang Zheng, Zhengqiang Huang, Jianming Ou and Shenggen Wu
Trop. Med. Infect. Dis. 2025, 10(7), 188; https://doi.org/10.3390/tropicalmed10070188 - 3 Jul 2025
Viewed by 377
Abstract
Background: Hand, foot, and mouth disease (HFMD) typically exhibits spatiotemporal clustering. This study aimed to analyze the spatiotemporal heterogeneity of HFMD in Fujian Province, China, and to identify the associations of air pollutants and socioeconomic factors with the incidence. Methods: Daily reported HFMD [...] Read more.
Background: Hand, foot, and mouth disease (HFMD) typically exhibits spatiotemporal clustering. This study aimed to analyze the spatiotemporal heterogeneity of HFMD in Fujian Province, China, and to identify the associations of air pollutants and socioeconomic factors with the incidence. Methods: Daily reported HFMD case data, daily air pollutant data, and socioeconomic data in Fujian Province from 2014 to 2023 were collected for analysis. A descriptive analysis was used to describe the epidemiological trends of HFMD. Spatial autocorrelation analysis was applied to explore the spatiotemporal clustering characteristics. The associations between risk factors and HFMD incidence were evaluated using the generalized additive model (GAM). Results: HFMD incidence in Fujian has decreased since 2019, and the peak in each year occurred between May and June. Distinct high–high and low–low clustering areas were identified. The cumulative exposure–response curves for SO2, NO2, and CO showed a monotonically increasing trend, with relative risks (RRs) < 1 at concentrations lower than the median levels (SO2 ≈ 4 μg/m3, NO2 ≈ 16 μg/m3, CO ≈ 1 mg/m3). In contrast, the curves for O3 and PM2.5 showed a decreasing trend, with RR < 1 at concentrations above the median levels (O3 ≈ 55 μg/m3, PM2.5 ≈ 20 μg/m3). Among socioeconomic factors, only the proportion of the population under 15 years old was found to be associated with HFMD incidence. Conclusions: HFMD incidence in Fujian exhibited distinct spatiotemporal clustering. The incidence was associated with the concentrations of air pollutants. Targeted interventions should be implemented in high-risk areas to mitigate HFMD transmission, with particular attention given to the environmental and demographic factors. Full article
(This article belongs to the Special Issue Climate Change and Environmental Epidemiology of Infectious Diseases)
Show Figures

Figure 1

15 pages, 3985 KiB  
Article
Interaction Between Radon, Air Ions, and Ultrafine Particles Under Contrasting Atmospheric Conditions in Belgrade, Serbia
by Fathya Shabek, Predrag Kolarž, Igor Čeliković, Milica Ćurčić and Aco Janičijević
Atmosphere 2025, 16(7), 808; https://doi.org/10.3390/atmos16070808 - 1 Jul 2025
Viewed by 371
Abstract
Radon’s radioactive decay is the main natural source of small air ions near the ground. Its exhalation from soil is affected by meteorological factors, while aerosol pollution reduces air ion concentrations through ion-particle attachment. This study aimed to analyze correlations between radon, ions, [...] Read more.
Radon’s radioactive decay is the main natural source of small air ions near the ground. Its exhalation from soil is affected by meteorological factors, while aerosol pollution reduces air ion concentrations through ion-particle attachment. This study aimed to analyze correlations between radon, ions, and air pollution under varying conditions and to assess potential health impacts. Measurements were taken at two sites: in early autumn at a suburban part of Belgrade with relatively clean air, and in late autumn in central Belgrade under polluted conditions, with low temperatures and high humidity. Parameters measured included radon, small air ions, particle size distribution, PM mass concentration, temperature, humidity, and pressure. Results showed lower radon concentrations in late autumn due to high soil moisture and absence of nocturnal inversions. Radon and air ion concentrations exhibited a strong positive correlation for both polarities under suburban conditions, whereas measurements in the urban setting revealed a weak negative correlation, despite radon concentrations in soil gas being approximately equal at both sites. Small ion levels were also reduced, mainly due to suppressed radon exhalation and increased aerosol concentrations, especially ultrafine particles. A strong negative correlation (r < −0.5) was found between small air ion concentrations and particle number concentrations in the 20–300 nm range, while larger particles (300–1000 nm and >1 µm) showed weak or no correlation due to their lower and more stable concentrations. In contrast, early autumn measurements showed a diurnal cycle of radon, characterized by nighttime maxima and daytime minima, unlike the consistently low values observed in late autumn. Full article
(This article belongs to the Special Issue Outdoor and Indoor Air Ions, Radon, and Ozone)
Show Figures

Figure 1

Back to TopTop