Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (532)

Search Parameters:
Keywords = agricultural movement

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 7705 KiB  
Article
Implementation of SLAM-Based Online Mapping and Autonomous Trajectory Execution in Software and Hardware on the Research Platform Nimbulus-e
by Thomas Schmitz, Marcel Mayer, Theo Nonnenmacher and Matthias Schmitz
Sensors 2025, 25(15), 4830; https://doi.org/10.3390/s25154830 - 6 Aug 2025
Abstract
This paper presents the design and implementation of a SLAM-based online mapping and autonomous trajectory execution system for the Nimbulus-e, a concept vehicle designed for agile maneuvering in confined spaces. The Nimbulus-e uses individual steer-by-wire corner modules with in-wheel motors at all four [...] Read more.
This paper presents the design and implementation of a SLAM-based online mapping and autonomous trajectory execution system for the Nimbulus-e, a concept vehicle designed for agile maneuvering in confined spaces. The Nimbulus-e uses individual steer-by-wire corner modules with in-wheel motors at all four corners. The associated eight joint variables serve as control inputs, allowing precise trajectory following. These control inputs can be derived from the vehicle’s trajectory using nonholonomic constraints. A LiDAR sensor is used to map the environment and detect obstacles. The system processes LiDAR data in real time, continuously updating the environment map and enabling localization within the environment. The inclusion of vehicle odometry data significantly reduces computation time and improves accuracy compared to a purely visual approach. The A* and Hybrid A* algorithms are used for trajectory planning and optimization, ensuring smooth vehicle movement. The implementation is validated through both full vehicle simulations using an ADAMS Car—MATLABco-simulation and a scaled physical prototype, demonstrating the effectiveness of the system in navigating complex environments. This work contributes to the field of autonomous systems by demonstrating the potential of combining advanced sensor technologies with innovative control algorithms to achieve reliable and efficient navigation. Future developments will focus on improving the robustness of the system by implementing a robust closed-loop controller and exploring additional applications in dense urban traffic and agricultural operations. Full article
Show Figures

Figure 1

5 pages, 180 KiB  
Proceeding Paper
Design of Automatic Generation Platform for Agricultural Robot
by Zhaowei Wang, Yurong Wang and Fangji Zhang
Eng. Proc. 2025, 98(1), 45; https://doi.org/10.3390/engproc2025098045 - 4 Aug 2025
Viewed by 32
Abstract
The design of robots is highly dependent on their applications. For agricultural robots, terrain, weather, and crop diversity need to be considered, and work efficiency, cost, and reliability must be evaluated. These factors are important to determine the design of agricultural robots. In [...] Read more.
The design of robots is highly dependent on their applications. For agricultural robots, terrain, weather, and crop diversity need to be considered, and work efficiency, cost, and reliability must be evaluated. These factors are important to determine the design of agricultural robots. In this study, we identified the constraint factors of agricultural robots from the perspectives of navigation, movement, control, cost, and reliability. The orthogonal defect classification (ODC) method was used to classify and grade these factors and explore the relationships among these factors. Based on the results, the design rules of agricultural robots were created, and an automatic production knowledge base of agricultural robot design was constructed. The results contribute to the automatic generation of the design framework of agricultural robots under specific environments to effectively improve the design level and quality of agricultural robots and popularize agricultural robots. Full article
18 pages, 439 KiB  
Article
Is the Concept of Food Sovereignty Still Aligned with Sustainability Principles? Insights from a Q-Methodology Study
by Serena Mandolesi, Ahmed Saidi, Teresa Del Giudice, Simona Naspetti, Raffaele Zanoli and Carla Cavallo
Sustainability 2025, 17(15), 6912; https://doi.org/10.3390/su17156912 - 30 Jul 2025
Viewed by 278
Abstract
Food sovereignty has gained significant political attention in recent years, proven by the recent change of the name of Italian Ministry of Agriculture. Coined by the transnational movement “La Via Campesina” in 1996, food sovereignty emphasizes sustainable food security and the right of [...] Read more.
Food sovereignty has gained significant political attention in recent years, proven by the recent change of the name of Italian Ministry of Agriculture. Coined by the transnational movement “La Via Campesina” in 1996, food sovereignty emphasizes sustainable food security and the right of populations to determine their own food policies. However, the concept is often misunderstood in the light of rising sovereigntist debate, and its original meaning, intertwined with long-term sustainability, is gradually disappearing. This study uses Q methodology to explore consumer perspectives on food sovereignty, identifying distinct groups that reflect how the concept has evolved and how it is perceived by the general population. The analysis is based on a sample of 24 participants from Italy. Starting from all sustainability issues contained in food sovereignty, relevant opinion groups have been identified. Results show that half of the groups still recognize their traditional meaning, while the other half understands food sovereignty as a modern form of autarchy. Full article
Show Figures

Figure 1

21 pages, 1355 KiB  
Article
Nationwide Screening for Arthropod, Fungal, and Bacterial Pests and Pathogens of Honey Bees: Utilizing Environmental DNA from Honey Samples in Australia
by Gopika Bhasi, Gemma Zerna and Travis Beddoe
Insects 2025, 16(8), 764; https://doi.org/10.3390/insects16080764 - 25 Jul 2025
Viewed by 431
Abstract
The European honey bee (Apis mellifera) significantly contributes to Australian agriculture, especially in honey production and the pollination of key crops. However, managed bee populations are declining due to pathogens, agrochemicals, poor forage, climate change, and habitat loss. Major threats include [...] Read more.
The European honey bee (Apis mellifera) significantly contributes to Australian agriculture, especially in honey production and the pollination of key crops. However, managed bee populations are declining due to pathogens, agrochemicals, poor forage, climate change, and habitat loss. Major threats include bacteria, fungi, mites, and pests. With the increasing demand for pollination and the movement of bee colonies, monitoring these threats is essential. It has been demonstrated that honey constitutes an easily accessible source of environmental DNA. Environmental DNA in honey comes from all organisms that either directly or indirectly aid in its production and those within the hive environments. In this study, we extracted eDNA from 135 honey samples and tested for the presence of DNA for seven key honey bee pathogens and pests—Paenibacillus larvae, Melissococcus plutonius (bacterial pathogens), Nosema apis, Nosema ceranae (microsporidian fungi), Ascosphaera apis (fungal pathogen), Aethina tumida, and Galleria mellonella (arthropod pests) by using end-point singleplex and multiplex PCR assays. N. ceranae emerged as the most prevalent pathogen, present in 57% of the samples. This was followed by the pests A. tumida (40%) and G. mellonella (37%), and the pathogens P. larvae (21%), N. apis (19%), and M. plutonius (18%). A. apis was detected in a smaller proportion of the samples, with a prevalence of 5%. Additionally, 19% of the samples tested negative for all pathogens and pests analysed. The data outlines essential information about the prevalence of significant arthropod, fungal, and bacterial pathogens and pests affecting honey bees in Australia, which is crucial for protecting the nation’s beekeeping industry. Full article
(This article belongs to the Special Issue Recent Advances in Bee Parasite, Pathogen, and Predator Interactions)
Show Figures

Figure 1

49 pages, 21554 KiB  
Article
A Disappearing Cultural Landscape: The Heritage of German-Style Land Use and Pug-And-Pine Architecture in Australia
by Dirk H. R. Spennemann
Land 2025, 14(8), 1517; https://doi.org/10.3390/land14081517 - 23 Jul 2025
Viewed by 282
Abstract
This paper investigates the cultural landscapes established by nineteenth-century German immigrants in South Australia and the southern Riverina of New South Wales, with particular attention to settlement patterns, architectural traditions and toponymic transformation. German immigration to Australia, though numerically modest compared to the [...] Read more.
This paper investigates the cultural landscapes established by nineteenth-century German immigrants in South Australia and the southern Riverina of New South Wales, with particular attention to settlement patterns, architectural traditions and toponymic transformation. German immigration to Australia, though numerically modest compared to the Americas, significantly shaped local communities, especially due to religious cohesion among Lutheran migrants. These settlers established distinct, enduring rural enclaves characterized by linguistic, religious and architectural continuity. The paper examines three manifestations of these cultural landscapes. A rich toponymic landscape was created by imposing on natural landscape features and newly founded settlements the names of the communities from which the German settlers originated. It discusses the erosion of German toponyms under wartime nationalist pressures, the subsequent partial reinstatement and the implications for cultural memory. The study traces the second manifestation of a cultural landscapes in the form of nucleated villages such as Hahndorf, Bethanien and Lobethal, which often followed the Hufendorf or Straßendorf layout, integrating Silesian land-use principles into the Australian context. Intensification of land use through housing subdivisions in two communities as well as agricultural intensification through broad acre farming has led to the fragmentation (town) and obliteration (rural) of the uniquely German form of land use. The final focus is the material expression of cultural identity through architecture, particularly the use of traditional Fachwerk (half-timbered) construction and adaptations such as pug-and-pine walling suited to local materials and climate. The paper examines domestic forms, including the distinctive black kitchen, and highlights how environmental and functional adaptation reshaped German building traditions in the antipodes. Despite a conservation movement and despite considerable documentation research in the late twentieth century, the paper shows that most German rural structures remain unlisted and vulnerable. Heritage neglect, rural depopulation, economic rationalization, lack of commercial relevance and local government policy have accelerated the decline of many of these vernacular buildings. The study concludes by problematizing the sustainability of conserving German Australian rural heritage in the face of regulatory, economic and demographic pressures. With its layering of intangible (toponymic), structural (buildings) and land use (cadastral) features, the examination of the cultural landscape established by nineteenth-century German immigrants adds to the body of literature on immigrant communities, settler colonialism and landscape research. Full article
Show Figures

Figure 1

26 pages, 6624 KiB  
Article
Data-Efficient Sowing Position Estimation for Agricultural Robots Combining Image Analysis and Expert Knowledge
by Shuntaro Aotake, Takuya Otani, Masatoshi Funabashi and Atsuo Takanishi
Agriculture 2025, 15(14), 1536; https://doi.org/10.3390/agriculture15141536 - 16 Jul 2025
Viewed by 498
Abstract
We propose a data-efficient framework for automating sowing operations by agricultural robots in densely mixed polyculture environments. This study addresses the challenge of enabling robots to identify suitable sowing positions with minimal labeled data by integrating image-based field sensing with expert agricultural knowledge. [...] Read more.
We propose a data-efficient framework for automating sowing operations by agricultural robots in densely mixed polyculture environments. This study addresses the challenge of enabling robots to identify suitable sowing positions with minimal labeled data by integrating image-based field sensing with expert agricultural knowledge. We collected 84 RGB-depth images from seven field sites, labeled by synecological farming practitioners of varying proficiency levels, and trained a regression model to estimate optimal sowing positions and seeding quantities. The model’s predictions were comparable to those of intermediate-to-advanced practitioners across diverse field conditions. To implement this estimation in practice, we mounted a Kinect v2 sensor on a robot arm and integrated its 3D spatial data with axis-specific movement control. We then applied a trajectory optimization algorithm based on the traveling salesman problem to generate efficient sowing paths. Simulated trials incorporating both computation and robotic control times showed that our method reduced sowing operation time by 51% compared to random planning. These findings highlight the potential of interpretable, low-data machine learning models for rapid adaptation to complex agroecological systems and demonstrate a practical approach to combining structured human expertise with sensor-based automation in biodiverse farming environments. Full article
Show Figures

Figure 1

36 pages, 5913 KiB  
Article
Design and Temperature Control of a Novel Aeroponic Plant Growth Chamber
by Ali Guney and Oguzhan Cakir
Electronics 2025, 14(14), 2801; https://doi.org/10.3390/electronics14142801 - 11 Jul 2025
Viewed by 423
Abstract
It is projected that the world population will quadruple over the next century, and to meet future food demands, agricultural production will need to increase by 70%. Therefore, there has been a transition from traditional farming methods to autonomous modern agriculture. One such [...] Read more.
It is projected that the world population will quadruple over the next century, and to meet future food demands, agricultural production will need to increase by 70%. Therefore, there has been a transition from traditional farming methods to autonomous modern agriculture. One such modern technique is aeroponic farming, in which plants are grown without soil under controlled and hygienic conditions. In aeroponic farming, plants are significantly less affected by climatic conditions, infectious diseases, and biotic and abiotic stresses, such as pest infestations. Additionally, this method can reduce water, nutrient, and pesticide usage by 98%, 60%, and 100%, respectively, while increasing the yield by 45–75% compared to traditional farming. In this study, a three-dimensional industrial design of an innovative aeroponic plant growth chamber was presented for use by individuals, researchers, and professional growers. The proposed chamber design is modular and open to further innovation. Unlike existing chambers, it includes load cells that enable real-time monitoring of the fresh weight of the plant. Furthermore, cameras were integrated into the chamber to track plant growth and changes over time and weight. Additionally, RGB power LEDs were placed on the inner ceiling of the chamber to provide an optimal lighting intensity and spectrum based on the cultivated plant species. A customizable chamber design was introduced, allowing users to determine the growing tray and nutrient nozzles according to the type and quantity of plants. Finally, system models were developed for temperature control of the chamber. Temperature control was implemented using a proportional-integral-derivative controller optimized with particle swarm optimization, radial movement optimization, differential evolution, and mayfly optimization algorithms for the gain parameters. The simulation results indicate that the temperatures of the growing and feeding chambers in the cabinet reached a steady state within 260 s, with an offset error of no more than 0.5 °C. This result demonstrates the accuracy of the derived model and the effectiveness of the optimized controllers. Full article
(This article belongs to the Special Issue Intelligent and Autonomous Sensor System for Precision Agriculture)
Show Figures

Figure 1

17 pages, 1309 KiB  
Article
Stakeholders’ Views on a Decadal Evolution of a Southwestern European Coastal Lagoon
by Mariana Pinho, Daniel Crespo, Dionísia Laranjeiro and Ana I. Lillebø
Sustainability 2025, 17(14), 6321; https://doi.org/10.3390/su17146321 - 10 Jul 2025
Viewed by 399
Abstract
Addressing environmental challenges requires the inclusion of local communities with relevant knowledge of the social–ecological system in which they are embedded, in addition to using transdisciplinary approaches that are critical to the co-production of successful and sustainable environmental solutions. A qualitative methodology was [...] Read more.
Addressing environmental challenges requires the inclusion of local communities with relevant knowledge of the social–ecological system in which they are embedded, in addition to using transdisciplinary approaches that are critical to the co-production of successful and sustainable environmental solutions. A qualitative methodology was used to examine stakeholders’ views of decadal changes in Ria de Aveiro, a coastal lagoon on Portugal’s Atlantic coast. Seven focus groups were conducted, which included 42 stakeholders from coastal parishes, in order to obtain identical geographical representation with a study conducted a decade ago. Participants represented a diverse sample of groups interested in or affected by management options and activities in the lagoon system and were asked to reflect on the main changes that occurred over the last decade. Positive changes reflected an increase in the levels of environmental awareness, a positive trajectory of the environmental status of Ria de Aveiro, and a decrease in illegal fishing activities. Persisting concerns referred to the lack of an efficient management body for Ria de Aveiro, pressures related to changes in the hydrodynamic regime of the lagoon, the disappearance of native species and increase in invasive alien species, the abandonment of traditional activities (e.g., harvesting of seagrass and seaweed, salt production, agriculture in lagoon margins, and artisanal fishing), and the degradation and lack of maintenance of salt pans. Our findings highlight the importance of longer-term transdisciplinary and social–ecological research and illustrate how stakeholder views regarding the shortfalls of the movement towards the integrated management of ecosystems remain. Full article
Show Figures

Figure 1

22 pages, 319 KiB  
Review
The Welfare of Cattle in Different Housing Systems
by Bogumiła Pilarczyk, Renata Pilarczyk, Małgorzata Bąkowska, Agnieszka Tomza-Marciniak, Beata Seremak, Ewa Kwita, Marta Juszczak-Czasnojć, Paulius Matusevičius and Ramutė Mišeikienė
Animals 2025, 15(13), 1972; https://doi.org/10.3390/ani15131972 - 4 Jul 2025
Viewed by 403
Abstract
The review provides an overview of research concerning the assessment of cattle welfare in different housing systems. Hence, it restricts its scope to factors known to have a particular influence on the expression of their natural behaviours. It analyses the impact of housing [...] Read more.
The review provides an overview of research concerning the assessment of cattle welfare in different housing systems. Hence, it restricts its scope to factors known to have a particular influence on the expression of their natural behaviours. It analyses the impact of housing systems on social and maternal bonds, as well as on the health and productivity of animals and on the feeding behaviour and physical activity of animals. It also pays attention to the occurrence of stereotypies, indicating the quality of the environment in which animals live, and attempts to determine the extent to which environmental enrichment improves welfare. It can be seen that welfare can vary significantly depending on the cattle rearing system. In intensive rearing environments, weaning calves and limited space often result in stress and behavioural disorders (e.g., cross-sucking). Extensive systems, offering access to pasture and longer cow–calf contact, usually provide higher levels of welfare. A freestall system allows greater freedom of movement and social contact but requires appropriate management to prevent aggression; in contrast, the tethering system limits movement, which increases the risk of stress and health problems. It has also been shown that enriching the living space of animals can significantly improve their welfare, regardless of the housing system. By balancing productivity with ensuring that the cattle are able to express their natural behaviours and maintain good health, it is possible to benefit both the animals and the agricultural sector as a whole, increasing its profitability and gaining consumer confidence. Full article
(This article belongs to the Section Cattle)
15 pages, 987 KiB  
Article
Valorization of Agro-Industrial Wastes as Organic Amendments to Reduce Herbicide Leaching into Soil
by Gabriel Pérez-Lucas, Andrea Martínez-Zapata and Simón Navarro
J. Xenobiot. 2025, 15(4), 100; https://doi.org/10.3390/jox15040100 - 30 Jun 2025
Viewed by 341
Abstract
High levels of pesticide use are associated with intensive crop production. Pesticides are increasingly prevalent in surface and groundwater, which is a major environmental concern. Various methods have been proposed to improve the retention and/or degradation of pesticides in soils. These methods are [...] Read more.
High levels of pesticide use are associated with intensive crop production. Pesticides are increasingly prevalent in surface and groundwater, which is a major environmental concern. Various methods have been proposed to improve the retention and/or degradation of pesticides in soils. These methods are mainly based on soil adaptation with organic wastes to mitigate soil and water pollution. In addition, there has recently been increased interest in assessing the influence of organic waste additions on pesticide movement in soils with low contents of organic matter. Agriculture and related industries generate large amounts of waste each year. Because of their components, they have the great ability to produce high-value products for environmental restoration. This study reports on the influence of four different agro-industrial wastes (orange peel, beer bagasse, grape pomace, and gazpacho waste) used as organic amendments on the leaching of metobromuron and chlorbromuron (phenylurea herbicides) on a silty clay loam soil (gypsic–calcaric regosol) with low organic matter contents from a semiarid area (southeastern Spain). The adsorption, leaching, and dissipation processes of these herbicides were evaluated on a laboratory scale in amended and unamended soils. In addition, the main leaching indices (GUS, LIX, LEACH, M LEACH, LIN, GLI, HI, and ELI) commonly used to assess groundwater protection against pesticide pollution were evaluated. The sorption coefficients (KOC) increased in the amended soils. Metobromuron was found in leachates in all cases, although a marked reduction was observed in amended soils, while chlorbromuron was mainly retained in soils, especially in the top layer. The disappearance time (DT50) for metobromuron and chlorbromuron in soil ranged from 11 to 56 d and 18 to 95 d, respectively. All indices except GLI categorize metobromuron as mobile or very mobile in unamended soil. For chlorbromuron, GUS, LIX, LEACH, MLEACH, and Hornsby classify this compound as a medium-to-high leache, while GLI and ELI classify it as having low mobility. In amended soils, most indices classify metobromuron as transitioning to mobile, while most indices catalog chlorbromuron as immobile/transition. Full article
Show Figures

Graphical abstract

17 pages, 1994 KiB  
Review
Integration of Plant Electrophysiology and Time-Lapse Video Analysis via Artificial Intelligence for the Advancement of Precision Agriculture
by Maria Stolarz
Sustainability 2025, 17(12), 5614; https://doi.org/10.3390/su17125614 - 18 Jun 2025
Cited by 1 | Viewed by 626
Abstract
Biological research and agriculture are increasingly benefiting from the use of artificial intelligence algorithms, which are becoming integral to various areas of human activity. Fundamental knowledge of the mechanisms of plant germination, growth/development, and reproduction is the basis for plant cultivation. Plants provide [...] Read more.
Biological research and agriculture are increasingly benefiting from the use of artificial intelligence algorithms, which are becoming integral to various areas of human activity. Fundamental knowledge of the mechanisms of plant germination, growth/development, and reproduction is the basis for plant cultivation. Plants provide food and valuable biochemicals and are an important element of a sustainable natural environment. An interdisciplinary approach involving basic science (biology and informatics), technology (artificial intelligence), and farming practice can contribute to the development of precision agriculture, which in turn increases crop and food production. Nowadays, a progressive elucidation of the mechanisms of plant growth/development involves studies of interrelations between electrical phenomena occurring inside plants and movements of plant organs. Recently, there have been increasing numbers of reports on methods for classifying plant electrograms using statistical and artificial intelligence algorithms. Artificial intelligence procedures can identify diverse electrical signals—signatures associated with specific environmental abiotic and biotic factors or stresses. At the same time, a growing body of research shows methods of precise and fast analysis of time-lapse videos via automated image analysis and artificial intelligence to study the movement and growth/development of plants. In both research fields, scientists introduce modern and promising methods of studying plant growth/development. Such basic research along with technological innovations will contribute to the development of precision agriculture and an increase in yields and production of healthier food in future. Full article
Show Figures

Figure 1

44 pages, 34279 KiB  
Article
Identification and Optimization of Urban Avian Ecological Corridors in Kunming: Framework Construction Based on Multi-Model Coupling and Multi-Scenario Simulation
by Xiaoli Zhang and Zhe Zhang
Diversity 2025, 17(6), 427; https://doi.org/10.3390/d17060427 - 17 Jun 2025
Viewed by 743
Abstract
This study employs a multi-model coupling and multi-scenario simulation approach to construct a framework for identifying and optimizing avian ecological corridors in the urban core of Kunming. The framework focuses on the ecological needs of resident birds (64.72%), woodland-dependent birds (39.87%), and low-mobility [...] Read more.
This study employs a multi-model coupling and multi-scenario simulation approach to construct a framework for identifying and optimizing avian ecological corridors in the urban core of Kunming. The framework focuses on the ecological needs of resident birds (64.72%), woodland-dependent birds (39.87%), and low-mobility birds (47.29%) to address habitat fragmentation and enhance urban biodiversity conservation. This study identifies 54 core ecological corridors, totaling 183.58 km, primarily located in forest–urban transition zones. These corridors meet the continuous habitat requirements of resident and woodland-dependent birds, providing a stable environment for species. Additionally, 55 general corridors, spanning 537.30 km, focus on facilitating short-distance movements of low-mobility birds, enhancing habitat connectivity in urban fringe areas through ecological stepping stones. Eighteen ecological pinch points (total area 5.63 km2) play a crucial role in the network. The northern pinch points, dominated by forest land, serve as vital breeding and refuge habitats for woodland-dependent and resident birds. The southern pinch points, located in wetland-forest ecotones, function as critical stopover sites for low-mobility waterbirds. Degradation of these pinch points would significantly reduce available habitat for birds. The 27 ecological barrier points (total area 89.79 km2), characterized by urban land use, severely impede the movement of woodland-dependent birds and increase the migratory energy expenditure of low-mobility birds in agricultural areas. Following optimization, resistance to resident birds in core corridors is significantly reduced, and habitat utilization by generalist species in general corridors is markedly improved. Moreover, multi-scenario optimization measures, including the addition of ecological stepping stones, barrier improvement, and pinch-point protection, have effectively increased ecological sources, met avian habitat requirements, and secured migratory pathways for waterbirds. These measures validate the scientific rationale of a multidimensional management strategy. The comprehensive framework developed in this study, integrating species needs, corridor design, and spatial optimization, provides a replicable model for avian ecological corridor construction in subtropical montane cities. Future research may incorporate bird-tracking technologies to further validate corridor efficacy and explore planning pathways for climate-adaptive corridors. Full article
Show Figures

Figure 1

14 pages, 890 KiB  
Article
Species-Specific Chemotactic Responses of Entomopathogenic and Slug-Parasitic Nematodes to Cannabinoids from Cannabis sativa L.
by Marko Flajšman, Stanislav Trdan and Žiga Laznik
Agronomy 2025, 15(6), 1469; https://doi.org/10.3390/agronomy15061469 - 16 Jun 2025
Viewed by 399
Abstract
The increasing environmental and health concerns associated with synthetic pesticides underscore the need for sustainable alternatives in pest management. This study investigates the chemotactic responses of five nematode species—Heterorhabditis bacteriophora, Steinernema carpocapsae, Steinernema feltiae, Phasmarhabditis papillosa, and Oscheius [...] Read more.
The increasing environmental and health concerns associated with synthetic pesticides underscore the need for sustainable alternatives in pest management. This study investigates the chemotactic responses of five nematode species—Heterorhabditis bacteriophora, Steinernema carpocapsae, Steinernema feltiae, Phasmarhabditis papillosa, and Oscheius myriophilus—to three major cannabinoids from Cannabis sativa: Δ9-tetrahydrocannabinol (THC), cannabigerol (CBG), and cannabidiol (CBD). Using a standardized chemotaxis assay, we quantified infective juvenile movement and calculated Chemotaxis Index (CI) values across varying cannabinoid concentrations. Our results revealed strong species-specific and dose-dependent responses. THC and CBG elicited significant attractant effects in P. papillosa, S. feltiae, and H. bacteriophora, with CI values ≥ 0.2, indicating their potential as behavioral modulators. In contrast, CBD had weaker or repellent effects, particularly at higher concentrations. O. myriophilus exhibited no consistent response, underscoring species-specific variation in chemosensory sensitivity. These findings demonstrate the potential utility of cannabinoids, especially THC and CBG, as biocompatible cues to enhance the efficacy of nematode-based biological control agents in integrated pest management (IPM). Further field-based studies are recommended to validate these results under realistic agricultural conditions. Full article
(This article belongs to the Special Issue Nematode Diseases and Their Management in Crop Plants)
Show Figures

Figure 1

13 pages, 2566 KiB  
Article
Potential of Sisal (Agave sisalana) Residues for Improving Sisal Plant Growth and Soil Residue Stocks in Bahia’s Circular Agriculture
by Risely Ferraz-Almeida, Adelson Rodrigues de Oliveira, Clecivânia de Jesus Pinheiro, Joane Lima Oliveira, Valmir Freitas de Almeida and Everton Martins Arruda
Agronomy 2025, 15(6), 1426; https://doi.org/10.3390/agronomy15061426 - 11 Jun 2025
Viewed by 944
Abstract
Brazil is considered one of the world’s most important sisal fiber producers (derived from Agave sisalana), with areas concentrated in the Bahia state. There has been a movement in agriculture toward a circular economic system (take-produce-consume-recycle). Based on this idea, the focus [...] Read more.
Brazil is considered one of the world’s most important sisal fiber producers (derived from Agave sisalana), with areas concentrated in the Bahia state. There has been a movement in agriculture toward a circular economic system (take-produce-consume-recycle). Based on this idea, the focus of this study was: (i) to estimate the theoretical available amount of sisal residues based on fiber and area productions; (ii) to monitor the use of sisal residues for improving sisal plant growth; and (iii) to monitor the residue stocks on surface soil with the application of sisal residues. Areas of sisal were visited periodically, monitoring the application of sisal residue on the soil surface. The results showed that there is an expressive production of sisal residues, mainly of green liquid, sisal pulp, and sisal ball. The application of sisal pulp on the soil surface, close to sisal plants, is an optimal alternative to improve sisal leaf development. The application of sisal residues on soil increased 50% of residue stocks with sizes lower than 10 cm. Based on the results, we concluded that the sisal residues have a great potential for improving sisal plant growth and soil residue stocks. More studies are required to improve circular agriculture in the sisal sector. Full article
Show Figures

Figure 1

34 pages, 2355 KiB  
Perspective
A National Vision for Land Use Planning in the United States
by Eric G. Darracq, Jeffrey J. Brooks and Andrea K. Darracq
Land 2025, 14(5), 1121; https://doi.org/10.3390/land14051121 - 21 May 2025
Viewed by 1323
Abstract
The time is nigh to organize the physical landscapes of the United States under a unified land use policy and planning framework. As human populations have steadily grown, so has the urgency for agencies to plan for land uses at broader scales to [...] Read more.
The time is nigh to organize the physical landscapes of the United States under a unified land use policy and planning framework. As human populations have steadily grown, so has the urgency for agencies to plan for land uses at broader scales to overcome continued jurisdictional fragmentation and achieve sustainable and environmentally just landscapes. This paper introduces a vision, conceptual approach, and implementation strategy that applies ecoregions and proposes a unified framework for land use planning and regulation in the United States. The Sustainable Ecoregion Program (SEP) is designed to enable local landowners; public stakeholders; other land users; and state, regional, tribal, and national natural resource professionals to set and achieve future desired conditions for sustainable land uses across landscapes. The objective is to outline a comprehensive and sustainably just solution to the recurring problem of managing conflicting land uses in the face of continued degradation and multiple land tenure systems. The SEP will determine how much of the physical landscape will go to developed, agricultural, and natural landcover types. The framework includes recognition of level III ecoregions as primary boundaries, proposed secondary boundaries and shapes to enhance connectivity and movement across landscapes, a proposed structure for the environmental governance and co-management of landscapes, and definitions of physical landscape types. The benefits and challenges of the SEP are discussed. The outcomes of the SEP include ecological integrity, sustainable land use management, deliberative democracy, just sustainability, and improved quality of life for residents of the United States. Full article
Show Figures

Figure 1

Back to TopTop