Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (136)

Search Parameters:
Keywords = agricultural hydraulic applications

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2835 KiB  
Article
Numerical Modeling of Gentamicin Transport in Agricultural Soils: Implications for Environmental Pollution
by Nami Morales-Durán, Sebastián Fuentes, Jesús García-Gallego, José Treviño-Reséndez, Josué D. García-Espinoza, Rubén Morones-Ramírez and Carlos Chávez
Antibiotics 2025, 14(8), 786; https://doi.org/10.3390/antibiotics14080786 - 2 Aug 2025
Viewed by 216
Abstract
Background/Objectives: In recent years, the discharge of antibiotics into rivers and irrigation canals has increased. However, few studies have addressed the impact of these compounds on agricultural fields that use such water to meet crop demands. Methods: In this study, the transport of [...] Read more.
Background/Objectives: In recent years, the discharge of antibiotics into rivers and irrigation canals has increased. However, few studies have addressed the impact of these compounds on agricultural fields that use such water to meet crop demands. Methods: In this study, the transport of two types of gentamicin (pure gentamicin and gentamicin sulfate) was modeled at concentrations of 150 and 300 μL/L, respectively, in a soil with more than 60 years of agricultural use. Infiltration tests under constant head conditions and gentamicin transport experiments were conducted in acrylic columns measuring 14 cm in length and 12.7 cm in diameter. The scaling parameters for the Richards equation were obtained from experimental data, while those for the advection–dispersion equation were estimated using inverse methods through a nonlinear optimization algorithm. In addition, a fractal-based model for saturated hydraulic conductivity was employed. Results: It was found that the dispersivity of gentamicin sulfate is 3.1 times higher than that of pure gentamicin. Based on the estimated parameters, two simulation scenarios were conducted: continuous application of gentamicin and soil flushing after antibiotic discharge. The results show that the transport velocity of gentamicin sulfate in the soil may have short-term consequences for the emergence of resistant microorganisms due to the destination of wastewater containing antibiotic residues. Conclusions: Finally, further research is needed to evaluate the impact of antibiotics on soil physical properties, as well as their effects on irrigated crops, animals that consume such water, and the soil microbiota. Full article
(This article belongs to the Special Issue Impact of Antibiotic Residues in Wastewater)
Show Figures

Figure 1

28 pages, 6803 KiB  
Article
Structural Heterogeneity of Biochar Modulates’ Soil Hydraulic Properties and Nutrient Migration
by Guohui Li, Yayong Chen, Xiaopeng Chen, Beibei Zhou, Manli Duan, Hongyan Zhu and Guomin Shao
Agronomy 2025, 15(8), 1830; https://doi.org/10.3390/agronomy15081830 - 28 Jul 2025
Viewed by 291
Abstract
Biochar application is a well-recognized strategy to enhance agricultural soil fertility, but its structural heterogeneity leads to inconsistent outcomes in soil improvement, particularly in water and nutrient transport dynamics. In order to ensure the beneficial effects of biochar-amended agricultural soils in terms of [...] Read more.
Biochar application is a well-recognized strategy to enhance agricultural soil fertility, but its structural heterogeneity leads to inconsistent outcomes in soil improvement, particularly in water and nutrient transport dynamics. In order to ensure the beneficial effects of biochar-amended agricultural soils in terms of water retention and fertilizer fixation, in this paper, we aim to elucidate the effect of the structural heterogeneity of biochar on the hydraulic properties and nutrient transport of agricultural soils. This study compares biochars at millimeter (BMP), micrometer (BUP), and nanometer (BNP) scales using CT scanning, and investigates the effects of different application rates (0.0–2.0%) on soil’s hydraulic properties and nutrient transport using soil column experiments and CDE analyses. The results show that biochar generally decreased soil saturated hydraulic conductivity (SSHC), except for the application of 2.0% BMP, which increased it. Biochar enhanced soil saturated water content (SSWC) and water holding capacity (WHC), with the 2.0% BMP treatment achieving the highest values (SSHC: 49.34 cm/d; SSWC: 0.40 g/g; WHC: 0.25 g/g). BUPs and BNPs inhibited water infiltration due to pore-blocking, while 2.0% BMP promoted infiltration. Convective dispersion equation analysis (CDE) indicated that BUPs and BNPs reduced water and nutrient transport, with 2.0% BMP showing optimal performance. Statistical analyses revealed that biochar’s structural heterogeneity significantly affected soil water repellency, its hydraulic properties, and solute transport (p < 0.05). Smaller particles enhanced water retention and nutrient fixation, while larger particles improved WHC at appropriate rates. These findings provide valuable insights for optimizing biochar application to improve soil functions and support sustainable agriculture. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

24 pages, 4061 KiB  
Article
The Impact of Hydrogeological Properties on Mass Displacement in Aquifers: Insights from Implementing a Mass-Abatement Scalable System Using Managed Aquifer Recharge (MAR-MASS)
by Mario Alberto Garcia Torres, Alexandra Suhogusoff and Luiz Carlos Ferrari
Water 2025, 17(15), 2239; https://doi.org/10.3390/w17152239 - 27 Jul 2025
Viewed by 313
Abstract
This study examines the use of a mass-abatement scalable system with managed aquifer recharge (MAR-MASS) as a sustainable solution for restoring salinized aquifers and improving water quality by removing dissolved salts. It offers a practical remediation approach for aquifers affected by salinization in [...] Read more.
This study examines the use of a mass-abatement scalable system with managed aquifer recharge (MAR-MASS) as a sustainable solution for restoring salinized aquifers and improving water quality by removing dissolved salts. It offers a practical remediation approach for aquifers affected by salinization in coastal regions, agricultural areas, and contaminated sites, where variable-density flow poses a challenge. Numerical simulations assessed hydrogeological properties such as hydraulic conductivity, anisotropy, specific yield, mechanical dispersion, and molecular diffusion. A conceptual model integrated hydraulic conditions with spatial and temporal discretization using the FLOPY API for MODFLOW 6 and the IFM API for FEFLOW 10. Python algorithms were run within the high-performance computing (HPC) server, executing simulations in parallel to efficiently process a large number of scenarios, including both preprocessing input data and post-processing results. The study simulated 6950 scenarios, each modeling flow and transport processes over 3000 days of method implementation and focusing on mass extraction efficiency under different initial salinity conditions (3.5 to 35 kg/m3). The results show that the MAR-MASS effectively removed salts from aquifers, with higher hydraulic conductivity prolonging mass removal efficiency. Of the scenarios, 88% achieved potability (0.5 kg/m3) in under five years; among these, 79% achieved potability within two years, and 92% of cases with initial concentrations of 3.5–17.5 kg/m3 reached potability within 480 days. This study advances scientific knowledge by providing a robust model for optimizing managed aquifer recharge, with practical applications in rehabilitating salinized aquifers and improving water quality. Future research may explore MAR-MASS adaptation for diverse hydrogeological contexts and its long-term performance. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

34 pages, 6467 KiB  
Article
Predictive Sinusoidal Modeling of Sedimentation Patterns in Irrigation Channels via Image Analysis
by Holger Manuel Benavides-Muñoz
Water 2025, 17(14), 2109; https://doi.org/10.3390/w17142109 - 15 Jul 2025
Viewed by 329
Abstract
Sediment accumulation in irrigation channels poses a significant challenge to water resource management, impacting hydraulic efficiency and agricultural sustainability. This study introduces an innovative multidisciplinary framework that integrates advanced image analysis (FIJI/ImageJ 1.54p), statistical validation (RStudio), and vector field modeling with a novel [...] Read more.
Sediment accumulation in irrigation channels poses a significant challenge to water resource management, impacting hydraulic efficiency and agricultural sustainability. This study introduces an innovative multidisciplinary framework that integrates advanced image analysis (FIJI/ImageJ 1.54p), statistical validation (RStudio), and vector field modeling with a novel Sinusoidal Morphodynamic Bedload Transport Equation (SMBTE) to predict sediment deposition patterns with high precision. Conducted along the Malacatos River in La Tebaida Linear Park, Loja, Ecuador, the research captured a natural sediment transport event under controlled flow conditions, transitioning from pressurized pipe flow to free-surface flow. Observed sediment deposition reduced the hydraulic cross-section by approximately 5 cm, notably altering flow dynamics and water distribution. The final SMBTE model (Model 8) demonstrated exceptional predictive accuracy, achieving RMSE: 0.0108, R2: 0.8689, NSE: 0.8689, MAE: 0.0093, and a correlation coefficient exceeding 0.93. Complementary analyses, including heatmaps, histograms, and vector fields, revealed spatial heterogeneity, local gradients, and oscillatory trends in sediment distribution. These tools identified high-concentration sediment zones and quantified variability, providing actionable insights for optimizing canal design, maintenance schedules, and sediment control strategies. By leveraging open-source software and real-world validation, this methodology offers a scalable, replicable framework applicable to diverse water conveyance systems. The study advances understanding of sediment dynamics under subcritical (Fr ≈ 0.07) and turbulent flow conditions (Re ≈ 41,000), contributing to improved irrigation efficiency, system resilience, and sustainable water management. This research establishes a robust foundation for future advancements in sediment transport modeling and hydrological engineering, addressing critical challenges in agricultural water systems. Full article
(This article belongs to the Section Water Erosion and Sediment Transport)
Show Figures

Figure 1

23 pages, 4667 KiB  
Article
An Experimental Study on the Charging Effects and Atomization Characteristics of a Two-Stage Induction-Type Electrostatic Spraying System for Aerial Plant Protection
by Yufei Li, Qingda Li, Jun Hu, Changxi Liu, Shengxue Zhao, Wei Zhang and Yafei Wang
Agronomy 2025, 15(7), 1641; https://doi.org/10.3390/agronomy15071641 - 5 Jul 2025
Viewed by 338
Abstract
To address the technical problems of broad droplet size spectrum, insufficient atomization uniformity, and spray drift in plant protection unmanned aerial vehicle (UAV) applications, this study developed a novel two-stage aerial electrostatic spraying device based on the coupled mechanisms of hydraulic atomization and [...] Read more.
To address the technical problems of broad droplet size spectrum, insufficient atomization uniformity, and spray drift in plant protection unmanned aerial vehicle (UAV) applications, this study developed a novel two-stage aerial electrostatic spraying device based on the coupled mechanisms of hydraulic atomization and electrostatic induction, and, through the integration of three-dimensional numerical simulation and additive manufacturing technology, a new two-stage inductive charging device was designed on the basis of the traditional hydrodynamic nozzle structure, and a synergistic optimization study of the charging effect and atomization characteristics was carried out systematically. With the help of a charge ratio detection system and Malvern laser particle sizer, spray pressure (0.25–0.35 MPa), charging voltage (0–16 kV), and spray height (100–1000 mm) were selected as the key parameters, and the interaction mechanism of each parameter on the droplet charge ratio (C/m) and the particle size distribution (Dv50) was analyzed through the Box–Behnken response surface experimental design. The experimental data showed that when the charge voltage was increased to 12 kV, the droplet charge-to-mass ratio reached a peak value of 1.62 mC/kg (p < 0.01), which was 83.6% higher than that of the base condition; the concentration of the particle size distribution of the charged droplets was significantly improved; charged droplets exhibited a 23.6% reduction in Dv50 (p < 0.05) within the 0–200 mm core atomization zone below the nozzle, with the coefficient of variation of volume median diameter decreasing from 28.4% to 16.7%. This study confirms that the two-stage induction structure can effectively break through the charge saturation threshold of traditional electrostatic spraying, which provides a theoretical basis and technical support for the optimal design of electrostatic spraying systems for plant protection UAVs. This technology holds broad application prospects in agricultural settings such as orchards and farmlands. It can significantly enhance the targeted deposition efficiency of pesticides, reducing drift losses and chemical usage, thereby enabling agricultural enterprises to achieve practical economic benefits, including reduced operational costs, improved pest control efficacy, and minimized environmental pollution, while generating environmental benefits. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

18 pages, 1440 KiB  
Article
Evaluation of Performance on Spiral Fluidic Sprinkler Using Different Nozzle Sizes Under Indoor Conditions
by Joseph Kwame Lewballah, Xingye Zhu, Alexander Fordjour and Simin Yao
Water 2025, 17(12), 1745; https://doi.org/10.3390/w17121745 - 10 Jun 2025
Viewed by 459
Abstract
Sprinkler system performance enhancement has been a key area of research due to concerns about water shortages and rising energy costs. This study evaluated the hydraulic performance of the newly designed Spiral Fluidic Sprinkler (SFS) with various nozzles under different operating pressures. MATLAB [...] Read more.
Sprinkler system performance enhancement has been a key area of research due to concerns about water shortages and rising energy costs. This study evaluated the hydraulic performance of the newly designed Spiral Fluidic Sprinkler (SFS) with various nozzles under different operating pressures. MATLAB R2020b software was used to simulate sprinkler uniformities under various operating pressures and the droplet diameter, velocity, and kinetic energy were measured using a 2DVD video raindrop spectrometer. The results showed that larger nozzle sizes generally improved application uniformity and efficiency. The 4 mm nozzle at 200 kPa achieved the lowest coefficient of variation (CV) at 6.2%, while the 3 mm nozzle showed a higher CV of 10.4%. Under 200 and 250 kPa of pressure, a statistically significant difference (p < 0.05) was observed between the CVs for the 4 mm nozzle. Droplet size distributions revealed that over 90% of droplets produced by the 4 mm nozzle were under 3 mm in diameter across all pressures. Kinetic energy analysis indicated that droplet momentum increased with pressure, enhancing coverage but potentially increasing drift at higher levels. Overall, the SFS demonstrated strong potential for water conservation and improved irrigation efficiency in controlled agricultural environments. Full article
(This article belongs to the Special Issue Advances in Agricultural Irrigation Management and Technology)
Show Figures

Figure 1

37 pages, 14623 KiB  
Review
Research Review of Agricultural Machinery Power Chassis in Hilly and Mountainous Areas
by Yiyong Jiang, Ruochen Wang, Renkai Ding, Zeyu Sun, Yu Jiang and Wei Liu
Agriculture 2025, 15(11), 1158; https://doi.org/10.3390/agriculture15111158 - 28 May 2025
Viewed by 830
Abstract
The terrain in hilly and mountainous areas is complex, and the level of agricultural mechanization is low. This article systematically reviews the research progress of key technologies for agricultural machinery power chassis in hilly and mountainous areas, and conducts an analysis of five [...] Read more.
The terrain in hilly and mountainous areas is complex, and the level of agricultural mechanization is low. This article systematically reviews the research progress of key technologies for agricultural machinery power chassis in hilly and mountainous areas, and conducts an analysis of five aspects: the power system, walking system, steering system, leveling system, and automatic navigation and path tracking control system. In this manuscript, (1) in terms of the power system, the technical characteristics and application scenarios of mechanical, hydraulic, and electric drive systems were compared. (2) In terms of the walking system, the performance differences between wheeled, crawler, legged, and composite walking devices and the application of suspension systems in agricultural machinery chassis were discussed. (3) In terms of the steering system, the steering characteristics of wheeled chassis and crawler chassis were analyzed, respectively. (4) In terms of the leveling system, the research progress on hydraulic and electric leveling mechanisms, as well as intelligent leveling control algorithms, was summarized. (5) The technology of automatic navigation and path tracking for agricultural machinery chassis was discussed, focusing on multi-sensor fusion and advanced control algorithms. In the future, agricultural machinery chassis will develop towards the directions of intelligence, automation, greening, being lightweight, and being multi-functionality. Full article
Show Figures

Figure 1

17 pages, 3800 KiB  
Article
Quasi-Static Tractor Implement Model for Assessing Energy Savings in Partial Electrification
by Matteo Berto, Matteo Beligoj and Luigi Alberti
Energies 2025, 18(11), 2766; https://doi.org/10.3390/en18112766 - 26 May 2025
Viewed by 312
Abstract
This paper presents a quasi-static model for assessing potential energy savings through partial electrification of a land leveler implement. The quasi-static model simulates the behavior of the hydraulic circuit components, including the pump and a spool-type flow divider, for a commercial land leveler [...] Read more.
This paper presents a quasi-static model for assessing potential energy savings through partial electrification of a land leveler implement. The quasi-static model simulates the behavior of the hydraulic circuit components, including the pump and a spool-type flow divider, for a commercial land leveler used in agricultural applications. Two electrification schemes are presented. In the first scheme, the pump, originally driven at fixed speed by the PTO, is driven at variable speed by an electric drive, with no changes in the hydraulic circuit. In the second electrification scheme, the decentralization of the hydraulic system is implemented by using separate variable-speed pumps for each actuator. Results show significant potential energy savings of 9–22% with the first electrification scheme and 45–53% with the second scheme, compared to the traditional non-electrified setup. Our findings demonstrate that electrification could be a strategic choice to improve the efficiency of tractor implements and agricultural machinery. Full article
(This article belongs to the Special Issue Advanced Technologies for Electrified Transportation and Robotics)
Show Figures

Figure 1

21 pages, 3249 KiB  
Article
Precision and Stability in Hydrostatic Transmissions with Robust H Control Under Parametric Uncertainties
by Santosh Kr. Mishra, Gyan Wrat, Prabhat Ranjan, Joseph T. Jose and Jayanta Das
J. Exp. Theor. Anal. 2025, 3(2), 14; https://doi.org/10.3390/jeta3020014 - 13 May 2025
Viewed by 594
Abstract
Hydrostatic transmissions are essential in applications demanding variable torque and speed, such as mining and agricultural machinery, due to their compact design, high power-to-weight ratio, and efficient variable speed control. Despite these advantages, their inherent nonlinearities and susceptibility to parametric uncertainties pose significant [...] Read more.
Hydrostatic transmissions are essential in applications demanding variable torque and speed, such as mining and agricultural machinery, due to their compact design, high power-to-weight ratio, and efficient variable speed control. Despite these advantages, their inherent nonlinearities and susceptibility to parametric uncertainties pose significant challenges for precise motion control. This study presents a comparative analysis of classical PID and robust H-infinity controllers for regulating the speed of hydraulic motors under varying torsional loads. A linearized uncertain system model is developed using upper Linear Fractional Transformations (LFTs) to capture key parametric uncertainties. A simplified H-infinity controller is designed to robustly manage system dynamics, particularly addressing phase lags induced by uncertain loads. Simulation results demonstrate that the H-infinity controller offers superior performance over the PID controller in terms of stability, disturbance rejection, and robustness to load fluctuations. This work contributes a practically viable robust control solution for improving the reliability and precision of electro-hydraulic systems, particularly in demanding, real-world environments. Full article
Show Figures

Figure 1

21 pages, 4759 KiB  
Article
Pump Model for Drip Irrigation with Saline Water, Powered by a Photovoltaic Solar Panel with Direct and Intermittent Application
by Vinicius Cossich, Marcio Antonio Vilas Boas, Antonio Augusto Alves Pereira, Renato Guardini, Allan Remor Lopes, Naila Cristina Kepp, Dário Machado Júnior and Altair Bertonha
Sustainability 2025, 17(9), 3981; https://doi.org/10.3390/su17093981 - 28 Apr 2025
Viewed by 654
Abstract
Irrigation is crucial for agricultural production in dry regions. However, water salinity is a risk for the soil–plant combination and the longevity of the materials that make up the irrigation system. Drip irrigation using direct and intermittent photovoltaic pumping can be key for [...] Read more.
Irrigation is crucial for agricultural production in dry regions. However, water salinity is a risk for the soil–plant combination and the longevity of the materials that make up the irrigation system. Drip irrigation using direct and intermittent photovoltaic pumping can be key for optimizing irrigation with saline water. This article compares two pump models to understand which has the greatest capacity to reduce the risks of salinity in irrigated agriculture, aiming to make the system more sustainable through more efficient irrigation, without the need for highly expensive corrective cleaning measures. The ideal pump was evaluated using the motor pump’s electrical and hydraulic parameters and the water’s quality parameters applied by irrigation. The results indicate that the diaphragm pump is more sensitive to disturbances in irrigation management when compared to the centrifugal pump; however, it stands out in the following areas: it is more efficient, that is, it operates for more hours of the day with a direct connection with the photovoltaic panels; delivers better distribution uniformity in both continuous and pulsed application; and it makes the drip irrigation system with saline water more resistant to clogging. Full article
(This article belongs to the Special Issue Environmental and Social Sustainability in Rural Development)
Show Figures

Figure 1

20 pages, 1702 KiB  
Article
Estimation of Hydraulic Properties of Growing Media from Numerical Inversion of Mini Disk Infiltrometer Data
by Hadi Hamaaziz Muhammed, Ruediger Anlauf and Diemo Daum
Hydrology 2025, 12(5), 100; https://doi.org/10.3390/hydrology12050100 - 22 Apr 2025
Viewed by 591
Abstract
Accurately determining the hydraulic properties of soilless growing media is essential for optimizing water management in container-based horticulture and agriculture. The very rapid estimation of hydraulic properties using a Mini Disk Infiltrometer has great potential for practical use compared to the very time-consuming [...] Read more.
Accurately determining the hydraulic properties of soilless growing media is essential for optimizing water management in container-based horticulture and agriculture. The very rapid estimation of hydraulic properties using a Mini Disk Infiltrometer has great potential for practical use compared to the very time-consuming standard methods. The objectives of this study were (1) to calibrate simulated cumulative stepwise infiltration under different suctions with the measured data from Mini Disk Infiltrometer, (2) to evaluate the efficiency of the Hydrus-2D inverse model to predict water dynamics through substrates, (3) to compare the substrate hydraulic parameters obtained through the numerical inversion model to those obtained via laboratory methods, and (4) to provide recommendations on how to effectively use the MDI-based method for practical applications. This study employs numerical inversion of Mini Disk Infiltrometer (MDI) data to estimate the hydraulic parameters of three different growing media, namely white peat, thermally treated wood fibre (WF4), and Seedling substrate. Infiltration experiments were conducted under suction-controlled conditions using varying initial moisture contents, followed by numerical simulations using the Hydrus-2D model and the Van Genuchten equation to describe the hydraulic parameters. The results demonstrated strong agreement between observed and simulated infiltration data, particularly under moistened conditions, with high R2 > 0.9 values indicating the model’s effectiveness. However, discrepancies were observed for substrates in their initial dry state, suggesting limitations in capturing early-stage infiltration dynamics. The findings highlighted the potential of numerical inversion methods for estimating substrate hydraulic properties but also revealed the need for methodological refinements. Modifying the Van Genuchten model or exploring alternative approaches such as the Brooks and Corey model may enhance accuracy. Extending the suction range of measurement techniques is also recommended to improve parameter estimation. This study provides important evidence that the inverse method based on MDI is an effective tool for rapidly determining the hydraulic functions of substrates, which are important in promoting sustainable horticultural practices. Future research should focus on refining parameter estimation methods and addressing model limitations to enhance the reliability of hydraulic property assessments in soilless growing media. Full article
Show Figures

Figure 1

28 pages, 16181 KiB  
Article
Investigating the Potential of Using Walnut Shell Particles for Manufacturing Cement-Bonded Particle Boards
by Anas El Hamri, Yassine Mouhib, Hassan Chkala, Oussama Oulhakem, Mohammed Chigr and Nour-Eddine El Mansouri
J. Compos. Sci. 2025, 9(4), 183; https://doi.org/10.3390/jcs9040183 - 10 Apr 2025
Viewed by 1231
Abstract
In the search for eco-friendly and resource-efficient alternatives to conventional building materials, agricultural residues are gaining increasing attention as reinforcements in cement-based composites. This study investigates the potential of walnut shell particles (WSPs), a lignocellulosic bio-product, as a sustainable reinforcing agent in walnut [...] Read more.
In the search for eco-friendly and resource-efficient alternatives to conventional building materials, agricultural residues are gaining increasing attention as reinforcements in cement-based composites. This study investigates the potential of walnut shell particles (WSPs), a lignocellulosic bio-product, as a sustainable reinforcing agent in walnut shell cement boards (WSCBs). Using super white cement (SWC) as a binder, boards were manufactured with WSP content ranging from 10% to 50% by weight, targeting a density of 1300 kg/m3, a 10 mm thickness, and a water-to-cement ratio of 0.6:1. The mixtures were cold-pressed at ambient temperature using a hydraulic press at 3 MPa for 24 h, followed by curing for 28 days under ambient conditions. Physical properties such as density, water absorption, and thickness swelling were assessed, along with mechanical performance, through flexural testing. Fracture surfaces and internal microstructures were examined using scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS). Functional groups and chemical reactions were monitored using FTIR, while thermal analysis (TGA and DSC), as well as measurements of thermal conductivity and resistance, provided comprehensive insights into the thermal behavior, insulating performance, and energy efficiency potential of the boards. Results demonstrate that the board with 30% WSP exhibited an optimal balance of physical and mechanical properties, achieving a 24 h water absorption of 14.05% and a modulus of rupture (MOR) of 6.53 MPa, making it suitable for non-structural applications. The board with 50% WSP exhibited the best thermal insulation performance, with a low thermal conductivity of 0.079 W/m·K. These findings highlight the potential of recycled agricultural materials in enhancing building materials’ performance, contributing to sustainable, eco-friendly construction practices. Full article
Show Figures

Graphical abstract

54 pages, 19999 KiB  
Review
Hydrogel-Based Continuum Soft Robots
by Honghong Wang, Jingli Du and Yi Mao
Gels 2025, 11(4), 254; https://doi.org/10.3390/gels11040254 - 27 Mar 2025
Cited by 5 | Viewed by 2952
Abstract
This paper comprehensively reviews the latest advances in hydrogel-based continuum soft robots. Hydrogels exhibit exceptional flexibility and adaptability compared to traditional robots reliant on rigid structures, making them ideal as biomimetic robotic skins and platforms for constructing highly accurate, real-time responsive sensory interfaces. [...] Read more.
This paper comprehensively reviews the latest advances in hydrogel-based continuum soft robots. Hydrogels exhibit exceptional flexibility and adaptability compared to traditional robots reliant on rigid structures, making them ideal as biomimetic robotic skins and platforms for constructing highly accurate, real-time responsive sensory interfaces. The article systematically summarizes recent research developments across several key dimensions, including application domains, fabrication methods, actuator technologies, and sensing mechanisms. From an application perspective, developments span healthcare, manufacturing, and agriculture. Regarding fabrication techniques, the paper extensively explores crosslinking methods, additive manufacturing, microfluidics, and other related processes. Additionally, the article categorizes and thoroughly discusses various hydrogel-based actuators responsive to solute/solvent variations, pH, chemical reactions, temperature, light, magnetic fields, electric fields, hydraulic/electro-osmotic stimuli, and humidity. It also details the strategies for designing and implementing diverse sensors, including strain, pressure, humidity, conductive, magnetic, thermal, gas, optical, and multimodal sensors. Finally, the paper offers an in-depth discussion of the prospective applications of hydrogel-based continuum soft robots, particularly emphasizing their potential in medical and industrial fields. Concluding remarks include a forward-looking outlook highlighting future challenges and promising research directions. Full article
Show Figures

Graphical abstract

16 pages, 6873 KiB  
Article
Size Effect on Energy Characteristics of Axial Flow Pump Based on Entropy Production Theory
by Hongliang Wang, Xiaofeng Wu, Xiao Xu, Suhao Bian and Fan Meng
Machines 2025, 13(3), 252; https://doi.org/10.3390/machines13030252 - 20 Mar 2025
Viewed by 477
Abstract
To investigate the size effect on the energy characteristics of axial flow pumps, this study scaled the original model size based on the head similarity principle, resulting in four size schemes (Schemes 2–4 correspond to 3, 5, and 10 times the size of [...] Read more.
To investigate the size effect on the energy characteristics of axial flow pumps, this study scaled the original model size based on the head similarity principle, resulting in four size schemes (Schemes 2–4 correspond to 3, 5, and 10 times the size of Scheme 1, respectively). By solving the unsteady Reynolds-averaged Navier–Stokes (URANS) equations with the Shear Stress Transport (SST) k-omega turbulence model, the external characteristic parameters and internal flow field structures were predicted. Additionally, the spatial distribution of internal hydraulic losses was analyzed using entropy generation theory. The results revealed three key findings: (1) the efficiency of axial flow pumps significantly improves with increasing size ratio, with Scheme 4 exhibiting a 6.1% efficiency increase compared to Scheme 1; (2) as the size ratio increases, the entropy production coefficients of all hydraulic components decrease, with the impeller and guide vanes in Scheme 4 showing reductions of 55.1% and 56.5%, respectively, compared to Scheme 1; (3) the high entropy generation coefficient regions in the impeller and guide vanes are primarily concentrated near the rim, with their area decreasing as the size ratio increases. Specifically, the entropy production coefficients at the rim of impeller and guide vanes in Scheme 4 decreased by 84.85% and 58.2%, respectively, compared to Scheme 1. These findings provide valuable insights for the selection and optimization of axial flow pumps in applications such as cross-regional water transfer, agricultural irrigation, and urban drainage systems. Full article
(This article belongs to the Section Turbomachinery)
Show Figures

Figure 1

13 pages, 2398 KiB  
Article
Evaluating the Impact of Nano-Silica and Silica Hydrogel Amendments on Soil Water Retention and Crop Yield in Rice and Clover Under Variable Irrigation Conditions
by Mohamed A. Abd El-Aziz, Mohssen Elbagory, Ahmed A. Arafat, Hesham M. Aboelsoud, Sahar El-Nahrawy, Tamer H. Khalifa and Alaa El-Dein Omara
Agronomy 2025, 15(3), 652; https://doi.org/10.3390/agronomy15030652 - 5 Mar 2025
Cited by 4 | Viewed by 1333
Abstract
The use of water-efficient soil amendments has gained increasing importance in agriculture, particularly in regions facing water scarcity. So, this study evaluates the impact of silica and nano-silica hydrogels on soil water retention, crop yield, and crop water productivity under variable irrigation regimes. [...] Read more.
The use of water-efficient soil amendments has gained increasing importance in agriculture, particularly in regions facing water scarcity. So, this study evaluates the impact of silica and nano-silica hydrogels on soil water retention, crop yield, and crop water productivity under variable irrigation regimes. Using a randomized complete block design with furrow irrigation, the experiment tested different hydrogel application rates and irrigation levels in rice (Oryza sativa L.) and clover (Trifolium alexandrinum L.) across two growing seasons. Statistical tests, including ANOVA and t-tests, confirm that nano-silica hydrogel significantly improves soil properties, yield, and crop water productivity (CWP), especially at moderate irrigation levels (70–90% of water requirements). In the first season, nano-silica hydrogel enhanced rice yield, with a maximum yield of 10.76 tons ha−1 with 90% irrigation and 119 kg ha−1 of hydrogel compared with other treatments. In the second season, clover yields were also positively affected, with the highest fresh forage yield of 5.02 tons ha−1 with 90% irrigation and 119 kg ha−1 nano-silica hydrogel. Despite seasonal variation, nano-silica hydrogel consistently outperformed silica hydrogel in terms of improving soil water retention, reducing bulk density, and enhancing hydraulic conductivity across different irrigation levels. Principal Component Analysis (PCA) revealed that nano-silica hydrogel significantly improved soil water retention properties, including the water-holding capacity (WHC), field capacity (FC), and available water (AW), and reduced the wilting point (WP). These improvements, in turn, led to increased crop yield and water productivity, particularly at moderate irrigation levels (70–90% of the crop’s total water requirements. These findings highlight the potential of nano-silica hydrogel as an effective amendment for improving soil water retention, enhancing crop productivity, and increasing crop water productivity under reduced irrigation conditions. Full article
(This article belongs to the Special Issue Nano-Farming: Crucial Solutions for the Future)
Show Figures

Figure 1

Back to TopTop