Investigating the Potential of Using Walnut Shell Particles for Manufacturing Cement-Bonded Particle Boards
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Walnut Shell Particles (WSPs)
2.1.2. Super White Cement (SWC)
2.2. Production of Walnut Shell Cement Boards (WSCBs)
2.3. Physical Characterization of the Boards
2.4. Mechanical Characterization of the Boards
2.5. Microstructural Analysis
2.6. Fourier Transform Infrared Spectroscopy Analysis
2.7. Thermal Analysis
2.8. Thermal Conductivity and Thermal Resistance of the Boards
2.9. Data Analysis
3. Results and Discussion
3.1. Physical Properties
3.1.1. Density
3.1.2. Water Absorption and Thickness Swelling
3.2. Mechanical Properties
3.3. Microstructural Analysis
3.3.1. Scanning Electron Microscopy (SEM)
3.3.2. Energy Dispersive Spectroscopy (EDS)
3.4. Fourier Transform Infrared Spectroscopy (FTIR)
3.5. Thermal Analysis
3.6. Thermal Conductivity and Thermal Resistance
4. Conclusions
- The incorporation of WSP significantly influenced both the physical and mechanical properties of WSCB. At WSP contents up to 30%, the boards maintained acceptable density, water absorption (WA), and thickness swelling (TS), meeting Bison standards while also exhibiting improved flexural performance. WSCB3 achieved the highest modulus of rupture (MOR) and modulus of elasticity (MOE), attributed to good dispersion and strong particle–matrix bonding. Beyond 30% WSP, performance declined due to increased porosity, water uptake, and void formation caused by poor workability and particle agglomeration.
- Microstructural analysis (SEM/EDS) revealed improved particle bonding and reduced microcracks at 20–30% WSP, while higher WSP content introduced porosity and voids that compromised integrity. Elevated calcium and silicon levels, along with a favorable Ca/Si ratio at the WSP–cement interface, suggested the formation of interlocking structures that further strengthened the composite.
- FTIR analysis identified chemical transformations within WSCB, particularly at 20–30% WSP content, including the formation of calcium carbonate and C-S-H gel, which contributed to enhanced mechanical properties. The increased intensity of –OH group bands reflected the hydrophilic nature of WSP, influencing hydration and carbonation processes.
- TG/DSC analysis confirmed the high-temperature resistance of WSP and distinct thermal behaviors of WSCB3 boards. The porous structure of WSP promoted natural carbonation within the cement matrix, enhancing CO2 permeability and facilitating CaCO3 formation. These processes improved durability and supported additional C-S-H phase formation.
- Thermal conductivity was significantly reduced from 0.16957 W/(m·K) in pure cement boards to 0.07914 W/(m·K) in WSCB5 (50% WSP), with a corresponding increase in thermal resistance. These improvements are attributed to lower density and higher porosity, as trapped air within the porous structure disrupts heat transfer pathways, enhancing thermal insulation.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CBPB | Cement-Bonded Particleboard |
WSP | Walnut Shell Particles |
WSCB | Walnut Shell Cement Boards |
SWC | Super White Cement |
WA | Water Absorption |
TS | Thickness Swelling |
SEM | Scanning Electron Microscopy |
EDS | Energy Dispersive Spectroscopy |
XRF | X-Ray Fluorescence |
TG | Thermogravimetric Analysis |
DSC | Differential Scanning Calorimetry |
FTIR | Fourier Transformed Infrared |
WSCB 1 | Boards with 10% Walnut Shell Particles |
WSCB 2 | Boards with 20% Walnut Shell Particles |
WSCB 3 | Boards with 30% Walnut Shell Particles |
WSCB 4 | Boards with 40% Walnut Shell Particles |
WSCB 5 | Boards with 50% Walnut Shell Particles |
C–S–H | Calcium silicate hydrate |
References
- Li, X.; Qin, D.; Hu, Y.; Ahmad, W.; Ahmad, A.; Aslam, F.; Joyklad, P. A Systematic Review of Waste Materials in Cement—Based Composites for Construction Applications. J. Build. Eng. 2022, 45, 103447. [Google Scholar] [CrossRef]
- Tura, N.; Hanski, J.; Ahola, T.; Ståhle, M.; Piiparinen, S.; Valkokari, P. Unlocking Circular Business: A Framework of Barriers and Drivers. J. Clean. Prod. 2019, 212, 90–98. [Google Scholar] [CrossRef]
- Fan, Y.V.; Lee, C.T.; Lim, J.S.; Klemeš, J.J.; Le, P.T.K. Cross-Disciplinary Approaches towards Smart, Resilient and Sustainable Circular Economy. J. Clean. Prod. 2019, 232, 1482–1491. [Google Scholar] [CrossRef]
- Benazzouk, A.; Douzane, O.; Mezreb, K.; Laidoudi, B.; Quéneudec, M. Thermal Conductivity of Cement Composites Containing Rubber Waste Particles: Experimental Study and Modelling. Constr. Build. Mater. 2008, 22, 573–579. [Google Scholar] [CrossRef]
- Bonnet-Masimbert, P.-A.; Gauvin, F.; Brouwers, H.J.H.; Amziane, S. Study of Modifications on the Chemical and Mechanical Compatibility between Cement Matrix and Oil Palm Fibres. Results Eng. 2020, 7, 100150. [Google Scholar] [CrossRef]
- Frybort, S.; Mauritz, R.; Teischinger, A.; Müller, U. Cement Bonded Composites—A Mechanical Review. BioResources 2008, 3, 602–626. [Google Scholar] [CrossRef]
- Cabral, M.R.; Nakanishi, E.Y.; Dos Santos, V.; Gauss, C.; Dos Santos, S.F.; Fiorelli, J. Evaluation of Accelerated Carbonation Curing in Cement-Bonded Balsa Particleboard. Mater. Struct. 2018, 51, 1–14. [Google Scholar] [CrossRef]
- Nasser, R.A.; Salem, M.Z.M.; Al-Mefarrej, H.A.; Aref, I.M. Use of Tree Pruning Wastes for Manufacturing of Wood Reinforced Cement Composites. Cem. Concr. Compos. 2016, 72, 246–256. [Google Scholar] [CrossRef]
- Liang, C.; Zhang, Y.; Wu, R.; Yang, D.; Ma, Z. The Utilization of Active Recycled Powder from Various Construction Wastes in Preparing Ductile Fiber-Reinforced Cementitious Composites: A Case Study. Case Stud. Constr. Mater. 2021, 15, e00650. [Google Scholar] [CrossRef]
- Duan, Z.; Deng, Q.; Liang, C.; Ma, Z.; Wu, H. Upcycling of Recycled Plastic Fiber for Sustainable Cementitious Composites: A Critical Review and New Perspective. Cem. Concr. Compos. 2023, 142, 105192. [Google Scholar] [CrossRef]
- Yang, D.; Zhao, J.; Ahmad, W.; Nasir Amin, M.; Aslam, F.; Khan, K.; Ahmad, A. Potential Use of Waste Eggshells in Cement-Based Materials: A Bibliographic Analysis and Review of the Material Properties. Constr. Build. Mater. 2022, 344, 128143. [Google Scholar] [CrossRef]
- Kotb, M.; Assas, M.; Abd-Elrahman, H. Effect of Grounded Bone Powder Addition on the Mechanical Properties of Cement Mortar. WIT Trans. Ecol. Environ. 2010, 138, 201–212. [Google Scholar]
- Acda, M.N. Waste Chicken Feather as Reinforcement in Cement-Bonded Composites. Philipp. J. Sci. 2010, 139, 161–166. [Google Scholar]
- Islam, M.R.; Rahman, F.; Islam, M.N.; Rana, M.N.; Nath, S.K.; Ashaduzzaman, M.; Shams, M.I. Cement-Bonded Lignocellulosic Panel (CLP): A Promising Environmental Friendly Construction Material for Conservation of Forest Resources. In Handbook of Ecomaterials; Martínez, L.M.T., Kharissova, O.V., Kharisov, B.I., Eds.; Springer International Publishing: Cham, Germany, 2018; pp. 1–13. ISBN 978-3-319-48281-1. [Google Scholar]
- Brasileiro, G.A.M.; Vieira, J.A.R.; Barreto, L.S. Use of Coir Pith Particles in Composites with Portland Cement. J. Environ. Manag. 2013, 131, 228–238. [Google Scholar] [CrossRef]
- Ayrilmis, N.; Hosseinihashemi, S.K.; Karimi, M.; Kargarfard, A.; Ashtiani, H.S. Technological Properties of Cement-Bonded Composite Board Produced with the Main Veins of Oil Palm (Elaeis guineensis) Particles. BioResources 2017, 12, 3583–3600. [Google Scholar] [CrossRef]
- Aggarwal, L.K.; Agrawal, S.P.; Thapliyal, P.C.; Karade, S.R. Cement-Bonded Composite Boards with Arhar Stalks. Cem. Concr. Compos. 2008, 30, 44–51. [Google Scholar] [CrossRef]
- Mendes, R.F.; Vilela, A.P.; Farrapo, C.L.; Mendes, J.F.; Denzin Tonoli, G.H.; Mendes, L.M. Lignocellulosic Residues in Cement-Bonded Panels. In Sustainable and Nonconventional Construction Materials Using Inorganic Bonded Fiber Composites; Elsevier: Amsterdam, The Netherlands, 2017; pp. 3–16. ISBN 978-0-08-102001-2. [Google Scholar]
- Ferraz, P.F.P.; Mendes, R.F.; Marin, D.B.; Paes, J.L.; Cecchin, D.; Barbari, M. Agricultural Residues of Lignocellulosic Materials in Cement Composites. Appl. Sci. 2020, 10, 8019. [Google Scholar] [CrossRef]
- Pirayesh, H.; Saadatnia, M.A. Effects of Accelerating Agent and SiO2 Nano-Powder on the Mechanical and Physical Characteristics of Nut Shell–Cement Based Composites. Mater. Struct. 2016, 49, 3435–3443. [Google Scholar] [CrossRef]
- El Hamri, A.; Mouhib, Y.; Ourmiche, A.; Chigr, M.; El Mansouri, N.-E. Study of the Effect of Cedar Sawdust Content on Physical and Mechanical Properties of Cement Boards. Molecules 2024, 29, 4399. [Google Scholar] [CrossRef]
- Ghofrani, M.; Mokaram, K.N.; Ashori, A.; Torkaman, J. Fiber-Cement Composite Using Rice Stalk Fiber and Rice Husk Ash: Mechanical and Physical Properties. J. Compos. Mater. 2015, 49, 3317–3322. [Google Scholar] [CrossRef]
- Domingos, I.; Ferreira, J.; Cruz-Lopes, L.P.; Esteves, B. Liquefaction and Chemical Composition of Walnut Shells. Open Agric. 2022, 7, 249–256. [Google Scholar] [CrossRef]
- Martínez, M.L.; Labuckas, D.O.; Lamarque, A.L.; Maestri, D.M. Walnut (Juglans regia, L.): Genetic Resources, Chemistry, by-Products. J. Sci. Food Agric. 2010, 90, 1959–1967. [Google Scholar] [CrossRef]
- FAO. FAOSTAT—Crops and Livestock Products. Food and Agriculture Organization of the United Nations. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 14 September 2024).
- Houmanat, K.; Abdellah, K.; Hssaini, L.; Razouk, R.; Hanine, H.; Jaafary, S.; Charafi, J. Molecular Diversity of Walnut (Juglans regia, L.) Among Two Major Areas in Morocco in Contrast with Foreign Varieties. Int. J. Fruit. Sci. 2021, 21, 180–192. [Google Scholar] [CrossRef]
- Lansari, A.; El Hassani, A.; Nabil, D.; Germain, E. Preliminary Results on Walnut Germplasm Evaluation in Morocco. IV Int. Walnut Symp. 2001, 544, 27–35. [Google Scholar] [CrossRef]
- Kabiri, G.; Bouda, S.; Elhansali, M.; Haddioui, A. Morphological and Pomological Variability Analysis of Walnut (Juglans regia, L.) Genetic Resources from the Middle and High Atlas of Morocco. Atlas J. Biol. 2018, 575–582. [Google Scholar] [CrossRef]
- Pirayesh, H.; Khanjanzadeh, H.; Salari, A. Effect of Using Walnut/Almond Shells on the Physical, Mechanical Properties and Formaldehyde Emission of Particleboard. Compos. Part. B Eng. 2013, 45, 858–863. [Google Scholar] [CrossRef]
- Dahchour, A.; Hajjaji, S.E. Management of Solid Waste in Morocco. In Waste Management in MENA Regions; Negm, A.M., Shareef, N., Eds.; Springer Water; Springer International Publishing: Cham, Germany, 2020; pp. 13–33. ISBN 978-3-030-18349-3. [Google Scholar]
- Babatunde, A. Durability Characteristics of Cement-Bonded Particleboards Manufactured from Maize Stalk Residue. J. For. Res. 2011, 22, 111–115. [Google Scholar] [CrossRef]
- Abdolhosseini Sarsari, N.; Pourmousa, S.; Tajdini, A. Physical and Mechanical Properties of Walnut Shell Flour-Filled Thermoplastic Starch Composites. BioResources 2016, 11, 6968–6983. [Google Scholar] [CrossRef]
- Jannat, N.; Latif Al-Mufti, R.; Hussien, A. Eggshell and Walnut Shell in Unburnt Clay Blocks. CivilEng 2022, 3, 263–276. [Google Scholar] [CrossRef]
- Peng, S.; Qiu, K.; Yang, B.; Ai, J.; Zhou, A. Experimental Study on the Durability Performance of Sustainable Mortar with Partial Replacement of Natural Aggregates by Fiber-Reinforced Agricultural Waste Walnut Shells. Sustainability 2024, 16, 824. [Google Scholar] [CrossRef]
- Abdulwahid, M.Y.; Akinwande, A.A.; Kamarou, M.; Romanovski, V.; Al-Qasem, I.A. The Production of Environmentally Friendly Building Materials out of Recycling Walnut Shell Waste: A Brief Review. Biomass Convers. Biorefinery 2024, 14, 24963–24972. [Google Scholar] [CrossRef]
- Melichar, T.; Meszarosova, L.; Bydzovsky, J.; Ledl, M.; Vasas, S. The Effect of Moisture on the Properties of Cement-Bonded Particleboards Made with Non-Traditional Raw Materials. J. Wood Sci. 2021, 67, 75. [Google Scholar] [CrossRef]
- Francioso, V.; Moro, C.; Velay-Lizancos, M. Effect of Recycled Concrete Aggregate (RCA) on Mortar’s Thermal Conductivity Susceptibility to Variations of Moisture Content and Ambient Temperature. J. Build. Eng. 2021, 43, 103208. [Google Scholar] [CrossRef]
- Ferraz, P.F.P.; Mendes, R.F.; Ferraz, G.A.S.; Carvalho, V.R.; Avelino, M.R.C.; Narciso, C.R.P.; Eugênio, T.M.C.; Cadavid, V.G.; Bambi, G. Thermal Analysis of Cement Panels with Lignocellulosic Materials for Building. Agron. Res. 2020, 18, 797–805. [Google Scholar] [CrossRef]
- PNM EN 325; Panneaux à Base de Bois—Détermination Des Dimensions Des Éprouvettes. Public Service Company of New Mexico: Rabat, Morocco, 2012.
- EN 323; Wood-Based Panels—Determination of Density. The European Committee for Standardization: Brussels, Belgium, 1993.
- EN 317; Particleboards and Fibreboards—Determination of Swelling in Thickness after Immersion in Water. The European Committee for Standardization: Brussels, Belgium, 1993.
- EN 310; Wood-Based Panels—Determination of Modulus of Elasticity in Bending and of Bending Strength. The European Committee for Standardization: Brussels, Belgium, 1993.
- ASTM-C518; Standard Test Method for Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter Apparatus (C 518). American Society of Testing and Materials (ASTM): West Conshohocken, PA, USA, 2010.
- Okino, E.Y.A.; de Souza, M.R.; Santana, M.A.E.; da Alves, M.V.S.; Sousa, M.E.D.; Teixeira, D.E. Cement-Bonded Wood Particleboard with a Mixture of Eucalypt and Rubberwood. Cem. Concr. Compos. 2004, 26, 729–734. [Google Scholar] [CrossRef]
- Antwi-Boasiako, C.; Ofosuhene, L.; Boadu, K.B. Suitability of Sawdust from Three Tropical Timbers for Wood-Cement Composites. J. Sustain. For. 2018, 37, 414–428. [Google Scholar] [CrossRef]
- Ali, I.M.; Nasr, M.S.; Naje, A.S. Enhancement of Cured Cement Using Environmental Waste: Particleboards Incorporating Nano Slag. Open Eng. 2020, 10, 273–281. [Google Scholar] [CrossRef]
- He, P.; Hossain, U.; Poon, C.S.; Tsang, D.C.W. Mechanical, Durability and Environmental Aspects of Magnesium Oxychloride Cement Boards Incorporating Waste Wood. J. Clean. Prod. 2019, 207, 391–399. [Google Scholar] [CrossRef]
- Odeyemi, S.O.; Abdulwahab, R.; Adeniyi, A.G.; Atoyebi, O.D. Physical and Mechanical Properties of Cement-Bonded Particle Board Produced from African Balsam Tree (Populous balsamifera) and Periwinkle Shell Residues. Results Eng. 2020, 6, 100126. [Google Scholar] [CrossRef]
- Zhou, Y.; Kamdem, D.P. Effect of Cement/Wood Ratio on the Properties of Cement-Bonded Particleboard Using CCA-Treated Wood Removed from Service (Composites and Manufactured Products). For. Prod. J. 2002, 52, 77–82. [Google Scholar]
- Farag, E.; Alshebani, M.; Elhrari, W.; Klash, A.; Shebani, A. Production of Particleboard Using Olive Stone Waste for Interior Design. J. Build. Eng. 2020, 29, 101119. [Google Scholar] [CrossRef]
- Mancera, C.; El Mansouri, N.-E.; Pelach, M.A.; Francesc, F.; Salvadó, J. Feasibility of Incorporating Treated Lignins in Fiberboards Made from Agricultural Waste. Waste Manag. 2012, 32, 1962–1967. [Google Scholar] [CrossRef]
- Bilcati, G.K.; Matoski, A.; Trianoski, R.; Lengowski, E. Potential Use of Curaua Fiber (Ananas erectifolius) for Cementitious Production Composite Uso Potencial de La Fibra de Curauá (Ananas acutifolius) Para La Fabricación de Compuestos Cementicios. Rev. Ing. Constr. 2018, 33, 155–160. [Google Scholar] [CrossRef]
- Hasan, K.M.F.; Horváth, P.G.; Alpár, T. Development of Lignocellulosic Fiber Reinforced Cement Composite Panels Using Semi-Dry Technology. Cellulose 2021, 28, 3631–3645. [Google Scholar] [CrossRef]
- Ashori, A.; Tabarsa, T.; Sepahvand, S. Cement-Bonded Composite Boards Made from Poplar Strands. Constr. Build. Mater. 2012, 26, 131–134. [Google Scholar] [CrossRef]
- Mahzabin, M.S.; Hamid, R.; Badaruzzaman, W.H.W. Evaluation of Chemicals Incorporated Wood Fibre Cement Matrix Properties. J. Eng. Sci. Technol. 2013, 8, 385–398. [Google Scholar] [CrossRef]
- Aras, U.; Kalaycıoğlu, H.; Yel, H.; Kuştaş, S. Utilization of Olive Mill Solid Waste in the Manufacturing of Cement-Bonded Particleboard. J. Build. Eng. 2022, 49, 104055. [Google Scholar] [CrossRef]
- Sotannde, O.A.; Oluwadare, A.O.; Ogedoh, O.; Adeogun, P.F. Evaluation of Cement-Bonded Particle Board Produced Fromafzelia Africanawood Residues. J. Eng. Sci. Technol. 2012, 7, 732–743. [Google Scholar]
- Bisschop, J.; Van Mier, J.G.M. Effect of Aggregates on Drying Shrinkage Microcracking in Cement-Based Composites. Mat. Struct. 2002, 35, 453–461. [Google Scholar] [CrossRef]
- Wen, J.; Wang, B.; Dai, Z.; Shi, X.; Jin, Z.; Wang, H.; Jiang, X. New Insights into the Green Cement Composites with Low Carbon Footprint: The Role of Biochar as Cement Additive/Alternative. Resour. Conserv. Recycl. 2023, 197, 107081. [Google Scholar] [CrossRef]
- Dias, S.; Tadeu, A.; Almeida, J.; Humbert, P.; António, J.; De Brito, J.; Pinhão, P. Physical, Mechanical, and Durability Properties of Concrete Containing Wood Chips and Sawdust: An Experimental Approach. Buildings 2022, 12, 1277. [Google Scholar] [CrossRef]
- Ranachowski, Z.; Ranachowski, P.; Dębowski, T.; Gorzelańczyk, T.; Schabowicz, K. Investigation of Structural Degradation of Fiber Cement Boards Due to Thermal Impact. Materials 2019, 12, 944. [Google Scholar] [CrossRef] [PubMed]
- Miranda De Lima, A.J.; Iwakiri, S.; Satyanarayana, K.G.; Lomelí-Ramírez, M.G. Studies on the Durability of Wood-Cement Particleboards Produced with Residues of Pinus Spp., Silica Fume, and Rice Husk Ash. BioResources 2020, 15, 3064–3086. [Google Scholar] [CrossRef]
- Rossen, J.E.; Scrivener, K.L. Optimization of SEM-EDS to Determine the C–A–S–H Composition in Matured Cement Paste Samples. Mater. Charact. 2017, 123, 294–306. [Google Scholar] [CrossRef]
- Scurtu, D.A.; Kovacs, E.; Senila, L.; Levei, E.A.; Simedru, D.; Filip, X.; Dan, M.; Roman, C.; Cadar, O.; David, L. Use of Vine Shoot Waste for Manufacturing Innovative Reinforced Cement Composites. Appl. Sci. 2022, 13, 134. [Google Scholar] [CrossRef]
- Wei, Y.M.; Fujii, T.; Hiramatsu, Y.; Miyatake, A.; Yoshinaga, S.; Fujii, T.; Tomita, B. A Preliminary Investigation on Microstructural Characteristics of Interfacial Zone between Cement and Exploded Wood Fiber Strand by Using SEM-EDS. J. Wood Sci. 2004, 50, 327–336. [Google Scholar] [CrossRef]
- Tawfik, A.; Mohammed, M.S.; Abd-El-Raoof, F.; Aggor, F.S.; Ahmed, E.M. Heat-Treated Portland Cement Pastes Incorporating Superabsorbent Hydrogels for Precast Applications. Interceram—Int. Ceram. Rev. 2018, 67, 30–37. [Google Scholar] [CrossRef]
- Petkova, V.; Stoyanov, V.; Kostova, B.; Kostov-Kytin, V.; Kalinkin, A.; Zvereva, I.; Tzvetanova, Y. Crystal—Chemical and Thermal Properties of Decorative Cement Composites. Materials 2021, 14, 4793. [Google Scholar] [CrossRef]
- Li, X.; Qiu, J.; Hu, Y.; Ren, X.; He, L.; Zhao, N.; Ye, T.; Zhao, X. Characterization and Comparison of Walnut Shells-Based Activated Carbons and Their Adsorptive Properties. Adsorpt. Sci. Technol. 2020, 38, 450–463. [Google Scholar] [CrossRef]
- Fan, L.; Chen, J.; Guo, J.; Jiang, X.; Jiang, W. Influence of Manganese, Iron and Pyrolusite Blending on the Physiochemical Properties and Desulfurization Activities of Activated Carbons from Walnut Shell. J. Anal. Appl. Pyrolysis 2013, 104, 353–360. [Google Scholar] [CrossRef]
- Hashemian, S.; Salari, K.; Salehifar, H.; Atashi Yazdi, Z. Removal of Azo Dyes (Violet B and Violet 5R) from Aqueous Solution Using New Activated Carbon Developed from Orange Peel. J. Chem. 2013, 2013, 283274. [Google Scholar] [CrossRef]
- Azmi, N.H.; Ali, U.F.; Muhammad Ridwan, F.; Isa, K.M.; Zulkurnai, N.Z.; Aroua, M.K. Preparation of Activated Carbon Using Sea Mango (Cerbera odollam) with Microwave-Assisted Technique for the Removal of Methyl Orange from Textile Wastewater. Desalination Water Treat. 2016, 57, 29143–29152. [Google Scholar] [CrossRef]
- Gallardo, K.; Castillo, R.; Mancilla, N.; Remonsellez, F. Biosorption of Rare-Earth Elements From Aqueous Solutions Using Walnut Shell. Front. Chem. Eng. 2020, 2, 4. [Google Scholar] [CrossRef]
- Haris Javed, M.; Ali Sikandar, M.; Ahmad, W.; Tariq Bashir, M.; Alrowais, R.; Bilal Wadud, M. Effect of Various Biochars on Physical, Mechanical, and Microstructural Characteristics of Cement Pastes and Mortars. J. Build. Eng. 2022, 57, 104850. [Google Scholar] [CrossRef]
- Jain, B.; Sancheti, G.; Jain, V. FTIR Analysis of Silica Fume and Iron Dust Added Concrete. Mater. Today Proc. 2022, 60, 777–781. [Google Scholar] [CrossRef]
- Peschard, A.; Govin, A.; Grosseau, P.; Guilhot, B.; Guyonnet, R. Effect of Polysaccharides on the Hydration of Cement Paste at Early Ages. Cem. Concr. Res. 2004, 34, 2153–2158. [Google Scholar] [CrossRef]
- Bensted, J.; Varma, S.P. Some Applications of Infrared and Raman Spectroscopy in Cement Chemistry. Part 3-Hydration of Portland Cement and Its Constituents. Cem. Technol. 1974, 5, 440–445. [Google Scholar]
- Mollah, M.Y.A.; Yu, W.; Schennach, R.; Cocke, D.L. A Fourier Transform Infrared Spectroscopic Investigation of the Early Hydration of Portland Cement and the Influence of Sodium Lignosulfonate. Cem. Concr. Res. 2000, 30, 267–273. [Google Scholar] [CrossRef]
- Luo, D.; Wei, J. Hydration Kinetics and Phase Evolution of Portland Cement Composites Containing Sodium-Montmorillonite Functionalized with a Non-Ionic Surfactant. Constr. Build. Mater. 2022, 333, 127386. [Google Scholar] [CrossRef]
- Scurtu, D.A.; David, L.; Levei, E.A.; Simedru, D.; Filip, X.; Roman, C.; Cadar, O. Developing Innovative Cement Composites Containing Vine Shoot Waste and Superplasticizers. Materials 2023, 16, 5313. [Google Scholar] [CrossRef]
- Shah, M.A.; Khan, M.N.S.; Kumar, V. Biomass Residue Characterization for Their Potential Application as Biofuels. J. Therm. Anal. Calorim. 2018, 134, 2137–2145. [Google Scholar] [CrossRef]
- Eseyin, A.E.; Steele, P.H.; Pittman, C.U.; Ekpenyong, K.I.; Soni, B. TGA Torrefaction Kinetics of Cedar Wood. J. Biofuels 2016, 7, 20. [Google Scholar] [CrossRef]
- Kamasamudram, K.S.; Ashraf, W.; Landis, E.N.; Khan, R.I. Effects of Ligno– and Delignified– Cellulose Nanofibrils on the Performance of Cement-Based Materials. J. Mater. Res. Technol. 2021, 13, 321–335. [Google Scholar] [CrossRef]
- Yel, H.; He, C.; Urun, E. Performance of Cement-Bonded Wood Particleboards Produced Using Fly Ash and Spruce Planer Shavings. Maderas. Cienc. Y Tecnol. 2022, 24, 1–10. [Google Scholar] [CrossRef]
- Yel, H.; Cavdar, A.D.; Torun, S.B. Effect of Press Temperature on Some Properties of Cement Bonded Particleboard. Maderas. Cienc. Y Tecnol. 2020, 22, 83–92. [Google Scholar] [CrossRef]
- Hafidh, S.A.; Abdullah, T.A.; Hashim, F.G.; Mohmoud, B.K. Effect of Adding Sawdust to Cement on Its Thermal Conductivity and Compressive Strength. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1094, 012047. [Google Scholar] [CrossRef]
- Mendes, J.C. Thermal Properties of Cement-Based Composites; École des Mines de l’Université fédérale d’Ouro Preto: Ouro Preto, Brazil, 2019. [Google Scholar]
- Ye, R.; Fang, X.; Zhang, Z.; Gao, X. Preparation, Mechanical and Thermal Properties of Cement Board with Expanded Perlite Based Composite Phase Change Material for Improving Buildings Thermal Behavior. Materials 2015, 8, 7702–7713. [Google Scholar] [CrossRef]
- Majeed, S.S. Formulating Eco-Friendly Foamed Mortar by Incorporating Sawdust Ash as a Partial Cement Replacement. Sustainability 2024, 16, 2612. [Google Scholar] [CrossRef]
- Espinoza-Herrera, R.; Cloutier, A. Thermal Degradation and Thermal Conductivity of Gypsum-Cement Particleboard. Wood Fiber Sci. 2009, 41, 13–21. [Google Scholar]
- Jannat, N.; Cullen, J.; Abdullah, B.; Latif Al-Mufti, R.; Karyono, K. Thermophysical Properties of Sawdust and Coconut Coir Dust Incorporated Unfired Clay Blocks. Constr. Mater. 2022, 2, 234–257. [Google Scholar] [CrossRef]
- Khedari, J.; Suttisonk, B.; Pratinthong, N.; Hirunlabh, J. New Lightweight Composite Construction Materials with Low Thermal Conductivity. Cem. Concr. Compos. 2001, 23, 65–70. [Google Scholar] [CrossRef]
- Touloum, F.; Younsi, A.; Kaci, A.; Benchabane, A. Formulation of a Composite of Date Palm Wood—Cement. J. Appl. Eng. Sci. Technol. 2017, 2, 7. [Google Scholar] [CrossRef]
- Lamrani, M.; Laaroussi, N.; Khabbazi, A.; Khalfaoui, M.; Garoum, M.; Feiz, A. Experimental Study of Thermal Properties of a New Ecological Building Material Based on Peanut Shells and Plaster. Case Stud. Constr. Mater. 2017, 7, 294–304. [Google Scholar] [CrossRef]
- Lachheb, A.; Elmarhoune, M.; Saadani, R.; Agounoun, R.; Rahmoune, M.; Sbai, K. An Experimental Investigation on the Thermophysical Properties of a Composite Basis of Natural Fibers of Alfa. Int. J. Mech. Mechatron. Eng. IJMME-IJENS 2017, 17, 27–32. [Google Scholar]
- Al Rim, K.; Ledhem, A.; Douzane, O.; Dheilly, R.M.; Queneudec, M. Influence of the Proportion of Wood on the Thermal and Mechanical Performances of Clay-Cement-Wood Composites. Cem. Concr. Compos. 1999, 21, 269–276. [Google Scholar] [CrossRef]
- Balboul, N.; Jaber, M.; Mamouri, A. Mechanical and Physical Properties of Natural Fiber Cement Board for Building Partitions. Phys. Res. Int. 2019, 2, 49–53. [Google Scholar] [CrossRef]
- Cetris Basic Properties of CETRIS® Cement Bonded Particleboard. Available online: https://www.cetris.cz/en/downcnt/?file=pagedata_en/download/158_2.pdf?1700133830 (accessed on 14 September 2024).
- Naghizadeh, Z.; Faezipour, M.; Ebrahimi, G.; Hamzeh, Y. Manufacture of Lignocellulosic Fiber–Cement Boards Containing Foaming Agent. Constr. Build. Mater. 2012, 35, 408–413. [Google Scholar] [CrossRef]
- Ferrandez-Villena, M.; Ferrandez-Garcia, C.E.; Garcia-Ortuño, T.; Ferrandez-Garcia, A.; Ferrandez-Garcia, M.T. Properties of Cement-Bonded Particleboards Made from Canary Islands Palm (Phoenix canariensis Ch.) Trunks and Different Amounts of Potato Starch. Forests 2020, 11, 560. [Google Scholar] [CrossRef]
Components | Content (%) |
---|---|
α-Cellulose | 30.36 |
Hemicelluloses | 24.85 |
Klason Lignin | 34.98 |
Extractives | 10.21 |
Ashes | 1.32 |
Board Types | Raw Material | ||
---|---|---|---|
Walnut Shells (wt%) | Cement (wt%) | Water (g) | |
WSCB1 | 10 | 90 | 550 |
WSCB2 | 20 | 80 | 489 |
WSCB3 | 30 | 70 | 428 |
WSCB4 | 40 | 60 | 367 |
WSCB5 | 50 | 50 | 306 |
Board | Density (kg/m3) | WA 2 h (%) | WA 24 h (%) | TS 2 h (%) | TS 24 h (%) | MOR (MPa) | MOE (MPa) |
---|---|---|---|---|---|---|---|
WSCB 1 | 1585.21 (27) a | 10.46 (0.37) a | 12.62 (0.48) a | 0.16 (0.05) a | 0.24 (0.05) a | 5.07 (0.12) a | 2188.35 (299) ab |
WSCB 2 | 1501.54 (53) b | 11.39 (0.21) ab | 13.10 (0.43) a | 0.29 (0.02) a | 0.46 (0.13) a | 5.75 (0.10) b | 2727.75 (558) a |
WSCB 3 | 1448.09 (25) c | 12.04 (0.32) b | 14.05 (0.65) b | 0.35 (0.05) a | 0.53 (0.05) a | 6.53 (0.29) c | 2858.32 (385) a |
WSCB 4 | 1340.45 (14) d | 21.31 (1.39) c | 23.06 (0.53) c | 1.73 (0.29) b | 2.28 (0.29) b | 4.14 (0.12) d | 2220.51 (539) ab |
WSCB 5 | 1298.95 (13) d | 23.77 (0.54) d | 26.47 (0.48) d | 3.22 (0.15) c | 3.92 (0.33) c | 3.33 (0.18) e | 1891.06 (375) b |
BISON board type HZ [44] | 1200 | -- | -- | 0.8 | 1.2–1.8 | 9 | 3000 |
Detection of Chemical Elements (% by Weight) | Ca/Si | ||||
---|---|---|---|---|---|
C | O | Si | Ca | ||
Walnut Shell Particles | 50.12 | 49.88 | - | - | - |
WSCB3 cement matrix | 8.54 | 53.49 | 8.06 | 29.91 | 3.71 |
WSCB3 reinforcement | 37.11 | 46.51 | 3.06 | 13.32 | 4.35 |
Source | Density | WA 2 h | WA 24 h | TS 2 h | TS 24 h | MOR | MOE |
---|---|---|---|---|---|---|---|
Walnut shells content | *** | *** | *** | *** | *** | *** | *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Hamri, A.; Mouhib, Y.; Chkala, H.; Oulhakem, O.; Chigr, M.; El Mansouri, N.-E. Investigating the Potential of Using Walnut Shell Particles for Manufacturing Cement-Bonded Particle Boards. J. Compos. Sci. 2025, 9, 183. https://doi.org/10.3390/jcs9040183
El Hamri A, Mouhib Y, Chkala H, Oulhakem O, Chigr M, El Mansouri N-E. Investigating the Potential of Using Walnut Shell Particles for Manufacturing Cement-Bonded Particle Boards. Journal of Composites Science. 2025; 9(4):183. https://doi.org/10.3390/jcs9040183
Chicago/Turabian StyleEl Hamri, Anas, Yassine Mouhib, Hassan Chkala, Oussama Oulhakem, Mohammed Chigr, and Nour-Eddine El Mansouri. 2025. "Investigating the Potential of Using Walnut Shell Particles for Manufacturing Cement-Bonded Particle Boards" Journal of Composites Science 9, no. 4: 183. https://doi.org/10.3390/jcs9040183
APA StyleEl Hamri, A., Mouhib, Y., Chkala, H., Oulhakem, O., Chigr, M., & El Mansouri, N.-E. (2025). Investigating the Potential of Using Walnut Shell Particles for Manufacturing Cement-Bonded Particle Boards. Journal of Composites Science, 9(4), 183. https://doi.org/10.3390/jcs9040183