Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (64)

Search Parameters:
Keywords = agricultural byproduct reuse

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1273 KiB  
Article
Fungal Pretreatment of Alperujo for Bioproduct Recovery and Detoxification: Comparison of Two White Rot Fungi
by Viviana Benavides, Gustavo Ciudad, Fernanda Pinto-Ibieta, Elisabet Aranda, Victor Ramos-Muñoz, Maria A. Rao and Antonio Serrano
Agronomy 2025, 15(8), 1851; https://doi.org/10.3390/agronomy15081851 - 31 Jul 2025
Viewed by 210
Abstract
Alperujo, a solid by-product from the two-phase olive oil extraction process, poses significant environmental challenges due to its high organic load, phytotoxicity, and phenolic content. At the same time, it represents a promising feedstock for recovering value-added compounds such as phenols and volatile [...] Read more.
Alperujo, a solid by-product from the two-phase olive oil extraction process, poses significant environmental challenges due to its high organic load, phytotoxicity, and phenolic content. At the same time, it represents a promising feedstock for recovering value-added compounds such as phenols and volatile fatty acids (VFAs). When used as a substrate for white rot fungi (WRF), it also produces ligninolytic enzymes. This study explores the use of two native WRF, Anthracophyllum discolor and Stereum hirsutum, for the biotransformation of alperujo under solid-state fermentation conditions, with and without supplementation of copper and manganese, two cofactors known to enhance fungal enzymatic activity. S. hirsutum stood out for its ability to release high concentrations of phenolic compounds (up to 6001 ± 236 mg gallic acid eq L−1) and VFAs (up to 1627 ± 325 mg L−1) into the aqueous extract, particularly with metal supplementation. In contrast, A. discolor was more effective in degrading phenolic compounds within the solid matrix, achieving a 41% reduction over a 30-day period. However, its ability to accumulate phenolics and VFAs in the extract was limited. Both WRF exhibited increased enzymatic activities (particularly Laccase and Manganese Peroxidase) with the addition of Cu-Mn, highlighting the potential of the aqueous extract as a natural source of biocatalysts. Phytotoxicity assays using Solanum lycopersicum seeds confirmed a partial detoxification of the treated alperujo. However, none of the fungi could entirely eliminate inhibitory effects on their own, suggesting the need for complementary stabilization steps before agricultural reuse. Overall, the results indicate that S. hirsutum, especially when combined with metal supplementation, is better suited for valorizing alperujo through the recovery of bioactive compounds. Meanwhile, A. discolor may be more suitable for detoxifying the solid phase strategies. These findings support the integration of fungal pretreatment into biorefinery schemes that valorize agroindustrial residues while mitigating environmental issues. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

49 pages, 4131 KiB  
Review
Municipal Solid Waste Gasification: Technologies, Process Parameters, and Sustainable Valorization of By-Products in a Circular Economy
by Nicoleta Ungureanu, Nicolae-Valentin Vlăduț, Sorin-Ștefan Biriș, Mariana Ionescu and Neluș-Evelin Gheorghiță
Sustainability 2025, 17(15), 6704; https://doi.org/10.3390/su17156704 - 23 Jul 2025
Viewed by 417
Abstract
Gasification of municipal solid waste and other biogenic residues (e.g., biomass and biowaste) is increasingly recognized as a promising thermochemical pathway for converting non-recyclable fractions into valuable energy carriers, with applications in electricity generation, district heating, hydrogen production, and synthetic fuels. This paper [...] Read more.
Gasification of municipal solid waste and other biogenic residues (e.g., biomass and biowaste) is increasingly recognized as a promising thermochemical pathway for converting non-recyclable fractions into valuable energy carriers, with applications in electricity generation, district heating, hydrogen production, and synthetic fuels. This paper provides a comprehensive analysis of major gasification technologies, including fixed bed, fluidized bed, entrained flow, plasma, supercritical water, microwave-assisted, high-temperature steam, and rotary kiln systems. Key aspects such as feedstock compatibility, operating parameters, technology readiness level, and integration within circular economy frameworks are critically evaluated. A comparative assessment of incineration and pyrolysis highlights the environmental and energetic advantages of gasification. The valorization pathways for main product (syngas) and by-products (syngas, ash, tar, and biochar) are also explored, emphasizing their reuse in environmental, agricultural, and industrial applications. Despite progress, large-scale adoption in Europe is constrained by economic, legislative, and technical barriers. Future research should prioritize scaling emerging systems, optimizing by-product recovery, and improving integration with carbon capture and circular energy infrastructures. Supported by recent European policy frameworks, gasification is positioned to play a key role in sustainable waste-to-energy strategies, biomass valorization, and the transition to a low-emission economy. Full article
(This article belongs to the Special Issue Sustainable Waste Process Engineering and Biomass Valorization)
Show Figures

Figure 1

27 pages, 854 KiB  
Article
An Integrated Symbiotic Production System Design of Agro-Based Industries with Profit and Environmental Objectives
by Melike Kaya Akça, Mete Gündoğan and Gerçek Budak
Sustainability 2025, 17(14), 6396; https://doi.org/10.3390/su17146396 - 12 Jul 2025
Viewed by 314
Abstract
Establishing a sustainable production system requires a more efficient utilization of resources and the adoption of cleaner production methodologies. Specifically, industrial symbiosis promotes collaboration among interconnected industries by exchanging waste, byproducts, and utilities, thereby providing innovative ways to enhance the efficiency of production [...] Read more.
Establishing a sustainable production system requires a more efficient utilization of resources and the adoption of cleaner production methodologies. Specifically, industrial symbiosis promotes collaboration among interconnected industries by exchanging waste, byproducts, and utilities, thereby providing innovative ways to enhance the efficiency of production processes. However, the sustainability of agricultural products and agro-based industries is essential for human survival. This study proposed an integrated symbiotic production system that targets agro-based industries. The system includes seven plants: a sugar production plant, a corn-integrated industrial plant, an alcohol production plant, a feed production plant, a fertilizer plant, a bioethanol production plant, and a wastewater treatment plant. The study aimed to design a sustainable industrial system that shares byproducts, waste, and water reuse. Symbiotic relations between production plants are designed in a provided multi-objective optimization model that considers both the mitigation of CO2 emissions and the maximization of system profit. The multi-objective model with the epsilon-constraint method results in Pareto-efficient solutions that address the tradeoff between the objectives. This allows decision makers to select a suitable one among the solution set that prioritizes conflicting objectives. We developed ten scenarios to assess costs, revenue, profit, and CO2 emissions, offering significant insights into how model parameters affect managerial knowledge. This study also addresses environmental and economic concerns, thereby making the development of agro-based industries more sustainable. Full article
(This article belongs to the Special Issue Sustainable Production and Supply Chain Management)
Show Figures

Figure 1

41 pages, 1393 KiB  
Review
Challenges and Strategies for the Sustainable Environmental Management of Phosphogypsum
by Linda Maina, Katarzyna Kiegiel and Grażyna Zakrzewska-Kołtuniewicz
Sustainability 2025, 17(8), 3473; https://doi.org/10.3390/su17083473 - 13 Apr 2025
Cited by 1 | Viewed by 2174
Abstract
Phosphogypsum, a byproduct of phosphate fertilizer production, poses significant environmental challenges due to its large volume, hazardous composition, and radioactivity. Conventional disposal methods, such as stockpiling and landfilling, contribute to soil and water contamination and present risks to human health. This article explores [...] Read more.
Phosphogypsum, a byproduct of phosphate fertilizer production, poses significant environmental challenges due to its large volume, hazardous composition, and radioactivity. Conventional disposal methods, such as stockpiling and landfilling, contribute to soil and water contamination and present risks to human health. This article explores the potential of integrating phosphogypsum into a circular economy framework, focusing on reducing environmental impacts and extracting value from this industrial waste. A detailed assessment of phosphogypsum’s chemical composition, including trace metals and radionuclides, is essential for effective management. This review paper examines safe handling, storage, and disposal strategies to minimize environmental risks. Additionally, innovative reuse applications are investigated, such as incorporating phosphogypsum into construction materials like cement, plasterboard, and concrete and its use in agriculture as a soil amendment or for land reclamation. The recovery of critical elements, particularly rare earth elements (REEs), highlights its potential to reduce waste and contribute to meeting the growing demand for strategic resources. Despite its promise, challenges remain, including chemical variability and the presence of radioactive components. This article identifies the technological and regulatory steps required to enable safe, large-scale reuse of phosphogypsum, emphasizing its role in advancing sustainable resource management within a circular economy. Full article
(This article belongs to the Section Waste and Recycling)
Show Figures

Figure 1

16 pages, 2489 KiB  
Article
Wastewater Treatment Plant Upgrade and Its Interlinkages with the Sustainable Development Goals
by Laila A. Al-Khatib and Ahmad M. AlHanaktah
Resources 2025, 14(4), 62; https://doi.org/10.3390/resources14040062 - 8 Apr 2025
Viewed by 1189
Abstract
In the face of acute water scarcity and sanitation challenges emblematic of arid and semi-arid regions (ASARs), this study investigated the transformative upgrade of the Aqaba Conventional Activated Sludge Wastewater Treatment Plant (CAS-AWWTP) in Jordan. The project, expanding capacity to 40,000 m3 [...] Read more.
In the face of acute water scarcity and sanitation challenges emblematic of arid and semi-arid regions (ASARs), this study investigated the transformative upgrade of the Aqaba Conventional Activated Sludge Wastewater Treatment Plant (CAS-AWWTP) in Jordan. The project, expanding capacity to 40,000 m3/day, integrated sustainable features including renewable energy and repurposed natural treatment ponds functioning as artificial wetlands. The plant’s treatment performance, byproduct valorization, and alignment with sustainable development goals (SDGs) were assessed. Comparative analysis revealed that the upgraded CAS-AWWTP consistently outperforms the previous natural and extended activated sludge systems. CAS-AWWTP average removal efficiencies of BOD5, COD, TSS, and T-N were 99.1%, 96.6%, 98.7%, and 95.1%, respectively, achieving stringent reuse standards and supplying approximately 30% of Aqaba Governorate’s annual water budget, thus conserving freshwater for domestic use. Furthermore, the plant achieved 44% electrical self-sufficiency through renewable energy integration, significantly reducing its carbon footprint. The creation of artificial wetlands transformed the site into a vital ecological habitat, attracting over 270 bird species and becoming a popular destination for birdwatching enthusiasts, drawing over 10,000 visitors annually. This transformation underscores the plant’s dual role in wastewater treatment and environmental conservation. The AWWTP upgrade exemplifies a holistic approach to sustainable development, impacting multiple SDGs. Beyond improving sanitation (SDG 6), it enhances water reuse for agriculture and industry (SDG 6.4, 9.4), promotes renewable energy (SDG 7), stimulates economic growth (SDG 8), strengthens urban sustainability (SDG 11), fosters resource efficiency (SDG 12), and supports biodiversity (SDG 14/15). The project’s success, facilitated by multi-stakeholder partnerships (SDG 17), provides a replicable model for water-scarce regions seeking sustainable wastewater management solutions. Full article
(This article belongs to the Special Issue Editorial Board Members' Collection Series: Water Resources)
Show Figures

Figure 1

22 pages, 4160 KiB  
Article
Eco-Friendly Biomass Production and Identification of Active Compounds of Paenibacillus polymyxa EB.KN35 with Potent Anti-Fusarium oxysporum Effect
by Van Anh Ngo, Anh Dzung Nguyen, San-Lang Wang, Tu Quy Phan, Thi Ha Trang Tran, Dinh Sy Nguyen and Van Bon Nguyen
Microorganisms 2025, 13(4), 800; https://doi.org/10.3390/microorganisms13040800 - 31 Mar 2025
Viewed by 547
Abstract
Fusarium oxysporum is a fungal plant pathogen for over 100 agricultural crop species. There are strategies for managing Fusarium wilt, including antagonistic bacteria that offer a promising and sustainable effect. In this work, among the various endophytic bacterial strains, Paenibacillus polymyxa EB.KN35 was selected [...] Read more.
Fusarium oxysporum is a fungal plant pathogen for over 100 agricultural crop species. There are strategies for managing Fusarium wilt, including antagonistic bacteria that offer a promising and sustainable effect. In this work, among the various endophytic bacterial strains, Paenibacillus polymyxa EB.KN35 was selected as the best antifungal strain against F. oxysporum. For eco-friendly biomass production of this bacterium, some agricultural byproducts were tested for cultivation, and a soybean processing byproduct (SPBP) was found to be a suitable C/N source for P. polymyxa EB.KN35 fermentation. The utilization of a 14 L bioreactor system for P. polymyxa EB.KN35 fermentation achieved a high biomass productivity (3.46 × 1011 CFU/mL) in a short time (8 h). In bioactive compound analysis, EB.KN35 was found to be secreting several plant growth-promoting compounds such as GA3, IAA, kinetin, and zeatin (via HPLC) and eleven volatile compounds (via GC–MS). The docking study indicated that some volatile compounds (1, 2, 4, and 9) may play a significant role in inhibiting F. oxysporum. The study results highlight the potential for reusing a soybean processing byproduct as a C/N source for the bioproduction of P. polymyxa EB.KN35 with potential use as a biocontrol agent and biofertilizer. Full article
(This article belongs to the Special Issue Microorganisms: A Way Forward for Sustainable Development?)
Show Figures

Graphical abstract

17 pages, 313 KiB  
Review
Competitive Adsorption of Metal Ions by Lignocellulosic Materials: A Review of Applications, Mechanisms and Influencing Factors
by Morgana Macena, Helena Pereira, Luísa Cruz-Lopes, Lucas Grosche and Bruno Esteves
Separations 2025, 12(3), 70; https://doi.org/10.3390/separations12030070 - 16 Mar 2025
Cited by 7 | Viewed by 1653
Abstract
The rapid expansion of industrial and agricultural activities in recent years has significantly contributed to water pollution leading to a decline in water quality and the need for effective treatment and reuse strategies. Metal contamination in water bodies poses severe environmental and health [...] Read more.
The rapid expansion of industrial and agricultural activities in recent years has significantly contributed to water pollution leading to a decline in water quality and the need for effective treatment and reuse strategies. Metal contamination in water bodies poses severe environmental and health risks, making the development of cost-effective and sustainable remediation methods essential. Among the various treatment approaches, biosorption using biological adsorbents has emerged as a promising alternative due to its low cost and high efficiency. However, while the adsorption mechanisms of single metals are well understood, the competitive interactions between multiple metal ions during the sorption process remain less explored. In this review, we analyze the competitive biosorption of metals in multi-metallic wastewater systems. Key factors influencing metal removal, such as pH, contact time, biosorbent dosage, and initial metal concentration, are discussed, along with the intrinsic properties of biosorbents and metal ions that affect sorption efficiency. Additionally, we highlight recent studies on agroforestry byproducts as effective biosorbents for metal removal, showcasing their potential for sustainable water treatment. Heavy metals pose significant risks even at low concentrations, necessitating robust regulations and advanced treatment technologies; biomass byproducts, as cost-effective biosorbents, can be optimized through pre-treatment, activation, pH and temperature control, and particle size reduction, while effectively managing competitive multi-metal adsorption remains crucial for industrial effluent treatment. Full article
(This article belongs to the Special Issue Materials from Biomass and Waste for Adsorption Applications)
Show Figures

Graphical abstract

17 pages, 4652 KiB  
Article
Using Food Industry Byproduct to Stabilize an Expansive Clay
by Nicole L. Shaw, Arvin Farid and Zahra Taheri Sarteshnizi
Waste 2025, 3(1), 1; https://doi.org/10.3390/waste3010001 - 24 Dec 2024
Viewed by 1018
Abstract
The process of purifying agricultural products, at various food processing plants, generates waste materials that consist of precipitated calcium carbonate, organic debris, and trace amounts of soil and agricultural contaminants. A specific food-processing waste, hereafter referred to as a food industry byproduct, FIBP, [...] Read more.
The process of purifying agricultural products, at various food processing plants, generates waste materials that consist of precipitated calcium carbonate, organic debris, and trace amounts of soil and agricultural contaminants. A specific food-processing waste, hereafter referred to as a food industry byproduct, FIBP, is typically stockpiled on land adjacent to the corresponding food processing facilities due to its large volume and chemical composition. The FIBP also contains commercially available unspent lime products, which makes its reuse viable in various applications. An example is construction applications where an organic content of up to 5% by weight is allowed, such as treating expansive clays. Traditionally, lime stabilization has been used for improving the properties of expansive clays, where ground improvement methods are necessary for a large area. However, the process of producing lime is resource- and energy-intensive as it includes crushing and heating limestone in kilns to extract lime. Therefore, one specific doubly sustainable application is the treatment of expansive clays using the FIBP instead of lime. The main application tested here is the treatment of expansive clayey soils underneath a stretch of State Highway 95 near Marsing, ID. Other potential applications are in road and embankment construction. To evaluate the potential of expansive clay stabilization utilizing the FIBP, a series of geotechnical and environmental laboratory testing were conducted to measure the engineering properties (e.g., swell potential, permeability, and strength properties) of expansive clay amended with FIBP. Preliminary testing on blends with an expansive clay suggests benefits such as decreased swelling potential, increased density, and leachate immobilization. Full article
Show Figures

Figure 1

14 pages, 2980 KiB  
Article
Sustainable Removal of Chloroquine from Aqueous Solutions Using Microwave-Activated Cassava Biochar Derived from Agricultural Waste
by Janaína Oliveira Gonçalves, Bruna Silva de Farias, Estefani Cardillo Rios, Anelise Christ Ribeiro, Kamila da Rosa Acosta, Carla Pereira Wenderroschs Gomes and Tito Roberto Cadaval Junior
Sustainability 2024, 16(22), 9854; https://doi.org/10.3390/su16229854 - 12 Nov 2024
Cited by 4 | Viewed by 1201
Abstract
This study presents a sustainable solution for the removal of the emerging contaminant chloroquine from aqueous solutions, utilizing biochar synthesized from cassava waste through a rapid, single-step microwave activation process. By repurposing cassava waste, a prevalent agricultural by-product, this method aligns with circular [...] Read more.
This study presents a sustainable solution for the removal of the emerging contaminant chloroquine from aqueous solutions, utilizing biochar synthesized from cassava waste through a rapid, single-step microwave activation process. By repurposing cassava waste, a prevalent agricultural by-product, this method aligns with circular economy principles, promoting the sustainable reuse of waste materials. Characterization of the biochar demonstrated a highly porous, crystalline structure optimized for adsorption applications. Adsorption studies demonstrated optimal performance at 45 °C, with a maximum adsorption capacity of 39 mg g−1 in the Langmuir model. Thermodynamic analysis confirmed that the process was spontaneous, endothermic, and consistent with physisorption. Kinetic experiments revealed that 200 rpm agitation provided the most favorable conditions. Notably, the biochar demonstrated substantial reusability, maintaining up to 70% of its adsorption capacity over five desorption cycles. This sustainable adsorbent stands out as a practical, eco-friendly option for removing pharmaceutical contaminants while also corroborating with the beneficial reuse of agricultural by-products. Full article
(This article belongs to the Special Issue Advances in Adsorption for the Removal of Emerging Contaminants)
Show Figures

Graphical abstract

14 pages, 856 KiB  
Article
Evaluating Sustainable Alternatives for Cocoa Waste Utilization Using the Analytic Hierarchy Process
by Natalia Andrea Salazar-Camacho, Liliana Delgadillo-Mirquez, Luz Adriana Sanchez-Echeverri and Nelson Javier Tovar-Perilla
Sustainability 2024, 16(17), 7817; https://doi.org/10.3390/su16177817 - 8 Sep 2024
Cited by 3 | Viewed by 2510
Abstract
Cocoa production has emerged as an effective agricultural strategy to reduce conflict in Colombia, transitioning from coca to cocoa cultivation. While this shift has provided economic benefits, it has also resulted in the generation of substantial cocoa by-products. Although there are various alternative [...] Read more.
Cocoa production has emerged as an effective agricultural strategy to reduce conflict in Colombia, transitioning from coca to cocoa cultivation. While this shift has provided economic benefits, it has also resulted in the generation of substantial cocoa by-products. Although there are various alternative methods of utilizing these by-products, many farmers are unaware of them, and others lack the necessary tools to determine which alternative is the best to pursue. This study sought to explore sustainable options for cocoa waste utilization through the application of the Analytic Hierarchy Process (AHP). By employing technological surveillance, viable options for reusing cocoa residues were identified. The AHP results indicate that pellet production is a promising alternative for rural communities. It is also a potential source of energy that could address the community’s need for alternative energy sources. Initially, other energy production alternatives were not explored. However, in response to the AHP findings, this study also explored the use of cocoa waste combined with animal manure for energy generation through anaerobic digestion. Full article
(This article belongs to the Special Issue Agricultural Economic Transformation and Sustainable Development)
Show Figures

Figure 1

13 pages, 1202 KiB  
Article
Characterization of Several Pellets from Agroforestry Residues: A Comparative Analysis of Physical and Energy Efficiency
by Salvatore Francesco Papandrea, Adriano Palma, Monica Carnevale, Enrico Paris, Beatrice Vincenti, Francesco Gallucci and Andrea Rosario Proto
Fire 2024, 7(7), 239; https://doi.org/10.3390/fire7070239 - 9 Jul 2024
Cited by 1 | Viewed by 1582
Abstract
The use of agroforestry biomass provides several advantages, both from an environmental point of view, in terms of the mitigation of global warming, and in terms of a circular economy for agricultural or agroforestry companies that reuse pruning residues as a source of [...] Read more.
The use of agroforestry biomass provides several advantages, both from an environmental point of view, in terms of the mitigation of global warming, and in terms of a circular economy for agricultural or agroforestry companies that reuse pruning residues as a source of energy. However, even if the use of energy pellets resulting from the pruning residues of various agroforestry species has excellent potential for the valorization of agricultural by-products, the physicochemical characteristics of these pellets have been scarcely studied by the scientific community. In this context, this study aims to assess the valorization potential of various lignocellulosic material residues produced during agroforestry activities. The objectives of the study include evaluating the chemical and physical characteristics of pellets produced with different mixtures of agroforestry biomass (olive, citrus, black locust, poplar, paulownia, etc.) in order to determine the optimal pellet blend from an energy and physicochemical perspective. The results of this study demonstrate that this comprehensive analysis provides valuable information on the optimization of biomass mixtures for better energy valorization, addressing both compositional and combustion-related challenges. In fact, it is observed that the addition of citrus and olive biomass to the various mixtures increases their energy potential. Furthermore, all of the pellets analyzed are found to possess an adequate and useful durability index (PDI) for their handling during storage and transport operations. This study demonstrates that olive and citrus pruning residues can be used to improve biomasses that have poor suitability in energetic, physical, and chemical terms. Further studies could be useful to understand which specific interaction mechanisms have an influence on emissions in order to optimize mixtures using different biomass sources for sustainable energy production. Full article
(This article belongs to the Special Issue Biomass-Burning)
Show Figures

Figure 1

34 pages, 3450 KiB  
Review
Revolutionizing Renewable Resources: Cutting-Edge Trends and Future Prospects in the Valorization of Oligosaccharides
by Ramachandran Chelliah, Nam Hyeon Kim, SeonJu Park, Younseo Park, Su-Jung Yeon, Kaliyan Barathikannan, Selvakumar Vijayalakshmi and Deog-Hwan Oh
Fermentation 2024, 10(4), 195; https://doi.org/10.3390/fermentation10040195 - 2 Apr 2024
Cited by 8 | Viewed by 3108
Abstract
Lignocellulosic wastes, primarily from agricultural by-products, are a renewable resource increasingly used in the sustainable production of oligosaccharides, significantly contributing to the growing bioeconomy. This innovative utilization of biological resources aligns with the global shift towards sustainable development, focusing on creating products such [...] Read more.
Lignocellulosic wastes, primarily from agricultural by-products, are a renewable resource increasingly used in the sustainable production of oligosaccharides, significantly contributing to the growing bioeconomy. This innovative utilization of biological resources aligns with the global shift towards sustainable development, focusing on creating products such as food, feed, and bioenergy from renewable sources. Oligosaccharides, specialized carbohydrates, are synthesized either chemically or more eco-friendly, biologically. Biological synthesis often involves enzymes or whole-cell systems to transform lignocellulosic wastes into these valuable sugars. As functional food supplements, oligosaccharides play a crucial role in human and animal health. They serve as prebiotics, indigestible components that promote the proliferation of beneficial gut microbiota, especially within the colon. This positive impact on gut flora is essential for boosting the immune system and regulating physiological functions. Important prebiotics, including galactooligosaccharides (GOS), xylooligosaccharides (XOS), fructooligosaccharides (FOS), mannan-oligosaccharides (MOS), and isomaltooligosaccharides (IMOS), are produced through methods involving enzymes or the use of whole cells, with agricultural waste as substrates. Recent advancements focus on refining these biological processes for oligosaccharide synthesis using lignocellulosic substrates, emphasizing the principles of a circular bioeconomy, which promotes resource reuse and recycling. This review highlights the potential and challenges in the biological synthesis of oligosaccharides from renewable resources. It underscores the need for innovation in process optimization and commercialization strategies to fully exploit lignocellulosic wastes. This approach not only contributes to sustainable product development, but also opens new avenues for the profitable and environmentally friendly utilization of agricultural residues, marking a significant step forward in the bio-based industry. Full article
(This article belongs to the Special Issue Biotechnological Valorization Approaches for Food Waste)
Show Figures

Figure 1

44 pages, 7409 KiB  
Review
Hydrogels Based on Chitosan and Nanoparticles and Their Suitability for Dyes Adsorption from Aqueous Media: Assessment of the Last-Decade Progresses
by Cristina-Gabriela Grigoraș, Andrei-Ionuț Simion and Cătălin Drob
Gels 2024, 10(3), 211; https://doi.org/10.3390/gels10030211 - 21 Mar 2024
Cited by 7 | Viewed by 3466
Abstract
Water is one of the fundamental resources for the existence of humans and the environment. Throughout time, due to urbanization, expanding population, increased agricultural production, and intense industrialization, significant pollution with persistent contaminants has been noted, placing the water quality in danger. As [...] Read more.
Water is one of the fundamental resources for the existence of humans and the environment. Throughout time, due to urbanization, expanding population, increased agricultural production, and intense industrialization, significant pollution with persistent contaminants has been noted, placing the water quality in danger. As a consequence, different procedures and various technologies have been tested and used in order to ensure that water sources are safe for use. The adsorption process is often considered for wastewater treatment due to its straightforward design, low investment cost, availability, avoidance of additional chemicals, lack of undesirable byproducts, and demonstrated significant efficacious potential for treating and eliminating organic contaminants. To accomplish its application, the need to develop innovative materials has become an essential goal. In this context, an overview of recent advances in hydrogels based on chitosan and nanocomposites and their application for the depollution of wastewater contaminated with dyes is reported herein. The present review focuses on (i) the challenges raised by the synthesis process and characterization of the different hydrogels; (ii) the discussion of the impact of the main parameters affecting the adsorption process; (iii) the understanding of the adsorption isotherms, kinetics, and thermodynamic behavior; and (iv) the examination of the possibility of recycling and reusing the hydrogels. Full article
(This article belongs to the Special Issue Advances in Hydrogels and Hydrogel-Based Composites)
Show Figures

Graphical abstract

15 pages, 6095 KiB  
Article
Experimental Study on the Potential Utilization of Olive Oil Production Wastes and By-Products as Building Materials
by Alexandre Jerónimo, Mariana Fernandes and Ana Briga-Sá
Sustainability 2024, 16(4), 1355; https://doi.org/10.3390/su16041355 - 6 Feb 2024
Cited by 1 | Viewed by 1717
Abstract
The construction industry is one of the sectors with the greatest environmental impact resulting from the high consumption of resources and the huge amount of waste generated. In addition, different wastes and by-products originate from various sectors of activity, namely the ones related [...] Read more.
The construction industry is one of the sectors with the greatest environmental impact resulting from the high consumption of resources and the huge amount of waste generated. In addition, different wastes and by-products originate from various sectors of activity, namely the ones related to the agricultural sector, requiring the urgent actions of recycling and reuse. In this context, this investigation focused on the valorization of wastes and by-products resulting from the olive oil production as building material components. Wet bagasse was added to cementitious mixtures at percentages of 5% and 20% to produce solid blocks. Lime mortars, incorporating 2% and 8% of ash, were developed, and particleboards composed of 83% olive stone were also produced. The results showed that blocks with 5% waste complied with the standard requirements for flexural strength. The incorporation of 2% ash increased the mechanical properties of lime mortars when compared to a reference mortar with no ash. The developed particleboards revealed the possibility for being part of a multilayer solution or as a covering material, presenting a thermal conductivity of 0.08 W/mK. Thus, wastes generated during olive oil production presented potential for valorization as building material components for non-structural purposes. Full article
Show Figures

Figure 1

14 pages, 938 KiB  
Article
Chestnut Episperm as a Promising Natural Source of Phenolics from Agri-Food Processing by-Products: Optimisation of a Sustainable Extraction Protocol by Ultrasounds
by Dario Donno, Federica Turrini, Emanuele Farinini, Maria Gabriella Mellano, Raffaella Boggia, Gabriele Loris Beccaro and Giovanni Gamba
Agriculture 2024, 14(2), 246; https://doi.org/10.3390/agriculture14020246 - 2 Feb 2024
Cited by 2 | Viewed by 1891
Abstract
Chestnut processing has increasingly grown in recent years. All the processes involved in the chestnut supply chain are characterized by the production of high levels of by-products that cause several environmental and disposal issues. The Castanea spp. fruit production is related to a [...] Read more.
Chestnut processing has increasingly grown in recent years. All the processes involved in the chestnut supply chain are characterized by the production of high levels of by-products that cause several environmental and disposal issues. The Castanea spp. fruit production is related to a high number of chestnut episperm. This underutilized agricultural by-product may be evaluated as a good resource for the extraction of health-promoting natural molecules, such as phenolics. This preliminary study aimed to develop and optimize, using a multivariate statistical approach, a sustainable protocol for the ultrasound-assisted extraction (UAE) of the main phenolics from chestnut episperm (cv Marsol, C. sativa × C. crenata). A design of experiment (DoE) approach was employed. This approach focused on the two quantitative UAE process factors: the extraction time (X1), within a timeframe ranging from 10 to 30 min, and the sample-to-solvent (w/v) ratio (X2), ranging from 1/30 to 1/10. These variables were investigated to determine their impact on phenol extraction yield. Exploratory analysis, in particular principal component analysis (PCA) and multiple linear regression (MLR), were carried out on the studied responses. The phenolic characterization of ten different extracts was also performed using high-performance liquid chromatography (HPLC), both to define the levels of specific phenolics selected for their health-promoting properties and to evaluate some important features, such as the total antioxidant capacity. The values of total polyphenolic content (TPC) obtained in the different experiments ranged between 97 (extract 4) and 142 (extract 6) mg GAE/g of dried weight (DW). Moreover, results from the ferric reducing antioxidant power (FRAP) test confirmed the high TPC values, highlighting that all the ultrasound extracts contained excellent levels of molecules with good antioxidant properties. In particular, extracts 2 and 3 showed the highest AOC values (about 490–505 mmol Fe2+/Kg of dried weight). The proposed optimized protocol allowed for obtaining formulations characterized by high levels of tannins, phenolic acids, and catechins. Indeed, episperm extracts contained high levels of chlorogenic acid (15–25 mg/100 g DW), ferulic acid (80–120 mg/100 g DW), castalagin (20–80 mg/100 g DW), and vescalagin (40–75 mg/100 g). Finally, in this research study, the potential of chestnut episperm as a source of polyphenolic molecules to be extracted by green technologies and used in several food and/or pharmaceutical applications was evaluated to valorize a sustainable reuse strategy of agri-food processing by-products, also reducing the environmental impact of this waste derived from chestnut processing. Full article
Show Figures

Graphical abstract

Back to TopTop