Competitive Adsorption of Metal Ions by Lignocellulosic Materials: A Review of Applications, Mechanisms and Influencing Factors
Abstract
:1. Introduction
2. The Risks of Toxic Metals
3. Methods for Industrial Wastewater Treatment
4. Biomass Byproducts with Potential to Be Used as Biosorbents
5. The Main Factors That Affect the Adsorption Process in Multi-Metal Systems
5.1. Adsorption Method and Contact Time
5.2. pH
5.3. Temperature
5.4. Initial Concentration of Metal Ions
5.5. Biosorbent Dosage
5.6. Biosorbent Characteristics: Porosity and Surface Area
5.7. Effects of Activation Processes
5.8. Competitive Adsorption of Metal Ions in Multi-Metal Systems
5.8.1. Affinity and Selectivity
5.8.2. Competition Between Metal Ions
5.8.3. Precipitation and Co-Adsorption
5.8.4. Displacement Effects
5.9. Implications for Industrial Wastewater Treatment
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- EEA. Industrial Pollutant Releases to Water in Europe; European Environment Agency. Available online: https://www.eea.europa.eu/en/analysis/indicators/industrial-pollutant-releases-to-water (accessed on 21 February 2025).
- Cutillas-Barreiro, L.; Paradelo, R.; Igrexas-Soto, A.; Núñez-Delgado, A.; Fernández-Sanjurjo, M.J.; Álvarez-Rodriguez, E.; Garrote, G.; Nóvoa-Muñoz, J.C.; Arias-Estévez, M. Valorization of Biosorbent Obtained from a Forestry Waste: Competitive Adsorption, Desorption and Transport of Cd, Cu, Ni, Pb and Zn. Ecotoxicol. Environ. Saf. 2016, 131, 118–126. [Google Scholar] [CrossRef]
- González-Feijoo, R.; Santás-Miguel, V.; Arenas-Lago, D.; Álvarez-Rodríguez, E.; Núñez-Delgado, A.; Arias-Estévez, M.; Pérez-Rodríguez, P. Effectiveness of Cork and Pine Bark Powders as Biosorbents for Potentially Toxic Elements Present in Aqueous Solution. Environ. Res. 2024, 250, 118455. [Google Scholar] [CrossRef] [PubMed]
- Acharya, J.; Kumar, U.; Rafi, P.M. Removal of Heavy Metal Ions from Wastewater by Chemically Modified Agricultural Waste Material as Potential Adsorbent—A Review. IJCET 2018, 8, 526–530. [Google Scholar] [CrossRef]
- Ramírez Calderón, O.A.; Abdeldayem, O.M.; Pugazhendhi, A.; Rene, E.R. Current Updates and Perspectives of Biosorption Technology: An Alternative for the Removal of Heavy Metals from Wastewater. Curr. Pollut. Rep. 2020, 6, 8–27. [Google Scholar] [CrossRef]
- Regulation (EU) 2020/741 of the European Parliament and of the Council on Minimum Requirements for Water Reuse; Official Journal of the European Union; European Commission: Brussels, Belgium, 2020.
- Abdolali, A.; Ngo, H.H.; Guo, W.S.; Lee, D.J.; Tung, K.L.; Wang, X.C. Development and Evaluation of a New Multi-Metal Binding Biosorbent. Bioresour. Technol. 2014, 160, 98–106. [Google Scholar] [CrossRef]
- Ahmad, R.; Haseeb, S. Adsorption of Pb(II) on Mentha piperita Carbon (MTC) in Single and Quaternary Systems. Arab. J. Chem. 2017, 10, S412–S421. [Google Scholar] [CrossRef]
- Ben Amar, M.; Mallek, M.; Valverde, A.; Monclús, H.; Myers, T.G.; Salvadó, V.; Cabrera-Codony, A. Competitive Heavy Metal Adsorption on Pinecone Shells: Mathematical Modelling of Fixed-Bed Column and Surface Interaction Insights. Sci. Total Environ. 2024, 917, 170398. [Google Scholar] [CrossRef]
- Rabiee Abyaneh, M.; Nabi Bidhendi, G.; Daryabeigi Zand, A. Pb(ΙΙ), Cd(ΙΙ), and Mn(ΙΙ) Adsorption onto Pruning-Derived Biochar: Physicochemical Characterization, Modeling and Application in Real Landfill Leachate. Sci. Rep. 2024, 14, 3426. [Google Scholar] [CrossRef]
- Bangaraiah, P.; Sarath Babu, B.; Abraham Peele, K.; Rajeswara Reddy, E.; Venkateswarulu, T.C. Removal of Multiple Metals Using Tamarindus Indica as Biosorbent through Optimization of Process Variables: A Statistical Approach. Int. J. Environ. Sci. Technol. 2020, 17, 1835–1846. [Google Scholar] [CrossRef]
- Kebede, T.G.; Mengistie, A.A.; Dube, S.; Nkambule, T.T.I.; Nindi, M.M. Study on Adsorption of Some Common Metal Ions Present in Industrial Effluents by Moringa Stenopetala Seed Powder. J. Environ. Chem. Eng. 2018, 6, 1378–1389. [Google Scholar] [CrossRef]
- Mechnou, I.; Meskini, S.; Elqars, E.; Ait El Had, M.; Hlaibi, M. Efficient CO2 Capture Using a Novel Zn-Doped Activated Carbon Developed from Agricultural Liquid Biomass: Adsorption Study, Mechanism and Transition State. Surf. Interfaces 2024, 52, 104846. [Google Scholar] [CrossRef]
- Hegazy, G.E.; Soliman, N.A.; Ossman, M.E.; Abdel-Fattah, Y.R.; Moawad, M.N. Isotherm and Kinetic Studies of Cadmium Biosorption and Its Adsorption Behaviour in Multi-Metals Solution Using Dead and Immobilized Archaeal Cells. Sci. Rep. 2023, 13, 2550. [Google Scholar] [CrossRef]
- Amar, M.B.; Walha, K.; Salvadó, V. Evaluation of Olive Stones for Cd(II), Cu(II), Pb(II) and Cr(VI) Biosorption from Aqueous Solution: Equilibrium and Kinetics. Int. J. Environ. Res. 2020, 14, 193–204. [Google Scholar] [CrossRef]
- Sen, A.U.; Olivella, A.; Fiol, N.; Miranda, I.; Villaescusa, I.; Pereira, H. Removal of Chromium (vi) in Aqueous Environments Using Cork and Heat-Treated Cork Samples from Quercus Cerris and Quercus Suber. BioResources 2012, 7, 4843–4857. [Google Scholar] [CrossRef]
- Villen-Guzman, M.; Cerrillo-Gonzalez, M.M.; Paz-Garcia, J.M.; Rodriguez-Maroto, J.M.; Arhoun, B. Valorization of Lemon Peel Waste as Biosorbent for the Simultaneous Removal of Nickel and Cadmium from Industrial Effluents. Environ. Technol. Innov. 2021, 21, 101380. [Google Scholar] [CrossRef]
- Morales-Barrera, L.; Cristiani-Urbina, E. Equilibrium Biosorption of Zn2+ and Ni2+ Ions from Monometallic and Bimetallic Solutions by Crab Shell Biomass. Processes 2022, 10, 886. [Google Scholar] [CrossRef]
- Abdolali, A.; Ngo, H.H.; Guo, W.; Zhou, J.L.; Zhang, J.; Liang, S.; Chang, S.W.; Nguyen, D.D.; Liu, Y. Application of a Breakthrough Biosorbent for Removing Heavy Metals from Synthetic and Real Wastewaters in a Lab-Scale Continuous Fixed-Bed Column. Bioresour. Technol. 2017, 229, 78–87. [Google Scholar] [CrossRef]
- da Silva Correia, I.K.; Santos, P.F.; Santana, C.S.; Neris, J.B.; Luzardo, F.H.M.; Velasco, F.G. Application of Coconut Shell, Banana Peel, Spent Coffee Grounds, Eucalyptus Bark, Piassava (Attalea funifera) and Water Hyacinth (Eichornia crassipes) in the Adsorption of Pb2+ and Ni2+ Ions in Water. J. Environ. Chem. Eng. 2018, 6, 2319–2334. [Google Scholar] [CrossRef]
- Wang, Y.-Y.; Liu, Y.-X.; Lu, H.-H.; Yang, R.-Q.; Yang, S.-M. Competitive Adsorption of Pb(II), Cu(II), and Zn(II) Ions onto Hydroxyapatite-Biochar Nanocomposite in Aqueous Solutions. J. Solid State Chem. 2018, 261, 53–61. [Google Scholar] [CrossRef]
- Escudero-Oñate, C.; Poch, J.; Villaescusa, I. Adsorption of Cu(II), Ni(II), Pb(II) and Cd(II) from Ternary Mixtures: Modelling Competitive Breakthrough Curves and Assessment of Sensitivity. Environ. Process. 2017, 4, 833–849. [Google Scholar] [CrossRef]
- Salman, M.; Athar, M.; Farooq, U. Biosorption of Heavy Metals from Aqueous Solutions Using Indigenous and Modified Lignocellulosic Materials. Rev. Environ. Sci. Biotechnol. 2015, 14, 211–228. [Google Scholar] [CrossRef]
- Pérez-Marín, A.B.; Ortuño, J.F.; Aguilar, M.I.; Lloréns, M.; Meseguer, V.F. Competitive Effect of Zinc and Cadmium on the Biosorption of Chromium by Orange Waste. Processes 2024, 12, 148. [Google Scholar] [CrossRef]
- Cruz-Lopes, L.; Macena, M.; Esteves, B.; Santos-Vieira, I. Lignocellulosic Materials Used as Biosorbents for the Capture of Nickel (II) in Aqueous Solution. Appl. Sci. 2022, 12, 933. [Google Scholar] [CrossRef]
- Fabre, E.; Vale, C.; Pereira, E.; Silva, C.M. Sustainable Water Treatment: Use of Agricultural and Industrial Wastes to Remove Mercury by Biosorption. Water Air Soil Pollut. 2021, 232, 284. [Google Scholar] [CrossRef]
- Ahmed, Md.J.K.; Ahmaruzzaman, M. A Review on Potential Usage of Industrial Waste Materials for Binding Heavy Metal Ions from Aqueous Solutions. J. Water Process Eng. 2016, 10, 39–47. [Google Scholar] [CrossRef]
- Agarwal, A.; Upadhyay, U.; Sreedhar, I.; Singh, S.A.; Patel, C.M. A Review on Valorization of Biomass in Heavy Metal Removal from Wastewater. J. Water Process Eng. 2020, 38, 101602. [Google Scholar] [CrossRef]
- Kamal, B.; Rafey, A. A Mini Review of Treatment Methods for Lead Removal from Wastewater. Int. J. Environ. Anal. Chem. 2023, 103, 5126–5141. [Google Scholar] [CrossRef]
- Sia, G.B.; Vernasqui, L.G.; Consolin-Filho, N.; Gonçalves, M.S.; Medeiros, F.V.d.S. Zinc Adsorption from Aqueous Solution on Biosorbent from Urban Pruning Waste. Environ. Technol. 2022, 43, 728–736. [Google Scholar] [CrossRef]
- Rashid, R.; Shafiq, I.; Akhter, P.; Iqbal, M.J.; Hussain, M. A State-of-the-Art Review on Wastewater Treatment Techniques: The Effectiveness of Adsorption Method. Environ. Sci. Pollut. Res. 2021, 28, 9050–9066. [Google Scholar] [CrossRef]
- Abdić, Š.; Memić, M.; Šabanović, E.; Sulejmanović, J.; Begić, S. Adsorptive Removal of Eight Heavy Metals from Aqueous Solution by Unmodified and Modified Agricultural Waste: Tangerine Peel. Int. J. Environ. Sci. Technol. 2018, 15, 2511–2518. [Google Scholar] [CrossRef]
- Ahmad, T.; Danish, M. Prospects of Banana Waste Utilization in Wastewater Treatment: A Review. J. Environ. Manag. 2018, 206, 330–348. [Google Scholar] [CrossRef] [PubMed]
- Ezeonuegbu, B.A.; Machido, D.A.; Whong, C.M.Z.; Japhet, W.S.; Alexiou, A.; Elazab, S.T.; Qusty, N.; Yaro, C.A.; Batiha, G.E.-S. Agricultural Waste of Sugarcane Bagasse as Efficient Adsorbent for Lead and Nickel Removal from Untreated Wastewater: Biosorption, Equilibrium Isotherms, Kinetics and Desorption Studies. Biotechnol. Rep. 2021, 30, e00614. [Google Scholar] [CrossRef] [PubMed]
- George, A.M.; Tembhurkar, A.R. Analysis of Equilibrium, Kinetic, and Thermodynamic Parameters for Biosorption of Fluoride from Water onto Coconut (Cocos nucifera Linn.) Root Developed Adsorbent. Chin. J. Chem. Eng. 2019, 27, 92–99. [Google Scholar] [CrossRef]
- Bansal, M.; Garg, R.; Garg, V.K.; Garg, R.; Singh, D. Sequestration of Heavy Metal Ions from Multi-Metal Simulated Wastewater Systems Using Processed Agricultural Biomass. Chemosphere 2022, 296, 133966. [Google Scholar] [CrossRef] [PubMed]
- Amdeha, E. Biochar-Based Nanocomposites for Industrial Wastewater Treatment via Adsorption and Photocatalytic Degradation and the Parameters Affecting These Processes. Biomass Conv. Bioref. 2023, 14, 23293–23318. [Google Scholar] [CrossRef]
- Escudero-Oñate, C.; Fiol, N.; Poch, J.; Villaescusa, I. Valorisation of Lignocellulosic Biomass Wastes for the Removal of Metal Ions from Aqueous Streams: A Review. In Biomass Volume Estimation and Valorization for Energy; IntechOpen: Rijeka, Croatia, 2017; ISBN 978-953-51-2938-7. [Google Scholar]
- Braghiroli, F.L.; Passarini, L. Valorization of Biomass Residues from Forest Operations and Wood Manufacturing Presents a Wide Range of Sustainable and Innovative Possibilities. Curr. For. Rep. 2020, 6, 172–183. [Google Scholar] [CrossRef]
- Şen, A.; Pereira, H.; Olivella, M.A.; Villaescusa, I. Heavy Metals Removal in Aqueous Environments Using Bark as a Biosorbent. Int. J. Environ. Sci. Technol. 2015, 12, 391–404. [Google Scholar] [CrossRef]
- Nathan, R.J.; Martin, C.E.; Barr, D.; Rosengren, R.J. Simultaneous Removal of Heavy Metals from Drinking Water by Banana, Orange and Potato Peel Beads: A Study of Biosorption Kinetics. Appl. Water Sci. 2021, 11, 116. [Google Scholar] [CrossRef]
- Long, M.; Jiang, H.; Li, X. Biosorption of Cu2+, Pb2+, Cd2+ and Their Mixture from Aqueous Solutions by Michelia figo Sawdust. Sci. Rep. 2021, 11, 11527. [Google Scholar] [CrossRef]
- Oguz, E. Simultaneous Removal of Lead, Copper, Cadmium, Nickel, and Cobalt Heavy Metal Ions from the Quinary System by Abies Bornmulleriana Cones. Water Sci. Technol. 2020, 82, 3032–3046. [Google Scholar] [CrossRef]
- Rawat, A.P.; Giri, K.; Rai, J.P.N. Biosorption Kinetics of Heavy Metals by Leaf Biomass of Jatropha Curcas in Single and Multi-Metal System. Environ. Monit. Assess. 2014, 186, 1679–1687. [Google Scholar] [CrossRef] [PubMed]
- Abdolali, A.; Guo, W.S.; Ngo, H.H.; Chen, S.S.; Nguyen, N.C.; Tung, K.L. Typical Lignocellulosic Wastes and By-Products for Biosorption Process in Water and Wastewater Treatment: A Critical Review. Bioresour. Technol. 2014, 160, 57–66. [Google Scholar] [CrossRef]
- Morales-Barrera, L.; Flores-Ortiz, C.M.; Cristiani-Urbina, E. Single and Binary Equilibrium Studies for Ni2+ and Zn2+ Biosorption onto Lemna gibba from Aqueous Solutions. Processes 2020, 8, 1089. [Google Scholar] [CrossRef]
- Vievard, J.; Alem, A.; Pantet, A.; Ahfir, N.-D.; Leveneur, S.; Devouge-Boyer, C.; Daïch, E.; Mignot, M. Competitive and Non-Competitive Adsorption of Six Heavy Metals on Flax Fibers. Emergent Mater. 2024. [Google Scholar] [CrossRef]
- Carbonel Ramos, D. Adsorción de Cadmio, Cobre y Plomo en Bentonita, Caolín y Zeolita Naturales y Modificadas: Una Revisión de los Parámetros de Operación, Isotermas y Cinética. Ingeniería 2018, 23, 252–273. [Google Scholar] [CrossRef]
- Zheng, J.-C.; Liu, H.-Q.; Feng, H.-M.; Li, W.-W.; Lam, M.H.-W.; Lam, P.K.-S.; Yu, H.-Q. Competitive Sorption of Heavy Metals by Water Hyacinth Roots. Environ. Pollut. 2016, 219, 837–845. [Google Scholar] [CrossRef]
- Poonam; Bharti, S.K.; Kumar, N. Kinetic Study of Lead (Pb2+) Removal from Battery Manufacturing Wastewater Using Bagasse Biochar as Biosorbent. Appl. Water Sci. 2018, 8, 119. [Google Scholar] [CrossRef]
- Tabaraki, R.; Nateghi, A. Multimetal Biosorption Modeling of Zn2+, Cu2+ and Ni2+ by Sargassum ilicifolium. Ecol. Eng. 2014, 71, 197–205. [Google Scholar] [CrossRef]
- Reynel-Avila, H.E.; Mendoza-Castillo, D.I.; Olumide, A.A.; Bonilla-Petriciolet, A. A Survey of Multi-Component Sorption Models for the Competitive Removal of Heavy Metal Ions Using Bush Mango and Flamboyant Biomasses. J. Mol. Liq. 2016, 224, 1041–1054. [Google Scholar] [CrossRef]
- Liu, C.-C.; Wang, M.-K.; Chiou, C.-S.; Li, Y.-S.; Yang, C.-Y.; Lin, Y.-A. Biosorption of Chromium, Copper and Zinc by Wine-Processing Waste Sludge: Single and Multi-Component System Study. J. Hazard. Mater. 2009, 171, 386–392. [Google Scholar] [CrossRef]
- Vilar, V.J.; Loureiro, J.M.; Botelho, C.M.; Boaventura, R.A. Continuous Biosorption of Pb/Cu and Pb/Cd in Fixed-Bed Column Using Algae Gelidium and Granulated Agar Extraction Algal Waste. J. Hazard. Mater. 2008, 154, 1173–1182. [Google Scholar] [CrossRef]
- Erdoğan, S.; Önal, Y.; Akmil-Başar, C.; Bilmez-Erdemoğlu, S.; Sarıcı-Özdemir, Ç.; Köseoğlu, E.; İçduygu, G. Optimization of Nickel Adsorption from Aqueous Solution by Using Activated Carbon Prepared from Waste Apricot by Chemical Activation. Appl. Surf. Sci. 2005, 252, 1324–1331. [Google Scholar] [CrossRef]
- Afroze, S.; Sen, T.K. A Review on Heavy Metal Ions and Dye Adsorption from Water by Agricultural Solid Waste Adsorbents. Water Air Soil Pollut. 2018, 229, 225. [Google Scholar] [CrossRef]
- Nadeem, R.; Hanif, M.A.; Shaheen, F.; Perveen, S.; Zafar, M.N.; Iqbal, T. Physical and Chemical Modification of Distillery Sludge for Pb(II) Biosorption. J. Hazard. Mater. 2008, 150, 335–342. [Google Scholar] [CrossRef] [PubMed]
- Sekar, M.; Sakthi, V.; Rengaraj, S. Kinetics and Equilibrium Adsorption Study of Lead(II) onto Activated Carbon Prepared from Coconut Shell. J. Colloid Interface Sci. 2004, 279, 307–313. [Google Scholar] [CrossRef]
- Ali, M.M.; Sarkar, B.; Sarkar, B.; Bhattacharya, P.; Chatterjee, N.; Rana, S.; Rokunuzzaman, M.; Bhakta, J.N. Screening and Characterization of Novel Biosorbent for the Removal of Cadmium from Contaminated Water. Energy Nexus 2024, 13, 100278. [Google Scholar] [CrossRef]
- Pelekani, C.; Snoeyink, V.L. Competitive Adsorption in Natural Water: Role of Activated Carbon Pore Size. Water Res. 1999, 33, 1209–1219. [Google Scholar] [CrossRef]
- Pelekani, C.; Snoeyink, V.L. Competitive Adsorption between Atrazine and Methylene Blue on Activated Carbon: The Importance of Pore Size Distribution. Carbon 2000, 38, 1423–1436. [Google Scholar] [CrossRef]
- Abdolali, A.; Ngo, H.H.; Guo, W.; Zhou, J.L.; Du, B.; Wei, Q.; Wang, X.C.; Nguyen, P.D. Characterization of a Multi-Metal Binding Biosorbent: Chemical Modification and Desorption Studies. Bioresour. Technol. 2015, 193, 477–487. [Google Scholar] [CrossRef]
- Heidarinejad, Z.; Dehghani, M.H.; Heidari, M.; Javedan, G.; Ali, I.; Sillanpää, M. Methods for Preparation and Activation of Activated Carbon: A Review. Environ. Chem. Lett. 2020, 18, 393–415. [Google Scholar] [CrossRef]
- Pallarés, J.; González-Cencerrado, A.; Arauzo, I. Production and Characterization of Activated Carbon from Barley Straw by Physical Activation with Carbon Dioxide and Steam. Biomass Bioenergy 2018, 115, 64–73. [Google Scholar] [CrossRef]
- Sen, U.; Esteves, B.; Aguiar, T.; Pereira, H. Removal of Antibiotics by Biochars: A Critical Review. Appl. Sci. 2023, 13, 11963. [Google Scholar] [CrossRef]
- Mechnou, I.; Meskini, S.; Elqars, E.; Chham, A.-I.; Hlaibi, M. Classical and Advanced Isotherms to Model the Adsorption of Drugs, Dyes and Metals on Activated Carbonaceous Materials: A Review. Environ. Chem. Lett. 2024, 22, 2375–2404. [Google Scholar] [CrossRef]
- Lillo-Ródenas, M.A.; Marco-Lozar, J.P.; Cazorla-Amorós, D.; Linares-Solano, A. Activated Carbons Prepared by Pyrolysis of Mixtures of Carbon Precursor/Alkaline Hydroxide. J. Anal. Appl. Pyrolysis 2007, 80, 166–174. [Google Scholar] [CrossRef]
- Jin, H.; Capareda, S.; Chang, Z.; Gao, J.; Xu, Y.; Zhang, J. Biochar Pyrolytically Produced from Municipal Solid Wastes for Aqueous As(V) Removal: Adsorption Property and Its Improvement with KOH Activation. Bioresour. Technol. 2014, 169, 622–629. [Google Scholar] [CrossRef]
- Ronda, A.; Martín-Lara, M.A.; Calero, M.; Blázquez, G. Analysis of the Kinetics of Lead Biosorption Using Native and Chemically Treated Olive Tree Pruning. Ecol. Eng. 2013, 58, 278–285. [Google Scholar] [CrossRef]
- Martín-Lara, M.A.; Blázquez, G.; Calero, M.; Almendros, A.I.; Ronda, A. Binary Biosorption of Copper and Lead onto Pine Cone Shell in Batch Reactors and in Fixed Bed Columns. Int. J. Miner. Process. 2016, 148, 72–82. [Google Scholar] [CrossRef]
- Hossain, M.A.; Ngo, H.H.; Guo, W.S.; Nghiem, L.D.; Hai, F.I.; Vigneswaran, S.; Nguyen, T.V. Competitive Adsorption of Metals on Cabbage Waste from Multi-Metal Solutions. Bioresour. Technol. 2014, 160, 79–88. [Google Scholar] [CrossRef]
- Krishnani, K.K.; Choudhary, K.; Boddu, V.M.; Moon, D.H.; Meng, X. Heavy Metals Biosorption Mechanism of Partially Delignified Products Derived from Mango (Mangifera indica) and Guava (Psidium guiag) Barks. Environ. Sci. Pollut. Res. 2021, 28, 32891–32904. [Google Scholar] [CrossRef]
- Park, J.-H.; Ok, Y.S.; Kim, S.-H.; Cho, J.-S.; Heo, J.-S.; Delaune, R.D.; Seo, D.-C. Competitive Adsorption of Heavy Metals onto Sesame Straw Biochar in Aqueous Solutions. Chemosphere 2016, 142, 77–83. [Google Scholar] [CrossRef]
- Levit, R.L.; Kudryavtseva, V.A. Modeling the Competitive Heavy Metal Sorption onto Sediments with the Use of Multifactorial Experiment. Russ. J. Gen. Chem. 2020, 90, 2654–2658. [Google Scholar] [CrossRef]
- Šćiban, M.; Radetić, B.; Kevrešan, Ž.; Klašnja, M. Adsorption of Heavy Metals from Electroplating Wastewater by Wood Sawdust. Bioresour. Technol. 2007, 98, 402–409. [Google Scholar] [CrossRef] [PubMed]
- Kong, Q.; Preis, S.; Li, L.; Luo, P.; Wei, C.; Li, Z.; Hu, Y.; Wei, C. Relations between Metal Ion Characteristics and Adsorption Performance of Graphene Oxide: A Comprehensive Experimental and Theoretical Study. Sep. Purif. Technol. 2020, 232, 115956. [Google Scholar] [CrossRef]
- Neris, J.B.; Luzardo, F.H.M.; da Silva, E.G.P.; Velasco, F.G. Evaluation of Adsorption Processes of Metal Ions in Multi-Element Aqueous Systems by Lignocellulosic Adsorbents Applying Different Isotherms: A Critical Review. Chem. Eng. J. 2019, 357, 404–420. [Google Scholar] [CrossRef]
- Mohan, D.; Chander, S. Single Component and Multi-Component Adsorption of Metal Ions by Activated Carbons. Colloids Surf. A Physicochem. Eng. Asp. 2001, 177, 183–196. [Google Scholar] [CrossRef]
- Duwiejuah, A.B.; Quainoo, A.K.; Abubakari, A.-H. Simultaneous Adsorption of Toxic Metals in Binary Systems Using Peanut and Sheanut Shells Biochars. Heliyon 2022, 8, e10558. [Google Scholar] [CrossRef]
- Yahya, M.D.; Abubakar, H.; Obayomi, K.S.; Iyaka, Y.A.; Suleiman, B. Simultaneous and Continuous Biosorption of Cr and Cu (II) Ions from Industrial Tannery Effluent Using Almond Shell in a Fixed Bed Column. Results Eng. 2020, 6, 100113. [Google Scholar] [CrossRef]
- Zheng, J.-C.; Feng, H.-M.; Lam, M.H.-W.; Lam, P.K.-S.; Ding, Y.-W.; Yu, H.-Q. Removal of Cu(II) in Aqueous Media by Biosorption Using Water Hyacinth Roots as a Biosorbent Material. J. Hazard. Mater. 2009, 171, 780–785. [Google Scholar] [CrossRef]
- Vijayaraghavan, K.; Rangabhashiyam, S.; Ashokkumar, T.; Arockiaraj, J. Mono- and Multi-Component Biosorption of Lead(II), Cadmium(II), Copper(II) and Nickel(II) Ions onto Coco-Peat Biomass. Sep. Sci. Technol. 2016, 51, 2725–2733. [Google Scholar] [CrossRef]
- Šabanović, E.; Memić, M.; Sulejmanović, J.; Selović, A. Simultaneous Adsorption of Heavy Metals from Water by Novel Lemon-Peel Based Biomaterial. Pol. J. Chem. Technol. 2020, 22, 46–53. [Google Scholar] [CrossRef]
- Singh, R.J.; Martin, C.E.; Barr, D.; Rosengren, R.J. Cucumber Peel Bead Biosorbent for Multi-Ion Decontamination of Drinking Water Collected from a Mine Region in New Zealand. Environ. Technol. 2021, 42, 2461–2477. [Google Scholar] [CrossRef]
- Abdelfattah, I.; Ismail, A.A.; Sayed, F.A.; Almedolab, A.; Aboelghait, K.M. Biosorption of Heavy Metals Ions in Real Industrial Wastewater Using Peanut Husk as Efficient and Cost Effective Adsorbent. Environ. Nanotechnol. Monit. Manag. 2016, 6, 176–183. [Google Scholar] [CrossRef]
- Monroy-Figueroa, J.; Mendoza-Castillo, D.I.; Bonilla-Petriciolet, A.; Pérez-Cruz, M.A. Chemical Modification of Byrsonima Crassifolia with Citric Acid for the Competitive Sorption of Heavy Metals from Water. Int. J. Environ. Sci. Technol. 2015, 12, 2867–2880. [Google Scholar] [CrossRef]
- Mahamadi, C. On the Dominance of Pb during Competitive Biosorption from Multi-Metal Systems: A Review. Cogent Environ. Sci. 2019, 5, 1635335. [Google Scholar] [CrossRef]
Treatment Methods | Positive Points | Negative Points |
---|---|---|
Membrane filtration | Efficient method with minimal space required [31]. | Membrane development with improved thermal stability and performance is still a challenge [31]; large amount of sludge, and very expensive because of the membrane cost [27,28]. |
Ion exchange | Effective to remove metal ions, high regeneration rates, and can be metal-selective [27,28]. | High labor and operational costs, and not suitable for low concentration of metals [27,28]. |
Coagulation/ flocculation | Low-cost and easy to operate [27,28]. | Important amount of sludge, high utilization of chemicals [27,28]. |
Electrochemical treatment | Easy to operate, high efficiency, and requires simple equipment [31]. | High energy costs [31] and maintenance of electrodes [28]. |
Adsorption | Simple, profitable, easy to operate and environmental-friendly, effective in reducing the concentration of metal ions to very low levels [32]. | Extensive use sometimes restricted because of the activated carbons’ cost [33]; regeneration requires the use of chemicals [28]. |
Biosorption | Minimal amount of sludge generation, short time of operation, and possibility of metal recovery [34]; biosorbents are cheaper, available locally and in large quantities, and more sustainable than commercial activated carbons [30,35]. | Sometimes, activation is required to enhance the sorption capability of the biosorbent which adds costs. Desorption process requires chemicals [28]. |
Biosorbent Materials | Pb(II) | Cd(II) | Cu(II) | Zn(II) | Cr(IV) | Ni(II) | Mn(II) | Cr(III) | Co(II) | Reference |
---|---|---|---|---|---|---|---|---|---|---|
Tea waste, corncob and sawdust | 94.00 | 41.48 | 39.48 | 27.23 | [7] | |||||
Olive stones | 0.58 | 0.30 | 0.56 | 2.35 | [15] | |||||
Abies bornmulleriana cone | 11.40 | 4.37 | 6.33 | 2.36 | 2.13 | [43] | ||||
Pinecone | 23.80 | 10.34 | 1.51 | 13.41 | [9] | |||||
Lemon peel | 8.17 | 7.34 | 7.17 | 5.73 | 5.17 | 7.56 | 5.63 | [83] | ||
Almond shell | 2.39 | 21.92 | [80] | |||||||
Moringa stenopetala seeds | 16.13 | 23.26 | 10.20 | [12] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Macena, M.; Pereira, H.; Cruz-Lopes, L.; Grosche, L.; Esteves, B. Competitive Adsorption of Metal Ions by Lignocellulosic Materials: A Review of Applications, Mechanisms and Influencing Factors. Separations 2025, 12, 70. https://doi.org/10.3390/separations12030070
Macena M, Pereira H, Cruz-Lopes L, Grosche L, Esteves B. Competitive Adsorption of Metal Ions by Lignocellulosic Materials: A Review of Applications, Mechanisms and Influencing Factors. Separations. 2025; 12(3):70. https://doi.org/10.3390/separations12030070
Chicago/Turabian StyleMacena, Morgana, Helena Pereira, Luísa Cruz-Lopes, Lucas Grosche, and Bruno Esteves. 2025. "Competitive Adsorption of Metal Ions by Lignocellulosic Materials: A Review of Applications, Mechanisms and Influencing Factors" Separations 12, no. 3: 70. https://doi.org/10.3390/separations12030070
APA StyleMacena, M., Pereira, H., Cruz-Lopes, L., Grosche, L., & Esteves, B. (2025). Competitive Adsorption of Metal Ions by Lignocellulosic Materials: A Review of Applications, Mechanisms and Influencing Factors. Separations, 12(3), 70. https://doi.org/10.3390/separations12030070