Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (69)

Search Parameters:
Keywords = aftertreatment technology

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 1087 KiB  
Review
After-Treatment Technologies for Emissions of Low-Carbon Fuel Internal Combustion Engines: Current Status and Prospects
by Najunzhe Jin, Wuqiang Long, Chunyang Xie and Hua Tian
Energies 2025, 18(15), 4063; https://doi.org/10.3390/en18154063 - 31 Jul 2025
Viewed by 314
Abstract
In response to increasingly stringent emission regulations, low-carbon fuels have received significant attention as sustainable energy sources for internal combustion engines. This study investigates four representative low-carbon fuels, methane, methanol, hydrogen, and ammonia, by systematically summarizing their combustion characteristics and emission profiles, along [...] Read more.
In response to increasingly stringent emission regulations, low-carbon fuels have received significant attention as sustainable energy sources for internal combustion engines. This study investigates four representative low-carbon fuels, methane, methanol, hydrogen, and ammonia, by systematically summarizing their combustion characteristics and emission profiles, along with a review of existing after-treatment technologies tailored to each fuel type. For methane engines, unburned hydrocarbon (UHC) produced during low-temperature combustion exhibits poor oxidation reactivity, necessitating integration of oxidation strategies such as diesel oxidation catalyst (DOC), particulate oxidation catalyst (POC), ozone-assisted oxidation, and zoned catalyst coatings to improve purification efficiency. Methanol combustion under low-temperature conditions tends to produce formaldehyde and other UHCs. Due to the lack of dedicated after-treatment systems, pollutant control currently relies on general-purpose catalysts such as three-way catalyst (TWC), DOC, and POC. Although hydrogen combustion is carbon-free, its high combustion temperature often leads to elevated nitrogen oxide (NOx) emissions, requiring a combination of optimized hydrogen supply strategies and selective catalytic reduction (SCR)-based denitrification systems. Similarly, while ammonia offers carbon-free combustion and benefits from easier storage and transportation, its practical application is hindered by several challenges, including low ignitability, high toxicity, and notable NOx emissions compared to conventional fuels. Current exhaust treatment for ammonia-fueled engines primarily depends on SCR, selective catalytic reduction-coated diesel particulate filter (SDPF). Emerging NOx purification technologies, such as integrated NOx reduction via hydrogen or ammonia fuel utilization, still face challenges of stability and narrow effective temperatures. Full article
(This article belongs to the Special Issue Engine Combustion Characteristics, Performance, and Emission)
Show Figures

Figure 1

9 pages, 2222 KiB  
Proceeding Paper
Research and Analysis of the Real-Time Interaction Between Performance and Smoke Emission of a Diesel Vehicle
by Iliyan Damyanov, Rosen Miletiev and Tsvetan Ivanov Valkovski
Eng. Proc. 2025, 100(1), 34; https://doi.org/10.3390/engproc2025100034 - 14 Jul 2025
Viewed by 286
Abstract
In recent decades, environmental requirements for reducing the toxic components emitted from vehicle exhausts have decreased drastically. Technologies for after-treatment of diesel vehicle emissions are being improved continuously in order to meet increasingly stringent regulations. Passenger cars are a significant source of air [...] Read more.
In recent decades, environmental requirements for reducing the toxic components emitted from vehicle exhausts have decreased drastically. Technologies for after-treatment of diesel vehicle emissions are being improved continuously in order to meet increasingly stringent regulations. Passenger cars are a significant source of air pollution, especially in urban areas. The EU has decided to phase out internal combustion engines. Stricter Real Driving Emissions (RDE) testing procedures have also been introduced, aiming to assess the emissions of nitrogen oxides (NOx) and particle number (PN). The present work investigates the interaction between performance and smoke emissions of a diesel vehicle on a pre-established route in an urban environment with an everyday (normal) driving style. The results showed that when the vehicle is technically sound and meets its technical specifications, smoke emissions are within normal limits. Full article
Show Figures

Figure 1

14 pages, 1117 KiB  
Article
Factors Influencing Virtual Art Therapy in Patients with Stroke
by Marco Iosa, Roberto De Giorgi, Federico Gentili, Alberto Ciotti, Cristiano Rubeca, Silvia Casolani, Claudia Salera and Gaetano Tieri
Brain Sci. 2025, 15(7), 736; https://doi.org/10.3390/brainsci15070736 - 9 Jul 2025
Viewed by 393
Abstract
Background: Art therapy was recently administered to stroke patients using immersive virtual reality technology, chosen to provide the illusion of being able to replicate an artistic masterpiece. This approach was effective in improving rehabilitative outcomes due to the so-called Michelangelo effect: patients’ [...] Read more.
Background: Art therapy was recently administered to stroke patients using immersive virtual reality technology, chosen to provide the illusion of being able to replicate an artistic masterpiece. This approach was effective in improving rehabilitative outcomes due to the so-called Michelangelo effect: patients’ interaction with artistic stimuli reduced perceived fatigue and improved performance. The aim of the present study was to investigate which factors may influence those outcomes (e.g., type of artwork, esthetic valence, perceived fatigue, clinical conditions). Methods: An observational study was conducted on 25 patients with stroke who performed the protocol of virtual art therapy (VAT). In each trial, patients were asked to rate the esthetic valence of the artworks and their perceived fatigue, whereas therapists assessed patients’ participation in the therapy (Pittsburgh Rehabilitation Participation Scale, PRPS). Moreover, before and after treatment, patients’ independence in daily living activities (Barthel Index, BI), and their upper limb functioning (Manual Muscle Test, MMT) and spasticity (Ashworth Scale, AS) were measured. Results: The after-treatment BI scores depended on the before-treatment BI score (p < 0.001) and on the PRPS score (p = 0.006), which, in turn, was increased by the subjective esthetic valence (p = 0.044). Perceived fatigue is a complex factor that may have influenced the outcomes (p = 0.049). Conclusions: There was a general effect of art in reducing fatigue and improving participation of patients during therapy. The variability observed among patients mainly depended on their clinical conditions, but also on the esthetic valence given to each artwork, that could also be intertwined with the difficulty of the task. Art therapy has a high potential to improve rehabilitation outcomes, especially if combined with new technologies, but psychometric investigation of the effects of each factor is needed to design the most effective protocols. Full article
Show Figures

Figure 1

30 pages, 5318 KiB  
Review
Progress of Ship Exhaust Emissions in China’s Lijiang River: Current Status and Aftertreatment Technologies
by Pengyu Liu, Bensen Xian, Mei Wang, Yong Xiao, Xiaobin Zhou, Dandan Xu, Yanan Zhang, Huili Liu and Shaoyuan Bai
Toxics 2025, 13(5), 396; https://doi.org/10.3390/toxics13050396 - 15 May 2025
Viewed by 1005
Abstract
Exhaust emissions from ships are significant threats to the environment and human health, necessitating effective control measures and treatment technologies. In response to the increasing stringency of emission regulations set by the International Maritime Organization (IMO) and national governments, the shipping industry must [...] Read more.
Exhaust emissions from ships are significant threats to the environment and human health, necessitating effective control measures and treatment technologies. In response to the increasing stringency of emission regulations set by the International Maritime Organization (IMO) and national governments, the shipping industry must adopt advanced techniques to mitigate these emissions. The study focuses on the current status of exhaust pollution prevention and control on the Lijiang River and describes the latest progress in ship emission management. It summarizes the sources and hazards of nitrogen oxides (NOX), sulfur oxides (SOX), and particulate matter (PM) emitted from ships. The study introduces and compares several exhaust treatment key technologies for desulfurization, denitrification, and integrated desulfurization and denitrification to emphasize their principles, processes, and characteristics. It also demonstrates the future prospects for controlling exhaust gas pollution on inland ships and advocates for the development of integrated technologies that are efficient, space-saving, and cost-effective. The research aims to provide a valuable reference for inland ship exhaust pollution prevention and control. Full article
(This article belongs to the Section Air Pollution and Health)
Show Figures

Graphical abstract

23 pages, 9227 KiB  
Article
Achieving NOx Emissions with Zero-Impact on Air Quality from Diesel Light-Duty Commercial Vehicles
by Theodoros Kossioris, Robert Maurer, Stefan Sterlepper, Marco Günther and Stefan Pischinger
Energies 2025, 18(8), 1882; https://doi.org/10.3390/en18081882 - 8 Apr 2025
Viewed by 726
Abstract
Many cities are still struggling to comply with current air quality regulations. Road transport is usually a significant source of NOx emissions, especially in urban areas. Therefore, NOx from road vehicles needs to be further reduced below current standards to ultra-low or even [...] Read more.
Many cities are still struggling to comply with current air quality regulations. Road transport is usually a significant source of NOx emissions, especially in urban areas. Therefore, NOx from road vehicles needs to be further reduced below current standards to ultra-low or even zero-impact levels. In a novel, holistic powertrain design approach, this paper presents powertrain solutions to achieve zero-impact NOx emissions with an N1 class III diesel light commercial vehicle. The design is based on a compliance test matrix consisting of six real-world scenarios that are critical for emissions and air quality. As a design baseline, a vehicle concept meeting the emission requirements as set out in the European Commission’s 2022 Euro 7 regulation proposal is used. The baseline vehicle concept can achieve zero-impact NOx emissions in 67% of these scenarios. To achieve zero-impact NOx emissions in all scenarios, further advanced emission solutions are mandatory. In congested urban areas, the use of an exhaust gas aftertreatment system preheating device with at least 20 kW of power for 1 min is required. In high-traffic highway situations, an underfloor SCR unit with a minimum volume of 12 l or the restriction of the maximum vehicle speed at 130 km/h is required. Full article
(This article belongs to the Special Issue Emission Control Technology in Internal Combustion Engines)
Show Figures

Graphical abstract

34 pages, 13658 KiB  
Project Report
Clean Propulsion Technologies: Securing Technological Dominance for the Finnish Marine and Off-Road Powertrain Sectors
by Maciej Mikulski, Teemu Ovaska, Rodrigo Rabetino, Merja Kangasjärvi and Aino Myllykangas
Energies 2025, 18(5), 1240; https://doi.org/10.3390/en18051240 - 3 Mar 2025
Viewed by 827
Abstract
The Clean Propulsion Technologies (CPT) project, established in 2021, brought together 15 research partners and original equipment manufacturers. The goal was to create a common vision and sustainable business solutions so that the worldwide technological leadership of the Finnish powertrain industry is secured. [...] Read more.
The Clean Propulsion Technologies (CPT) project, established in 2021, brought together 15 research partners and original equipment manufacturers. The goal was to create a common vision and sustainable business solutions so that the worldwide technological leadership of the Finnish powertrain industry is secured. With a EUR 15.5 M budget, CPT brought early-stage innovative concepts towards technology readiness level (TRL) 6. The project’s particular significance was its unique cross-coupling of marine and off-road sectors, which have similar emission reduction targets but which do not compete for similar customers. The project yielded 21 innovative solutions, from accelerated model-based design methodologies and progress in combustion and aftertreatment control to hybrid energy management solutions. These were encapsulated in four ground-breaking demonstrations, including a next-generation marine engine working in low-temperature, reactivity-controlled compression ignition (RCCI) mode and a hydrogen off-road engine. An advanced close-coupled selective catalyst reduction (SCR) system and a hybrid wheel-platform with digital hydraulics were also demonstrated. The University of Vaasa led the consortium and was responsible for coordinated model-based rapid prototyping. This report examines University of Vaasa’s achievements during the CPT in terms of 26 milestones, 13 deliverables, and 32 research papers. It focuses also on other aspects, including lessons learned from managing large-scale academic–industry research. Full article
Show Figures

Figure 1

18 pages, 4783 KiB  
Article
The Activation of Oxygen Species on the Pt/CeO2 Catalyst by H2 for NO Oxidation
by Xiangru Li, Shuangye Li, Yao Cheng, Lechen Zheng, Liyun Song, Xuehong Zi and Hongxing Dai
Catalysts 2024, 14(11), 778; https://doi.org/10.3390/catal14110778 - 4 Nov 2024
Cited by 2 | Viewed by 1757
Abstract
The Pt/CeO2 catalyst has attracted significant attention due to its exceptional performance in NO oxidation. This study comprehensively examines the effects of calcination temperature and H2 pretreatment on the structure and activity of the Pt/CeO2 catalyst. Experimental findings indicate that [...] Read more.
The Pt/CeO2 catalyst has attracted significant attention due to its exceptional performance in NO oxidation. This study comprehensively examines the effects of calcination temperature and H2 pretreatment on the structure and activity of the Pt/CeO2 catalyst. Experimental findings indicate that the calcination temperature significantly affects the catalyst’s redox performance, thereby modulating its efficacy in NO oxidation reactions. H2 pretreatment facilitates the creation of oxygen vacancies on the catalyst, assisted by the reduction in PtOx to Pt, enhancing the formation of activated oxygen and thereby improving NO oxidation. This study offers valuable insights into the design and optimization of Pt/CeO2 catalysts for environmental applications, particularly in the development of exhaust gas after-treatment technologies. Full article
(This article belongs to the Special Issue Catalytic Energy Conversion and Catalytic Environmental Purification)
Show Figures

Graphical abstract

16 pages, 5378 KiB  
Article
Results on the Use of an Original Burner for Reducing the Three-Way Catalyst Light-Off Time
by Adrian Clenci, Bogdan Cioc, Julien Berquez, Victor Iorga-Simăn, Robert Stoica and Rodica Niculescu
Inventions 2024, 9(6), 112; https://doi.org/10.3390/inventions9060112 - 29 Oct 2024
Cited by 1 | Viewed by 1370
Abstract
Individual road mobility comes with two major challenges: greenhouse gas emissions related to global warming and chemical pollution. For the pollution reduction in the spark ignition engine vehicle, the standard and reliable aftertreatment technology is the three-way catalytic converter (TWC). However, the TWC [...] Read more.
Individual road mobility comes with two major challenges: greenhouse gas emissions related to global warming and chemical pollution. For the pollution reduction in the spark ignition engine vehicle, the standard and reliable aftertreatment technology is the three-way catalytic converter (TWC). However, the TWC starts to convert once an optimal temperature, usually known as the light-off temperature, is reached. There are many methods to reduce the warm-up period of the TWC, among which is using a burner. The initial question underlying this study was to see if the use of a relatively straightforward extra-combustion device mounted upstream the TWC, without complex elements, was able to serve the purpose of reducing the light-off time. Consequently, an original burner was designed and investigated numerically via the CFD method and experimentally via measurements of the temperature evolution within a TWC, along with the emissions specific to the burner’s operation. The main findings of this study are: (1) the CFD-based examination is a good way to decide on how to achieve the so-called fit-for-purpose internal aerodynamics of the burner (i.e., to obtain a homogeneous mixture) and (2) to reach the light-off temperature, conventionally taken as 500 K, the burner was operated for 5.2 s, i.e., 3.6 g of gasoline injected, 2.7 g of CO2 and 1.351 g of CO, respectively, emitted. Moreover, this study identified measures for improving the burner’s design as well as an enhanced procedure for the burner’s operating control both aiming to produce a cleaner combustion during the TWC pre-heating. Full article
Show Figures

Figure 1

14 pages, 1481 KiB  
Review
Recent Advances in SCR Systems of Heavy-Duty Diesel Vehicles—Low-Temperature NOx Reduction Technology and Combination of SCR with Remote OBD
by Zhengguo Chen, Qingyang Liu, Haoye Liu and Tianyou Wang
Atmosphere 2024, 15(8), 997; https://doi.org/10.3390/atmos15080997 - 20 Aug 2024
Cited by 11 | Viewed by 5258
Abstract
Heavy-duty diesel vehicles are a significant source of nitrogen oxides (NOx) in the atmosphere. The Selective Catalytic Reduction (SCR) system is a primary aftertreatment device for reducing NOx emissions from heavy-duty diesel vehicles. With increasingly stringent NOx emission regulations for heavy-duty vehicles in [...] Read more.
Heavy-duty diesel vehicles are a significant source of nitrogen oxides (NOx) in the atmosphere. The Selective Catalytic Reduction (SCR) system is a primary aftertreatment device for reducing NOx emissions from heavy-duty diesel vehicles. With increasingly stringent NOx emission regulations for heavy-duty vehicles in major countries, there is a growing focus on reducing NOx emissions under low exhaust temperature conditions, as well as monitoring the conversion efficiency of the SCR system over its entire lifecycle. By reviewing relevant literature mainly from the past five years, this paper reviews the development trends and related research results of SCR technology, focusing on two main aspects: low-temperature NOx reduction technology and the combination of SCR systems with remote On-Board Diagnostics (OBD). Regarding low-temperature NOx reduction technology, the results of the review indicate that the combination of multiple catalytic shows potential for achieving high conversion efficiency across a wide temperature range; advanced SCR system arrangement can accelerate the increase in exhaust temperature within the SCR system; solid ammonium and gaseous reductants can effectively address the issue of urea not being able to be injected under low-temperature exhaust conditions. As for the combination of SCR systems with remote OBD, remote OBD can accurately assess NOx emissions from heavy-duty vehicles, but it needs algorithms to correct data and match the emission testing process required by regulations. Remote OBD systems are crucial for detecting SCR tampering, but algorithms must be developed to balance accuracy with computational efficiency. This review provides updated information on the current research status and development directions in SCR technologies, offering valuable insights for future research into advanced SCR systems. Full article
(This article belongs to the Special Issue Recent Advances in Mobile Source Emissions (2nd Edition))
Show Figures

Figure 1

25 pages, 12647 KiB  
Article
Impact of Mid-to-Low-Ash, Low-Viscosity Lubricants on Aftertreatment Systems after 210,000-Kilometer Real-World Road Endurance Trials
by Heng Shao, Hua Hu, Yitao Luo, Lun Hua, Jinchong Pan, Gezhengting Zhu, Yan Jiao, Jingfeng Yan and Guangyuan Wei
Lubricants 2024, 12(7), 240; https://doi.org/10.3390/lubricants12070240 - 3 Jul 2024
Cited by 1 | Viewed by 1378
Abstract
Engine lubricants globally face the challenge of meeting the demands of new engine technologies while enhancing energy efficiency and reducing emissions. Lubricants must enhance their performance and sustainability, improve reliability in complex and harsh environments, and minimize environmental impact and health risks. This [...] Read more.
Engine lubricants globally face the challenge of meeting the demands of new engine technologies while enhancing energy efficiency and reducing emissions. Lubricants must enhance their performance and sustainability, improve reliability in complex and harsh environments, and minimize environmental impact and health risks. This study explores the influence of two different formulations of low viscosity lubricants, tested through actual road endurance trials, on a hybrid vehicle’s aftertreatment system performance and overall emission levels. The study includes 120,000 km of endurance testing in four different challenging environments in China, as well as 90,000 km of endurance testing in a typical urban and highway driving cycle in a large city. Results indicate that emissions from the test vehicles during the 120,000 km and 210,000 km durable Worldwide harmonized Light vehicle Test Cycles (WLTCs) meet China’s Stage 6 light-duty vehicle emission standards, with the 210,000 km Real Driving Emission test (RDE) results also conforming to these standards. Relative to fresh TWC, the light-off temperature increased by a mere 60 °C, and the oxygen storage capacity declined by around 19% following endurance testing. Additionally, the GPF exhibited satisfactory performance after 210,000 km of endurance testing, showing lower backpressure values compared to the fresh-coated samples, with no notable ash buildup observed in the substrate. Drawing on the outcomes of actual road endurance testing, this study illustrates that employing low-to-mid-ash-content, low-viscosity lubricants is both compatible and reliable for aftertreatment systems in present or advanced hybrid technologies. Premium lubricants facilitate vehicles in sustaining compliant and stable emission performance, even amid harsh environments and complex operating conditions. Furthermore, the tested lubricants effectively inhibit excessive aging of the aftertreatment system over prolonged mileage. Moreover, this study discusses the feasibility of rapid aging evaluation methods for aftertreatment systems based on engine test benches, juxtaposed with actual road endurance testing. These findings and conclusions offer crucial references and guidance for enhancing lubricant performance and sustainability. Subsequent studies can delve deeper into the correlation between lubricant performance and environmental impact, alongside optimization strategies for lubricants across various vehicle models and usage scenarios. Full article
Show Figures

Figure 1

21 pages, 5410 KiB  
Article
Analysis of Altitude and Ambient Temperature Effects on the Reactivity of Oxidation Catalysts in the Presence of H2
by José Ramón Serrano, Pedro Piqueras, Enrique José Sanchis and Carla Conde
Appl. Sci. 2024, 14(11), 4790; https://doi.org/10.3390/app14114790 - 31 May 2024
Viewed by 1182
Abstract
Worldwide emission standards are now required to cover engine operation under extreme ambient conditions, which affect the raw emissions and the efficiency of the exhaust aftertreatment systems. These regulations also target new combustion technologies for decarbonization, such as neat hydrogen (H2 [...] Read more.
Worldwide emission standards are now required to cover engine operation under extreme ambient conditions, which affect the raw emissions and the efficiency of the exhaust aftertreatment systems. These regulations also target new combustion technologies for decarbonization, such as neat hydrogen (H2) combustion or dual-fuel strategies, which involve a challenge to the analysis of exhaust aftertreatment system requirements and performance. This work addresses the impact of high altitude and low ambient temperature conditions on the reactivity of an oxidation catalyst in the presence of H2. A reaction mechanism is proposed to cover the main conversion paths of CO, HC, and H2, including the formation and consumption of high-energy surface reaction intermediates. The mechanism has been implemented into a faster-than-real-time reduced-order model for multi-layer washcoat honeycomb catalytic converters. The model was utilized to investigate the effect of H2 concentration on the reactivity of CO and HC within the catalyst under various operating and ambient conditions. By applying the model and examining the selectivity towards different reaction pathways in the presence of H2, insights into surface intermediates and reactivity across different cross-sections of the monolith were obtained. This analysis discusses the underlying causes of reactivity changes promoted by H2 and its relative importance as a function of driving boundary conditions. Full article
Show Figures

Figure 1

20 pages, 22371 KiB  
Article
Study on the Evolution of Physicochemical Properties of Carbon Black at Different Regeneration Stages of Diesel Particulate Filters Regenerated by Non-Thermal Plasma
by Yong Luo, Yunxi Shi, Kaiqi Zhuang, Ruirui Ji, Xulong Chen, Yankang Huang, Zhe Wang, Yixi Cai and Xiaohua Li
Processes 2024, 12(6), 1113; https://doi.org/10.3390/pr12061113 - 28 May 2024
Cited by 20 | Viewed by 1663
Abstract
As a new type of aftertreatment technology, non-thermal plasma (NTP) can effectively decompose the particulate matter (PM) deposited in diesel particulate filters (DPFs). In this paper, a regeneration test of a DPF loaded with carbon black was carried out using an NTP injection [...] Read more.
As a new type of aftertreatment technology, non-thermal plasma (NTP) can effectively decompose the particulate matter (PM) deposited in diesel particulate filters (DPFs). In this paper, a regeneration test of a DPF loaded with carbon black was carried out using an NTP injection system, and the changes of oxidative activity, elemental content, and occurrence state, microstructure and graphitization degree of carbon black were analyzed to reveal the evolution of the physicochemical properties of carbon black at different regeneration stages of the DPF regenerated by NTP. As the regeneration stage of the DPF advanced, Ti, Tmax, and Te of the carbon black at the bottom of the DPF decreased, which were higher than those at the regeneration interface. After the NTP reaction, the proportion of C element decreased to less than 80%, while the proportion of O element increased to more than 20%; C-O was converted to C=O and the relative content of C=O increased. The average microcrystalline length and average spacing decreased, while the average microcrystalline curvature increased. The ID1/IG (relative peak intensities) of carbon black samples decreased from 3.31 to 3.10, and the R3 (relative peak intensities, R3 = ID3/(IG + ID2 + ID3)) increased from 0.41 to 0.58. The content of carbon clusters had a great influence on the disorder of the microcrystalline structure, so the graphitization degree of carbon black decreased and the oxidation activity increased. Full article
(This article belongs to the Special Issue Clean Combustion and Emission in Vehicle Power System, 2nd Edition)
Show Figures

Figure 1

20 pages, 2764 KiB  
Article
Greenhouse Gas Emissions of a Hydrogen Engine for Automotive Application through Life-Cycle Assessment
by Antonella Accardo, Trentalessandro Costantino, Gianfranco Malagrinò, Michele Pensato and Ezio Spessa
Energies 2024, 17(11), 2571; https://doi.org/10.3390/en17112571 - 26 May 2024
Cited by 4 | Viewed by 2816
Abstract
Hydrogen combustion engine vehicles have the potential to rapidly enter the market and reduce greenhouse gas emissions (GHG) compared to conventional engines. The ability to provide a rapid market deployment is linked to the fact that the industry would take advantage of the [...] Read more.
Hydrogen combustion engine vehicles have the potential to rapidly enter the market and reduce greenhouse gas emissions (GHG) compared to conventional engines. The ability to provide a rapid market deployment is linked to the fact that the industry would take advantage of the existing internal combustion engine production chain. The aim of this paper is twofold. First, it aims to develop a methodology for applying life-cycle assessment (LCA) to internal combustion engines to estimate their life-cycle GHG emissions. Also, it aims to investigate the decarbonization potential of hydrogen engines produced by exploiting existing diesel engine technology and assuming diverse hydrogen production routes. The boundary of the LCA is cradle-to-grave, and the assessment is entirely based on primary data. The products under study are two monofuel engines: a hydrogen engine and a diesel engine. The hydrogen engine has been redesigned using the diesel engine as a base. The engines being studied are versatile and can be used for a wide range of uses such as automotive, cogeneration, maritime, off-road, and railway; however, this study focuses on their application in pickup trucks. As part of the redesign process, certain subsystems (e.g., combustion, injection, ignition, exhaust gas recirculation, and exhaust gas aftertreatment) have been modified to make the engine run on hydrogen. Results revealed that employing a hydrogen engine using green hydrogen (i.e., generated from water electrolysis using wind-based electricity) might reduce GHG emission by over 90% compared to the diesel engine This study showed that the benefits of the new hydrogen engine solution outweigh the increase of emissions related to the redesign process, making it a potentially beneficial solution also for reconditioning current and used internal combustion engines. Full article
(This article belongs to the Special Issue Vehicle Engines and Powertrains: Performance, Combustion and Emission)
Show Figures

Figure 1

26 pages, 9370 KiB  
Article
The Impact of Vehicle Technology, Size Class, and Driving Style on the GHG and Pollutant Emissions of Passenger Cars
by Martin Opetnik, Stefan Hausberger, Claus Uwe Matzer, Silke Lipp, Lukas Landl, Konstantin Weller and Miriam Elser
Energies 2024, 17(9), 2052; https://doi.org/10.3390/en17092052 - 26 Apr 2024
Cited by 3 | Viewed by 1844
Abstract
Although technical improvements to engines and aftertreatment systems have the greatest impact on pollutant emissions, there is also potential for reducing emissions through driver behavior. This potential can be realized in the very short term, while better emission-control technologies only take effect once [...] Read more.
Although technical improvements to engines and aftertreatment systems have the greatest impact on pollutant emissions, there is also potential for reducing emissions through driver behavior. This potential can be realized in the very short term, while better emission-control technologies only take effect once they have penetrated the market. In addition to a change in driving style, the vehicle owner’s choice of vehicle technology and size class will also have an impact on the future emissions of the vehicle fleet. The effects of different driving styles, the tire choice, the vehicle size class, and propulsion technologies on energy consumption and tailpipe and non-exhaust emissions are analyzed in this paper for different traffic situations and start temperatures for cars with petrol and diesel combustion engines and for battery electric vehicles. The analysis is completed with the corresponding upstream emissions from fuel and electricity production. The analysis is based on a vehicle simulation using the Passenger car and Heavy-duty Emission Model (PHEM), which is based on a large database of vehicles created using measurements of real driving conditions. For the assessment of the driving style, a novel method was developed in an H2020 project, which reproduces a measured trip with a virtual eco-driver. Carbon dioxide equivalent emissions (CO2eq) increase with increasing vehicle size, but can be reduced by around 20% for conventional vehicles and 17% for battery electric vehicles (BEVs) through an environmentally conscious driving style. On average, BEVs have around 50% lower CO2eq emissions than conventional vehicles, if the emissions from vehicle production are also taken into account. On an average journey of 35 km, the cold start of modern diesel vehicles accounts for around half of the total NOx emissions, while the proportion of cold starts for petrol vehicles is around 25%. Tire and brake wear together generate a similar amount of PN23 emissions as the exhaust gases from new cars. Full article
(This article belongs to the Collection Energy Efficiency and Environmental Issues)
Show Figures

Figure 1

22 pages, 4099 KiB  
Article
Transferability Assessment of OBD-Related Calibration and Validation Activities from the Vehicle to HiL Applications
by Frank Dorscheidt, Stefan Pischinger, Peter Bailly, Marc Timur Düzgün, Sascha Krysmon, Christoph Lisse, Martin Nijs and Michael Görgen
Appl. Sci. 2024, 14(3), 1245; https://doi.org/10.3390/app14031245 - 2 Feb 2024
Viewed by 1254
Abstract
With the Euro 7 pollutant emission legislation currently under discussion, advanced and more efficient exhaust aftertreatment systems are being developed. The technologies required for these are leading to an increase in the number of components and control systems requiring diagnoses strategies under the [...] Read more.
With the Euro 7 pollutant emission legislation currently under discussion, advanced and more efficient exhaust aftertreatment systems are being developed. The technologies required for these are leading to an increase in the number of components and control systems requiring diagnoses strategies under the on-board diagnostics (OBD) legislation. With concurrent shorter development times and significant reductions in budgets allocated to conventional powertrain development, challenges in the field of OBD calibration and verification are already rising sharply. In response to these challenges, hardware-in-the-loop (HiL) approaches have been successfully introduced to support and replace conventional development methods. The use of complex simulation models significantly improves the quality of calibrations while minimizing the number of required prototype vehicles and test resources, thus reducing development costs. This paper presents a feasibility study for moving OBD-related calibration and validation tasks from the vehicle to a HiL platform. In this context, the calibration and verification process of an active diagnostic for monitoring the condition of the three-way catalyst (TWC) and the oxygen sensors in the exhaust aftertreatment system is presented. It is shown that all relevant signals are simulated with sufficient accuracy to ensure a robust transfer from the vehicle to a HiL test bench. Special attention is given to the simulation of aged components and their influence on the emission behavior of the system. Furthermore, it is discussed that transferring OBD tasks from the vehicle to the HiL test bench could result in significant savings in development time and a reduction in the number of physical prototype vehicles and test resources required. Full article
Show Figures

Figure 1

Back to TopTop