Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (168)

Search Parameters:
Keywords = aerosol solubility

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3259 KiB  
Article
Emission Characteristics and Environmental Impact of VOCs from Bagasse-Fired Biomass Boilers
by Xia Yang, Xuan Xu, Jianguo Ni, Qun Zhang, Gexiang Chen, Ying Liu, Wei Hong, Qiming Liao and Xiongbo Chen
Sustainability 2025, 17(14), 6343; https://doi.org/10.3390/su17146343 - 10 Jul 2025
Viewed by 440
Abstract
This study investigates the emission characteristics and environmental impacts of pollutants from bagasse-fired biomass boilers through the integrated field monitoring of two sugarcane processing plants in Guangxi, China. Comprehensive analyses of flue gas components, including PM2.5, NOx, CO, heavy metals, VOCs, [...] Read more.
This study investigates the emission characteristics and environmental impacts of pollutants from bagasse-fired biomass boilers through the integrated field monitoring of two sugarcane processing plants in Guangxi, China. Comprehensive analyses of flue gas components, including PM2.5, NOx, CO, heavy metals, VOCs, HCl, and HF, revealed distinct physicochemical and emission profiles. Bagasse exhibited lower C, H, and S content but higher moisture (47~53%) and O (24~30%) levels compared to coal, reducing the calorific values (8.93~11.89 MJ/kg). Particulate matter removal efficiency exceeded 98% (water film dust collector) and 95% (bag filter), while NOx removal varied (10~56%) due to water solubility differences. Heavy metals (Cu, Cr, Ni, Pb) in fuel migrated to fly ash and flue gas, with Hg and Mn showing notable volatility. VOC speciation identified oxygenated compounds (OVOCs, 87%) as dominant in small boilers, while aromatics (60%) and alkenes (34%) prevailed in larger systems. Ozone formation potential (OFP: 3.34~4.39 mg/m3) and secondary organic aerosol formation potential (SOAFP: 0.33~1.9 mg/m3) highlighted aromatic hydrocarbons (e.g., benzene, xylene) as critical contributors to secondary pollution. Despite compliance with current emission standards (e.g., PM < 20 mg/m3), elevated CO (>1000 mg/m3) in large boilers indicated incomplete combustion. This work underscores the necessity of tailored control strategies for OVOCs, aromatics, and heavy metals, advocating for stricter fuel quality and clear emission standards to align biomass energy utilization with environmental sustainability goals. Full article
Show Figures

Figure 1

16 pages, 1877 KiB  
Review
Capillary Rise and Salt Weathering in Spain: Impacts on the Degradation of Calcareous Materials in Historic Monuments
by Elías Afif-Khouri, Alfonso Lozano-Martínez, José Ignacio López de Rego, Belén López-Gallego and Rubén Forjan-Castro
Buildings 2025, 15(13), 2285; https://doi.org/10.3390/buildings15132285 - 29 Jun 2025
Viewed by 758
Abstract
The crystallization of soluble salts is one of the most significant agents of deterioration affecting porous building materials in historical architecture. This process not only compromises the physical integrity of the materials but also results in considerable aesthetic, structural, and economic consequences. Soluble [...] Read more.
The crystallization of soluble salts is one of the most significant agents of deterioration affecting porous building materials in historical architecture. This process not only compromises the physical integrity of the materials but also results in considerable aesthetic, structural, and economic consequences. Soluble salts involved in these processes may originate from geogenic sources—including soil leachate, marine aerosols, and the natural weathering of parent rocks—or from anthropogenic factors such as air pollution, wastewater infiltration, and the use of incompatible restoration materials. This study examines the role of capillary rise as a primary mechanism responsible for the vertical migration of saline solutions from the soil profile into historic masonry structures, especially those constructed with calcareous stones. It describes how water retained or sustained within the soil matrix ascends via capillarity, carrying dissolved salts that eventually crystallize within the pore network of the stone. This phenomenon leads to a variety of damage types, ranging from superficial staining and efflorescence to more severe forms such as subflorescence, microfracturing, and progressive mass loss. By adopting a multidisciplinary approach that integrates concepts and methods from soil physics, hydrology, petrophysics, and conservation science, this paper examines the mechanisms that govern saline water movement, salt precipitation patterns, and their cumulative effects on stone durability. It highlights the influence of key variables such as soil texture and structure, matric potential, hydraulic conductivity, climatic conditions, and stone porosity on the severity and progression of deterioration. This paper also addresses regional considerations by focusing on the context of Spain, which holds one of the highest concentrations of World Heritage Sites globally and where many monuments are constructed from vulnerable calcareous materials such as fossiliferous calcarenites and marly limestones. Special attention is given to the types of salts most commonly encountered in Spanish soils—particularly chlorides and sulfates—and their thermodynamic behavior under fluctuating environmental conditions. Ultimately, this study underscores the pressing need for integrated, preventive conservation strategies. These include the implementation of drainage systems, capillary barriers, and the use of compatible materials in restoration, as well as the application of non-destructive diagnostic techniques such as electrical resistivity tomography and hyperspectral imaging. Understanding the interplay between soil moisture dynamics, salt crystallization, and material degradation is essential for safeguarding the cultural and structural value of historic buildings in the face of ongoing environmental challenges and climate variability. Full article
(This article belongs to the Special Issue Selected Papers from the REHABEND 2024 Congress)
Show Figures

Figure 1

26 pages, 5687 KiB  
Article
Importance Analyses on Phenomenological Parameters for the Aerosol Dynamics Models in I-COSTA for a Severe Nuclear Power Plant Accident
by Yoonhee Lee
Processes 2025, 13(6), 1935; https://doi.org/10.3390/pr13061935 - 19 Jun 2025
Viewed by 250
Abstract
In this study, using in-house code I-COSTA, importance analyses are performed on the phenomenological parameters in the aerosol dynamics using International Standard Problem No. 44. The analyses consider twelve parameters used in multicomponent sectional equations and Mason equations. For the first step of [...] Read more.
In this study, using in-house code I-COSTA, importance analyses are performed on the phenomenological parameters in the aerosol dynamics using International Standard Problem No. 44. The analyses consider twelve parameters used in multicomponent sectional equations and Mason equations. For the first step of the analysis, Latin hypercube sampling is performed for the aforementioned parameters, and the number of samplings is determined using a comparison of averages and standard deviations between those samplings and the ones gathered from continuous distributions of the parameters. Sensitivity analyses are then performed on the airborne concentrations of the aerosol particles using I-COSTA, and the results are used to obtain the correlation coefficients between the parameters and the airborne concentrations. From the analyses, the dynamic shape factor, which accounts for the drag force of the non-spherical aerosol particles, is found to be one of the most important parameters in the aerosol dynamics. The saturation ratio in the Mason equation is also found to be an important parameter for aerosol particles with high solubility since the mass of the aforementioned particles is sensitive to the hygroscopic growth rate. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

11 pages, 1217 KiB  
Article
Molecular Characterization of Organic Aerosol in Summer Suburban Shanghai Under High Humidity
by Xiancheng Tang, Junfang Mao, Dongmei Cai, Zhiwei Zhang, Haixin Nong, Ling Li and Jianmin Chen
Atmosphere 2025, 16(6), 659; https://doi.org/10.3390/atmos16060659 - 30 May 2025
Viewed by 372
Abstract
In this study, the chemical compositions of PM2.5 (particulate matter < 2.5 μm) and the molecular compositions of methanol-soluble organic carbon (MSOC) in suburban Shanghai during summer were measured to investigate the molecular characteristics of organic aerosol (OA) under high humidity. Diurnal [...] Read more.
In this study, the chemical compositions of PM2.5 (particulate matter < 2.5 μm) and the molecular compositions of methanol-soluble organic carbon (MSOC) in suburban Shanghai during summer were measured to investigate the molecular characteristics of organic aerosol (OA) under high humidity. Diurnal variation analysis reveals the influence of relative humidity (RH) on secondary organic aerosol (SOA) components. Organosulfates (OSs), particularly nitrooxy-OSs, exhibit a positive correlation with increasing humidity rather than atmospheric oxidants in this high-humidity site. This suggests that high RH can promote the formation of OSs, possibly through enhancing particle surface area and volume, and creating a favorable environment for aqueous-phase or heterogeneous reactions in the particle phase. A considerable proportion of CHOS compounds may be derived from anthropogenic aliphatic hydrocarbon derivatives. These compounds exhibit slightly elevated daytime concentrations due to increased emissions of long-chain aliphatics from sources such as diesel combustion, as well as photochemically enhanced oxidation to OSs. In contrast, CHONS compounds increased at night, driven by high-humidity liquid-phase oxidation. Terpenoid derivatives accounted for 13.4% of MSOC and contributed over 40% to nighttime CHONS. These findings highlight humidity’s important role in driving daytime and nighttime processing of anthropogenic and biogenic precursors to form SOA, even under low SO2 and NOx conditions. Full article
(This article belongs to the Section Aerosols)
Show Figures

Figure 1

25 pages, 3745 KiB  
Article
Optical Properties and Molecular Composition of Fine Organic Aerosols in Nanjing, China: A Comparison of 2019 and 2023
by Binhuang Zhou, Yu Huang, Liangyu Feng, Zihao Zhang, Haiwei Li, Yun Wu, Jianhuai Ye and Xinlei Ge
Toxics 2025, 13(6), 443; https://doi.org/10.3390/toxics13060443 - 27 May 2025
Viewed by 516
Abstract
Optical properties and chemical composition of atmospheric fine particles (PM2.5) are critical to their environmental and health effects. In this study, we analyzed the organic aerosols (OA) in PM2.5 samples in Nanjing, China, collected during the summer and winter of [...] Read more.
Optical properties and chemical composition of atmospheric fine particles (PM2.5) are critical to their environmental and health effects. In this study, we analyzed the organic aerosols (OA) in PM2.5 samples in Nanjing, China, collected during the summer and winter of 2019 and 2023. Results show a decline in both concentrations and light-absorbing abilities of methanol—soluble organic carbon (MSOC) and water-soluble OC (WSOC) in OA from 2019 to 2023. Due to increased combustion activities, MSOC and WSOC concentrations, and their corresponding mass absorption efficiencies were all higher in winter than in summer. Furthermore, fluorescence indices suggest that OA in Nanjing was influenced by a mix of microbial/biogenic sources. Fluorescent properties of both WSOC and MSOC were dominated by humic-like components but the remaining contribution from protein-like components was more significant in MSOC. The molecular composition of OA did not show a remarkable difference between 2019 and 2023. Overall, CHON compounds were the most abundant species, followed by CHO and CHN compounds, and aliphatic compounds dominated all molecular types except for CHN (in positive mode) and CHON, CHOS (in negative mode). Regarding the OA sources, the numbers of molecules from fossil fuel combustion and biomass burning (BB) were a bit more in 2023 than in 2019, and signal intensities of BB-related molecules were also higher in winter than in summer; the presence of organosulfates indicate the contribution of aqueous-phase oxidation to OA, especially during high relative humidity conditions. At last, correlations between OA molecules and light absorption efficiencies indicate that the key light-absorbing species in winter and summer were likely quite different despite similar chemical compositions, and in summer, CH and CHN compounds were important to light absorption, whereas CHNS compounds became more important in winter. Full article
(This article belongs to the Special Issue Source and Components Analysis of Aerosols in Air Pollution)
Show Figures

Graphical abstract

23 pages, 1835 KiB  
Article
Eight Categories of Air–Water Gas Transfer
by David Kevin Woolf
Oceans 2025, 6(2), 27; https://doi.org/10.3390/oceans6020027 - 8 May 2025
Viewed by 624
Abstract
The air–sea transfer of gases is important within climate physics, biogeochemistry and the control of pollutants. A two-layer model of transfer directly across the sea surface underpins most discourse, but an expanding literature also features transfer mediated by “suspended fragments”, either bubbles in [...] Read more.
The air–sea transfer of gases is important within climate physics, biogeochemistry and the control of pollutants. A two-layer model of transfer directly across the sea surface underpins most discourse, but an expanding literature also features transfer mediated by “suspended fragments”, either bubbles in the upper ocean or drops and aerosol in the lower atmosphere. In this study, we describe a categorization of process that elucidates departures from two-layer theory and is a starting point for quantification. On counting the distinct phenomena and their application to gases of various solubility, a total of eight categories are identified. Each category has a distinct scaling with respect to the properties of the gas and this is key to the relative importance of different categories and processes. Transfer through sea spray can be an exchange process, but the evaporation of sea spray is more effective and is an ejection process. The reactivity of carbon dioxide in aqueous solution enhances the effect of spray. Exceptional levels of sea spray generation and evaporation are required to be significant for most gases, but moderate levels are sufficient for carbon dioxide and the most soluble pollutants. Full article
24 pages, 5417 KiB  
Article
Nano-Spray-Drying of Cyclodextrin/Ibuprofen Complexes with Aerosolization-Enhancing Additives for Pulmonary Drug Delivery
by Anett Motzwickler-Németh, Endre Körmendi, Árpád Farkas, Ildikó Csóka and Rita Ambrus
Int. J. Mol. Sci. 2025, 26(9), 4320; https://doi.org/10.3390/ijms26094320 - 1 May 2025
Viewed by 803
Abstract
Cyclodextrins (CDs) enhance the solubility of poorly water-soluble drugs like ibuprofen (IBU), making them promising carriers for pulmonary drug delivery. This route lowers the required dose, minimizing side effects, which could be beneficial in treating cystic fibrosis. In this study, a nano-spray-drying technique [...] Read more.
Cyclodextrins (CDs) enhance the solubility of poorly water-soluble drugs like ibuprofen (IBU), making them promising carriers for pulmonary drug delivery. This route lowers the required dose, minimizing side effects, which could be beneficial in treating cystic fibrosis. In this study, a nano-spray-drying technique was applied to prepare CD/IBU complexes using sulfobutylether-β-cyclodextrin (SBECD) or (2-Hydroxy-3-N,N,N-trimethylamino)propyl-beta-cyclodextrin chloride (QABCD) as carriers as well as mannitol (MAN) and leucine (LEU) as aerosolization excipients. Various investigation techniques were utilized to examine and characterize the samples, including a Master Sizer particle size analyzer, scanning electron microscopy (SEM), X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC), and Fourier-transform infrared spectroscopy (FT-IR). We applied in vitro Andersen Cascade Impactor measurements and in silico simulation analysis to determine the sample’s aerodynamic properties. We also performed in vitro dissolution and diffusion tests. Applying formulations with optimal aerodynamic properties, we achieved an improved ~50% fine particle fraction values based on the Andersen Cascade Impactor measurements. The in vitro dissolution and diffusion studies revealed rapid IBU release from the formulations; however, the QABCD-based sample exhibited reduced membrane diffusion compared to SBECD due to the formation of electrostatic interactions. Full article
Show Figures

Figure 1

22 pages, 4622 KiB  
Article
An Inhaled Nanoemulsion Encapsulating a Herbal Drug for Non-Small Cell Lung Cancer (NSCLC) Treatment
by Mural Quadros, Mimansa Goyal, Gautam Chauhan, Dnyandev Gadhave and Vivek Gupta
Pharmaceutics 2025, 17(5), 540; https://doi.org/10.3390/pharmaceutics17050540 - 22 Apr 2025
Viewed by 951
Abstract
Background: Celastrol (Cela), a phytochemical extracted from Tripterygium wilfordii, has been extensively investigated for its potential anti-inflammatory, anti-psoriatic, antioxidant, neuroprotective, and antineoplastic properties. However, its clinical translation is limited due to poor bioavailability, low solubility, and nonspecific toxicity. This study aimed to [...] Read more.
Background: Celastrol (Cela), a phytochemical extracted from Tripterygium wilfordii, has been extensively investigated for its potential anti-inflammatory, anti-psoriatic, antioxidant, neuroprotective, and antineoplastic properties. However, its clinical translation is limited due to poor bioavailability, low solubility, and nonspecific toxicity. This study aimed to develop and evaluate an inhalable Cela-loaded nanoemulsion (NE) formulation to enhance targeted drug delivery and therapeutic efficacy in non-small cell lung cancer (NSCLC). Methods: The NE formulation was optimized using Capmul MCM (25%), Tween 80 (20%), Transcutol HP (5%), and water (50%) as the oil, surfactant, co-surfactant, and aqueous phase, respectively. Physicochemical characterization included globule size, zeta potential, and drug release in simulated lung fluid. In vitro aerosolization performance, cytotoxicity in NSCLC cell lines (A549), scratch and clonogenic assays, and 3D tumor spheroid models were employed to assess therapeutic potential. Results: The NE showed a globule size of 201.4 ± 3.7 nm and a zeta potential of −15.7 ± 0.2 mV. Drug release was sustained, with 20.4 ± 5.5%, 29.1 ± 10%, 64.6 ± 4.1%, and 88.1 ± 5.2% released at 24, 48, 72, and 120 h, respectively. In vitro aerosolization studies indicated a median aerodynamic particle size of 4.8 ± 0.2 μm, confirming its respirability in the lung. Cell culture studies indicated higher toxicity of NE-Cela in NSCLC cells. NE-Cela significantly reduced A549 cell viability, showing a ~6-fold decrease in IC50 (0.2 ± 0.1 μM) compared to Cela alone (1.2 ± 0.2 μM). Migration and clonogenic assays demonstrated reduced cell proliferation, and 3D spheroid models supported its therapeutic activity in tumor-like environments. Conclusions: The inhalable NE-Cela formulation improved Cela’s physicochemical limitations and demonstrated enhanced anti-cancer efficacy in NSCLC models. These findings support its potential as a targeted, well-tolerated therapeutic option for lung cancer treatment. Full article
Show Figures

Graphical abstract

25 pages, 28435 KiB  
Article
Quantifying the Impact of Environmental Factors on the Methane Point-Source Emission Algorithm
by Zixuan Wang, Linxin Wang, Ding Li, Lingjing Yang, Lixue Cao, Qin He and Kai Qin
Remote Sens. 2025, 17(5), 799; https://doi.org/10.3390/rs17050799 - 25 Feb 2025
Viewed by 861
Abstract
Methane (CH4) emissions in coal-energy-rich regions are characterized by hidden emission point sources and highly variable emission rates. While the Matched Filter (MF) method for detecting the CH4 point source using hyperspectral satellite sensors has been validated for high-emission concentrations, [...] Read more.
Methane (CH4) emissions in coal-energy-rich regions are characterized by hidden emission point sources and highly variable emission rates. While the Matched Filter (MF) method for detecting the CH4 point source using hyperspectral satellite sensors has been validated for high-emission concentrations, the accurate inversion of low-concentration emissions in complex environments remains challenging. In this study, an ‘end-to-end’ experiment—from emission simulations to satellite spectra and inversion results—has been designed to quantify the impact of internal payload parameters and environmental parameters for CH4 emission inversions, and perform real-scenario calculations. The study reveals several key findings: (1) Under ideal conditions, 15% of satellite spectral noise contributes to a 13% bias in CH4 detection inversion, and a spectral resolution of 10–14 nm allows the detection of CH4 emissions with concentrations as low as 350 ppb, above the background level of 1900 ppb. (2) For near-surface aerosols at 2100 nm, an aerosol optical depth (AOD) of 0.1 leads to a low bias of −51.6% with water-soluble aerosols and a strong bias of −69.2% with black carbon aerosols, while dust aerosols induce a medium bias of up to −60.7%. (3) The height of the aerosol layer affects the accuracy of methane inversion, which is up to 7.3% higher under aerosol conditions at 3 km than under aerosol conditions near the ground. (4) When the CH4 emission source and its diffuse plume are located above a high-reflectance (bright) surface, while the background CH4 concentration is associated with a low-reflectance (dark) surface, the significant reflectance contrast between the two surfaces leads to a rapid degradation in inversion accuracy. This contrast makes it impossible to effectively extract CH4 signals when the reflectance difference reaches 0.2. (5) Under harsh conditions, where multiple parameters are present (AOD = 0.2, albedo = 0.2, aerosol layer height (ALH) = 2), the MF method is still able to detect CH4 emissions, but with a significant error of 74.65%. (6) External environmental variables, particularly atmospheric pressure and water vapor content, significantly influence the inversion accuracy of methane (CH4) concentrations. Variations in atmospheric pressure induce deviations in the CH4 concentration distribution, resulting in an average inversion error of −12.06%. Similarly, elevated water vapor levels can lead to a maximum error of −16.2%. These findings highlight the substantial challenges in accurately detecting low-concentration CH4 emissions. The results offer critical insights for refining CH4 detection algorithms and enhancing the precision of satellite-based inversions for low-concentration CH4 point-source emissions. Full article
Show Figures

Figure 1

17 pages, 2830 KiB  
Article
Understanding the Origin of Wet Deposition Black Carbon in North America During the Fall Season
by Piyaporn Sricharoenvech, Ross Edwards, Müge Yaşar, David A. Gay and James Schauer
Environments 2025, 12(2), 58; https://doi.org/10.3390/environments12020058 - 10 Feb 2025
Cited by 1 | Viewed by 835
Abstract
Black carbon (BC) aerosols emitted from biomass, fossil fuel, and waste combustion contribute to the radiation budget imbalance and are transported over extensive distances in the Earth’s atmosphere. These aerosols undergo physical and chemical modifications with co-existing aerosols (e.g., nitrate, sulfate, ammonium) through [...] Read more.
Black carbon (BC) aerosols emitted from biomass, fossil fuel, and waste combustion contribute to the radiation budget imbalance and are transported over extensive distances in the Earth’s atmosphere. These aerosols undergo physical and chemical modifications with co-existing aerosols (e.g., nitrate, sulfate, ammonium) through aging processes during long-range transport and are primarily removed from the troposphere by wet deposition. Using precipitation samples collected in North America between 26 October and 1 December 2020 by the National Atmospheric Deposition Program (NADP), we investigated the relationships between BC and both water-soluble ions and water-soluble organic carbon (WSOC) using Spearman’s rank coefficients. We then attempted to identify the sources of BC in the wet deposition using factor analysis (FA) and satellite data of fire smoke. BC showed a very strong correlation with nitrate (ρ = 0.83). Strong correlations were also found with WSOC, ammonium, calcium, and sulfate ions (ρ = 0.78, 0.74, 0.74, and 0.67, respectively). FA showed that BC was in the same factor as nitrate, ammonium, sulfate, and WSOC, indicating that BC could originate from secondary aerosol formation and biomass burning. Supported by satellite data of fire and smoke, BC and other correlated pollutants were believed to be associated with wildfire outbreaks in several states in the United States (US) during November 2020. Full article
Show Figures

Figure 1

16 pages, 20714 KiB  
Article
Physicochemical Characteristics of Individual Indoor Airborne Particles in the High Lung Cancer Rate Area in Xuanwei, China
by Ying Hu, Longyi Shao, Kelly BéruBé, Ningping Wang, Cong Hou, Jingsen Fan and Tim Jones
Atmosphere 2025, 16(2), 187; https://doi.org/10.3390/atmos16020187 - 6 Feb 2025
Viewed by 635
Abstract
Emissions from domestic coal burning are generally recognized as the cause of the lung cancer epidemic in Xuanwei City, Yunnan Province, China. To examine the physicochemical characteristics of airborne particles emitted from burning this locally sourced coal, PM2.5 samples were collected from [...] Read more.
Emissions from domestic coal burning are generally recognized as the cause of the lung cancer epidemic in Xuanwei City, Yunnan Province, China. To examine the physicochemical characteristics of airborne particles emitted from burning this locally sourced coal, PM2.5 samples were collected from Hutou village which has high levels of lung cancer, and Xize village located approximately 30 km from Hutou without lung cancer cases. Transmission Electron Microscopy-Energy Dispersive X-ray (TEM-EDX) analysis was employed to study the physiochemical features and chemistry of individual particles. Sulfur and silica are the most abundant elements found in the airborne particles in both of the two villages. Fewer elements in aerosol particles were found in Xize village compared with Hutou village. Based on the morphologies and chemical compositions, the particles in Xuanwei can be classified into five types including composite particles (38.6%); organic, soot, tar balls, and biologicals (28.3%); sulfate (14.1%); fly ash (9.8%); and minerals (9.2%). The particles in Hutou village are abundant in the size range of 0.4–0.8 μm while that in Xize is 0.7–0.8 μm. Composite particles are the most common types in all the size ranges. The percentage of composite particles shows two peaks in the small size range (0.1–0.2 μm) and the large size ranges (2–2.3 μm) in Hutou village while that shows an even distribution in all size ranges in Xize village. Core-shell particles are typical types of composite particles, with the solid ‘core’ consisting of materials such as fly ash or mineral grains, and the shell or surface layer being an adhering soluble compound such as sulfates or organics. The heterogeneous reactions of particles with acidic liquid layers produce the core-shell structures. Typically, the equivalent diameter of the core-shell particles is in the range of 0.5–2.5 μm, averaging 1.6 μm, and the core-shell ratio is usually between 0.4 and 0.8, with an average of 0.6. Regardless of the sizes of the particles, the relatively high core-shell ratios imply a less aging state, which suggests that the core-shell particles were relatively recently formed. Once the coal-burning particles are inhaled into the human deep lung, they can cause damage to lung cells and harm to human health. Full article
(This article belongs to the Special Issue Sources Influencing Air Pollution and Their Control)
Show Figures

Figure 1

18 pages, 9324 KiB  
Article
Impact of Co-Spray Drying with Leucine or Trileucine on Aerosol Performance, In Vitro Dissolution, and Cellular Uptake of Colistin Powder Formulations for Inhalation
by Yijing Huang, Kinnari Santosh Arte, Chanakya D. Patil, Qi Zhou and Li Qu
Pharmaceutics 2025, 17(2), 199; https://doi.org/10.3390/pharmaceutics17020199 - 5 Feb 2025
Cited by 3 | Viewed by 1602
Abstract
Background/Objective: Surface enrichment of hydrophobic excipients via spray drying has been demonstrated as an efficient way to protect the dry powder inhaler formulations against moisture-induced deterioration in aerosol performance. However, the impact of such surface enrichment on dissolution and cellular uptake is [...] Read more.
Background/Objective: Surface enrichment of hydrophobic excipients via spray drying has been demonstrated as an efficient way to protect the dry powder inhaler formulations against moisture-induced deterioration in aerosol performance. However, the impact of such surface enrichment on dissolution and cellular uptake is less investigated, which can affect the safety and efficacy of dry powder inhalers (DPIs). Methods: In the present work, hygroscopic colistin was coated with leucine or trileucine, at different weight ratios during spray drying. All the powders were exposed to 75% relative humidity for one week. The aerosol performance was compared before and after the moisture exposure. Various solid-state characterizations, including particle size, particle morphology, crystallinity, water sorption/desorption, and surface composition, were conducted to evaluate the properties of spray-dried colistin with/without leucine or trileucine. Results: The results indicated that leucine or trileucine could protect the aerosol performance of spray-dried colistin against moisture deterioration. Leucine crystallized after spray drying with colistin, and such crystal leucine could further hinder water uptake when leucine was at a 20% or higher weight ratio. Trileucine did not crystallize after spray drying with colistin nor reduce the water uptake. Interestingly, trileucine showed a superior moisture protective effect to that of leucine, which could be attributed to its better surface enrichment efficiency than that of leucine due to its lower water solubility. Conclusions: Importantly, our results showed that the surface enrichment with leucine and trileucine did not significantly affect in vitro dissolution of colistin in the Franz cell test and cellular uptake of colistin in the H441 lung epithelium cell model, which could be attributed to small particle size and incomplete surface coverage by leucine or trileucine. Full article
(This article belongs to the Special Issue Advances in Inhaled Formulations for Pulmonary Drug Delivery)
Show Figures

Figure 1

19 pages, 4392 KiB  
Article
The Influence of Biomass Burning on the Organic Content of Urban Aerosols
by Suzana Sopčić, Ranka Godec, Ivana Jakovljević and Ivan Bešlić
Biomass 2025, 5(1), 1; https://doi.org/10.3390/biomass5010001 - 24 Dec 2024
Cited by 1 | Viewed by 1047
Abstract
This study examines the influence of biomass burning on the organic content of urban aerosols in Zagreb, Croatia, by analyzing anhydrosugars, elemental carbon (EC), organic carbon (OC), and water-soluble organic carbon (WSOC) in PM2.5 and PM1 fractions collected during different seasons [...] Read more.
This study examines the influence of biomass burning on the organic content of urban aerosols in Zagreb, Croatia, by analyzing anhydrosugars, elemental carbon (EC), organic carbon (OC), and water-soluble organic carbon (WSOC) in PM2.5 and PM1 fractions collected during different seasons of 2022. Seasonal trends showed that the highest average concentrations of PM2.5 (27 µg m−3) and PM1 (17 µg m−3) were measured during the winter and decreased in the spring, summer, and autumn, which is in accordance with the specific activities and environmental conditions typical for each season. Different sources of OC and WSOC were noticed across different seasons; levoglucosan (LG) was measured during the winter (1314 ng m−3 in PM2.5 and 931 ng m−3 in PM1), indicating that biomass that was mostly used for residential heating was the main source rather than the agricultural activities that are usually common during warmer seasons. The contribution of LG to PM was 5.3%, while LG contributed to OC by up to 13.4% and LG contributed to WSOC by up to 36.5%. Deviations in typical seasonal variability of LG/WSOC revealed more intense biomass burning episodes during the autumn and several times during the winter season. A back trajectories HYSPLIT model revealed a long-range transport biomass emission source. The levoglucosan-to-mannosan (LG/MNS) ratios indicated the burning of mixed softwood and hardwood during colder seasons and the burning of softwood during warmer seasons. Spearman’s correlation tests and principal component analysis showed a strong and statistically significant (p < 0.05) correlation between LG, PM, OC, EC, and WSOC only during the winter season, demonstrating that they had the same origin in the winter, while their sources in other seasons were diverse. Full article
Show Figures

Figure 1

16 pages, 2382 KiB  
Article
Encapsulation of Nanocrystals in Mannitol-Based Inhalable Microparticles via Spray-Drying: A Promising Strategy for Lung Delivery of Curcumin
by Luca Casula, Emanuela Fabiola Craparo, Eleonora Lai, Cinzia Scialabba, Donatella Valenti, Michele Schlich, Chiara Sinico, Gennara Cavallaro and Francesco Lai
Pharmaceuticals 2024, 17(12), 1708; https://doi.org/10.3390/ph17121708 - 18 Dec 2024
Cited by 1 | Viewed by 1147
Abstract
Background/Objectives: Curcumin is well known for its great anti-inflammatory and antioxidant efficacy, representing a potential strategy for the treatment of respiratory disorders. However, several drawbacks, such as chemical instability, poor water solubility and rapid metabolism, result in low bioavailability, limiting its clinical applications. [...] Read more.
Background/Objectives: Curcumin is well known for its great anti-inflammatory and antioxidant efficacy, representing a potential strategy for the treatment of respiratory disorders. However, several drawbacks, such as chemical instability, poor water solubility and rapid metabolism, result in low bioavailability, limiting its clinical applications. In this study, curcumin nanocrystals were incorporated into mannitol-based microparticles to obtain an inhalable dry powder. Methods: A curcumin nanosuspension was produced by wet-ball media milling and thoroughly characterized. Spray drying was then used to produce mannitol microparticles incorporating curcumin nanocrystals. In vitro release/dissolution tests were carried out in simulated lung fluids, and the aerosolization properties were evaluated using a Next-Generation Impactor (NGI, Apparatus E Ph. Eu.). Results: The incorporation of curcumin nanocrystals into mannitol-based microparticles influenced their morphological properties, such as geometric diameters, and flowability. Despite these changes, nebulization studies confirmed optimal MMAD values (<5 µm), while multi-step dissolution/release studies evidenced the influence of mannitol. Conclusions: The developed curcumin nanocrystals-loaded mannitol microparticles show promise as an inhalable treatment for respiratory diseases, combining effective aerodynamic properties with controlled drug release. Full article
(This article belongs to the Special Issue Recent Advances in Inhalation Therapy)
Show Figures

Graphical abstract

14 pages, 1955 KiB  
Article
The Characteristics of Water-Soluble Inorganic Ions in PM1.0 and Their Impact on Visibility at a Typical Coastal Airport
by Jingbo Zhao, Yanhong Xu, Jingcheng Xu and Yaqin Ji
Atmosphere 2024, 15(11), 1367; https://doi.org/10.3390/atmos15111367 - 13 Nov 2024
Viewed by 854
Abstract
Water-soluble inorganic ions (WSIIs) can increase the hygroscopicity of aerosols, which will transform aerosols into larger sizes and reduce visibility by enhancing light scattering. To explore the characteristics of WSII concentrations and their impacts on visibility in a coastal airport, in this study, [...] Read more.
Water-soluble inorganic ions (WSIIs) can increase the hygroscopicity of aerosols, which will transform aerosols into larger sizes and reduce visibility by enhancing light scattering. To explore the characteristics of WSII concentrations and their impacts on visibility in a coastal airport, in this study, PM1.0 samples at two monitoring sites (including airport site and background site) were collect in spring and summer, and 12 species of ions were detected. In general, secondary water-soluble inorganic ions (SNA, including SO42, NO3 and NH4+) and Ca2+ were the dominant WSIIs in PM1.0, contributing about 89% to 95% of the total measured ions. The continental contributions of SO42, K+, and Ca2+ accounted for more than 60% during the whole period, while Na+ and Cl were mainly from marine sources. The source identification showed that airport emissions were a major source at the sampling site and significantly contributed to the levels of sulfate, nitrate, and ammonium. Agricultural activities were the dominant sources impacting visibility in spring, while airport emissions and secondary inorganic aerosols were the main components affecting visibility in summer. Therefore, improving atmospheric visibility in coastal airport areas should focus on reducing the precursors of secondary particulates and reducing biomass-burning activities. Full article
Show Figures

Figure 1

Back to TopTop