The Influence of Biomass Burning on the Organic Content of Urban Aerosols
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Particulate Matter and Carbonaceous Content
3.2. Source Diagnostic Based on Elemental and Organic Carbon
3.3. Water-Soluble Organic Carbon and Anhydrosugars in Biomass Burning Source Determination
3.4. Statistical Analysis of Source Contribution Study
3.5. Wood Type Prediction
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- HEAL (Health and Environment Alliance). The Health Perspective of Wood Burnong in the Western Balkans Region; HEAL (Health and Environment Alliance): Bussels, Belgium, 2022. [Google Scholar]
- Belis, C.A.; Pernigotti, D.; Pirovano, G.; Favez, O.; Jaffrezo, J.L.; Kuenen, J.; Denier van Der Gon, H.; Reizer, M.; Riffault, V.; Alleman, L.Y.; et al. Evaluation of Receptor and Chemical Transport Models for PM10 Source Apportionment. Atmos. Environ. X 2020, 5, 100053. [Google Scholar] [CrossRef]
- World Bank. World Bank Regional Note on Air Quality Management in the Western Balkans; World Bank: Washington, DC, USA, 2020. [Google Scholar]
- Simoneit, B.R.T. Biomass Burning—A Review of Organic Tracers for Smoke from Incomplete Combustion. Appl. Geochem. 2002, 17, 129–162. [Google Scholar] [CrossRef]
- Chomanee, J.; Tekasakul, S.; Tekasakul, P.; Furuuchi, M.; Otani, Y. Effects of Moisture Content and Burning Period on Concentration of Smoke Particles and Particle-Bound Polycyclic Aromatic Hydrocarbons from Rubber-Wood Combustion. Aerosol Air Qual. Res. 2009, 9, 404–411. [Google Scholar] [CrossRef]
- Urban, R.C.; Lima-Souza, M.; Caetano-Silva, L.; Queiroz, M.E.C.; Nogueira, R.F.P.; Allen, A.G.; Cardoso, A.A.; Held, G.; Campos, M.L.A.M. Use of Levoglucosan, Potassium, and Water-Soluble Organic Carbon to Characterize the Origins of Biomass-Burning Aerosols. Atmos. Environ. 2012, 61, 562–569. [Google Scholar] [CrossRef]
- Bhattarai, H.; Saikawa, E.; Wan, X.; Zhu, H.; Ram, K.; Gao, S.; Kang, S.; Zhang, Q.; Zhang, Y.; Wu, G.; et al. Levoglucosan as a Tracer of Biomass Burning: Recent Progress and Perspectives. Atmos. Res. 2019, 220, 20–33. [Google Scholar] [CrossRef]
- Pope, C.A., 3rd; Burnett, R.T.; Thun, M.J.; Calle, E.E.; Krewski, D.; Ito, K.; Thurston, G.D. Lung Cancer, Cardiopulmonary Mortality, and Long-Term Exposure to Fine Particulate Air Pollution. JAMA 2002, 287, 1132–1141. [Google Scholar] [CrossRef] [PubMed]
- Mabahwi, N.A.B.; Leh, O.L.H.; Omar, D. Human Health and Wellbeing: Human Health Effect of Air Pollution. Procedia—Soc. Behav. Sci. 2014, 153, 221–229. [Google Scholar] [CrossRef]
- Saarikoski, S.; Timonen, H.; Saarnio, K.; Aurela, M.; Järvi, L.; Keronen, P.; Kerminen, V.M.; Hillamo, R. Sources of Organic Carbon in Fine Particulate Matter in Northern European Urban Air. Atmos. Chem. Phys. 2008, 8, 6281–6295. [Google Scholar] [CrossRef]
- Monks, P.S.; Granier, C.; Fuzzi, S.; Stohl, A.; Williams, M.L.; Akimoto, H.; Amann, M.; Baklanov, A.; Baltensperger, U.; Bey, I.; et al. Atmospheric Composition Change—Global and Regional Air Quality. Atmos. Environ. 2009, 43, 5268–5350. [Google Scholar] [CrossRef]
- Petzold, A.; Ogren, J.A.; Fiebig, M.; Laj, P.; Li, S.-M.; Baltensperger, U.; Holzer-Popp, T.; Kinne, S.; Pappalardo, G.; Sugimoto, N.; et al. Recommendations for Reporting “Black Carbon” Measurements. Atmos. Chem. Phys. 2013, 13, 8365–8379. [Google Scholar] [CrossRef]
- Rajput, P.; Sarin, M.M.; Sharma, D.; Singh, D. Organic Aerosols and Inorganic Species from Post-Harvest Agricultural-Waste Burning Emissions over Northern India: Impact on Mass Absorption Efficiency of Elemental Carbon. Environ. Sci. Process. Impacts 2014, 16, 2371–2379. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.-K.; Ban, S.-J.; Kim, Y.-P.; Kim, Y.-H.; Yi, S.-M.; Zoh, K.-D. Molecular Marker Characterization and Source Appointment of Particulate Matter and Its Organic Aerosols. Chemosphere 2015, 134, 482–491. [Google Scholar] [CrossRef] [PubMed]
- Decesari, S.; Facchini, M.C.; Fuzzi, S.; Tagliavini, E. Characterization of Water-Soluble Organic Compounds in Atmospheric Aerosol: A New Approach. J. Geophys. Res. Atmos. 2000, 105, 1481–1489. [Google Scholar] [CrossRef]
- Pöschl, U. Atmospheric Aerosols: Composition, Transformation, Climate and Health Effects. Angew. Chem.—Int. Ed. 2005, 44, 7520–7540. [Google Scholar] [CrossRef] [PubMed]
- Decesari, S.; Fuzzi, S.; Facchini, M.C.; Mircea, M.; Emblico, L.; Cavalli, F.; Maenhaut, W.; Chi, X.; Schkolnik, G.; Falkovich, A.; et al. Characterization of the Organic Composition of Aerosols from Rondônia, Brazil, during the LBA-SMOCC 2002 Experiment and Its Representation through Model Compounds. Atmos. Chem. Phys. 2006, 6, 375–402. [Google Scholar] [CrossRef]
- López-Caravaca, A.; Crespo, J.; Galindo, N.; Yubero, E.; Juárez, N.; Nicolás, J.F. Sources of Water-Soluble Organic Carbon in Fine Particles at a Southern European Urban Background Site. Atmos. Environ. 2023, 306, 119844. [Google Scholar] [CrossRef]
- Itabaiana Junior, I.; Avelar Do Nascimento, M.; De Souza, R.O.M.A.; Dufour, A.; Wojcieszak, R. Levoglucosan: A Promising Platform Molecule? Green Chem. 2020, 22, 5859–5880. [Google Scholar] [CrossRef]
- Suciu, L.G.; Masiello, C.A.; Griffin, R.J. Anhydrosugars as Tracers in the Earth System. Biogeochemistry 2019, 146, 209–256. [Google Scholar] [CrossRef]
- Shafizadeh, F. Introduction to Pyrolysis of Biomass. J. Anal. Appl. Pyrolysis 1982, 3, 283–305. [Google Scholar] [CrossRef]
- Paris, E.; Carnevale, M.; Guerriero, E.; Palma, A.; Vincenti, B.; Khalid, A.; Rantica, E.; Proto, A.R.; Gallucci, F. Fixed Source Monitoring System for Marker Emission during Biomass Combustion. Renew. Energy 2023, 208, 597–603. [Google Scholar] [CrossRef]
- Giannoni, M.; Martellini, T.; Del Bubba, M.; Gambaro, A.; Zangrando, R.; Chiari, M.; Lepri, L.; Cincinelli, A. The Use of Levoglucosan for Tracing Biomass Burning in PM2.5 Samples in Tuscany (Italy). Environ. Pollut. 2012, 167, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Simoneit, B.R.T.; Schauer, J.J.; Nolte, C.G.; Oros, D.R.; Elias, V.O.; Fraser, M.P.; Rogge, W.F.; Cass, G.R. Levoglucosan, a Tracer for Cellulose in Biomass Burning and Atmospheric Particles. Atmos. Environ. 1999, 33, 173–182. [Google Scholar] [CrossRef]
- Scheller, H.V.; Ulvskov, P. Hemicelluloses. Annu. Rev. Plant Biol. 2010, 61, 263–289. [Google Scholar] [CrossRef] [PubMed]
- Tsiodra, I.; Grivas, G.; Tavernaraki, K.; Bougiatioti, A.; Apostolaki, M.; Paraskevopoulou, D.; Gogou, A.; Parinos, C.; Oikonomou, K.; Tsagkaraki, M.; et al. Annual Exposure to Polycyclic Aromatic Hydrocarbons in Urban Environments Linked to Wintertime Wood-Burning Episodes. Atmos. Chem. Phys. 2021, 21, 17865–17883. [Google Scholar] [CrossRef]
- Maenhaut, W.; Vermeylen, R.; Claeys, M.; Vercauteren, J.; Roekens, E. Sources of the PM10 Aerosol in Flanders, Belgium, and Re-Assessment of the Contribution from Wood Burning. Sci. Total Environ. 2016, 562, 550–560. [Google Scholar] [CrossRef] [PubMed]
- Fabbri, D.; Torri, C.; Simoneit, B.R.T.; Marynowski, L.; Rushdi, A.I.; Fabiańska, M.J. Levoglucosan and Other Cellulose and Lignin Markers in Emissions from Burning of Miocene Lignites. Atmos. Environ. 2009, 43, 2286–2295. [Google Scholar] [CrossRef]
- Zdráhal, Z.; Oliveira, J.; Vermeylen, R.; Claeys, M.; Maenhaut, W. Improved Method for Quantifying Levoglucosan and Related Monosaccharide Anhydrides in Atmospheric Aerosols and Application to Samples from Urban and Tropical Locations. Environ. Sci. Technol. 2002, 36, 747–753. [Google Scholar] [CrossRef]
- Puxbaum, H.; Caseiro, A.; Sánchez-Ochoa, A.; Kasper-Giebl, A.; Claeys, M.; Gelencsér, A.; Legrand, M.; Preunkert, S.; Pio, C.A. Levoglucosan Levels at Background Sites in Europe for Assessing the Impact of Biomass Combustion on the European Aerosol Background. J. Geophys. Res. Atmos. 2007, 112, 1–11. [Google Scholar] [CrossRef]
- Sullivan, A.P.; May, A.A.; Lee, T.; McMeeking, G.R.; Kreidenweis, S.M.; Akagi, S.K.; Yokelson, R.J.; Urbanski, S.P.; Collett, J.L., Jr. Airborne Characterization of Smoke Marker Ratios from Prescribed Burning. Atmos. Chem. Phys. 2014, 14, 10535–10545. [Google Scholar] [CrossRef]
- Wiedinmyer, C.; Akagi, S.K.; Yokelson, R.J.; Emmons, L.K.; Al-Saadi, J.A.; Orlando, J.J.; Soja, A.J. The Fire INventory from NCAR (FINN): A High Resolution Global Model to Estimate the Emissions from Open Burning. Geosci. Model Dev. 2011, 4, 625–641. [Google Scholar] [CrossRef]
- McMeeking, G.R.; Kreidenweis, S.M.; Baker, S.; Carrico, C.M.; Chow, J.C.; Collett, J.L.; Hao, W.M.; Holden, A.S.; Kirchstetter, T.W.; Malm, W.C.; et al. Emissions of Trace Gases and Aerosols during the Open Combustion of Biomass in the Laboratory. J. Geophys. Res. Atmos. 2009, 114, 19210. [Google Scholar] [CrossRef]
- Pant, P.; Yin, J.; Harrison, R.M. Sensitivity of a Chemical Mass Balance Model to Different Molecular Marker Traffic Source Profiles. Atmos. Environ. 2014, 82, 238–249. [Google Scholar] [CrossRef]
- Castro, L.M.; Pio, C.A.; Harrison, R.M.; Smith, D.J.T. Carbonaceous Aerosol in Urban and Rural European Atmospheres: Estimation of Secondary Organic Carbon Concentrations. Atmos. Environ. 1999, 33, 2771–2781. [Google Scholar] [CrossRef]
- Benetello, F.; Squizzato, S.; Hofer, A.; Masiol, M.; Khan, M.B.; Piazzalunga, A.; Fermo, P.; Formenton, G.M.; Rampazzo, G.; Pavoni, B. Estimation of Local and External Contributions of Biomass Burning to PM2.5 in an Industrial Zone Included in a Large Urban Settlement. Environ. Sci. Pollut. Res. 2017, 24, 2100–2115. [Google Scholar] [CrossRef]
- Szidat, S.; Ruff, M.; Perron, N.; Wacker, L.; Synal, H.A.; Hallquist, M.; Shannigrahi, A.S.; Yttri, K.E.; Dye, C.; Simpson, D. Fossil and Non-Fossil Sources of Organic Carbon (OC) and Elemental Carbon (EC) in Göteborg, Sweden. Atmos. Chem. Phys. 2009, 9, 1521–1535. [Google Scholar] [CrossRef]
- Kristensson, A.; Ausmeel, S.; Pauraite, J.; Eriksson, A.; Ahlberg, E.; Bycenkiene, S.; Degórska, A. Source Contributions to Rural Carbonaceous Winter Aerosol in North-Eastern Poland. Atmosphere 2020, 11, 263. [Google Scholar] [CrossRef]
- Birch, M.E.; Cary, R.A. Elemental Carbon-Based Method for Monitoring Occupational Exposures to Particulate Diesel Exhaust. Aerosol Sci. Technol. 1996, 25, 221–241. [Google Scholar] [CrossRef]
- Cavalli, F.; Viana, M.; Yttri, K.E.; Genberg, J.; Putaud, J.-P.P. Toward a Standardised Thermal-Optical Protocol for Measuring Atmospheric Organic and Elemental Carbon: The EUSAAR Protocol. Atmos. Meas. Tech. 2010, 3, 79–89. [Google Scholar] [CrossRef]
- Godec, R.; Jakovljević, I.; Šega, K.; Čačković, M.; Bešlić, I.; Davila, S.; Pehnec, G. Carbon Species in PM10 Particle Fraction at Different Monitoring Sites. Environ. Pollut. 2016, 216, 700–710. [Google Scholar] [CrossRef]
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change; John Wiley & Sons: New York, NY, USA, 2016. [Google Scholar]
- Sopčić, S.; Pehnec, G.; Bešlić, I. Specific Biomass Burning Tracers in Air Pollution in Zagreb, Croatia. Atmos. Pollut. Res. 2024, 15, 102176. [Google Scholar] [CrossRef]
- Institute for Medical Research and Occupational Annual Report_National Network for Air Quality Monitoring (Report for 2022). Available online: https://iszz.azo.hr/iskzl/godizvrpt.htm?pid=0&t=1 (accessed on 25 October 2024).
- World Health Organization. WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide; World Health Organization: Geneva, Switzerland, 2021; ISBN 9789240034228 (Electronic Version). [Google Scholar]
- Šimić, I.; Lovrić, M.; Godec, R.; Kröll, M.; Bešlić, I. Applying Machine Learning Methods to Better Understand, Model and Estimate Mass Concentrations of Traffic-Related Pollutants at a Typical Street Canyon. Environ. Pollut. 2020, 263, 114587. [Google Scholar] [CrossRef]
- Viidanoja, J.; Sillanpää, M.; Laakia, J.; Kerminen, V.M.; Hillamo, R.; Aarnio, P.; Koskentalo, T. Organic and Black Carbon in PM2.5 and PM10: 1 Year of Data from an Urban Site in Helsinki, Finland. Atmos. Environ. 2002, 36, 3183–3193. [Google Scholar] [CrossRef]
- Theodosi, C.; Tsagkaraki, M.; Zarmpas, P.; Grivas, G.; Liakakou, E.; Paraskevopoulou, D.; Lianou, M.; Gerasopoulos, E.; Mihalopoulos, N. Multi-Year Chemical Composition of the Fine-Aerosol Fraction in Athens, Greece, with Emphasis on the Contribution of Residential Heating in Wintertime. Atmos. Chem. Phys. 2018, 18, 14371–14391. [Google Scholar] [CrossRef]
- Pietrogrande, M.C.; Demaria, G.; Colombi, C.; Cuccia, E.; Dal Santo, U. Seasonal and Spatial Variations of PM10 and PM2.5 Oxidative Potential in Five Urban and Rural Sites across Lombardia Region, Italy. Int. J. Environ. Res. Public Health 2022, 19, 7778. [Google Scholar] [CrossRef]
- Viana, M.; Maenhaut, W.; ten Brink, H.M.; Chi, X.; Weijers, E.; Querol, X.; Alastuey, A.; Mikuška, P.; Večeřa, Z. Comparative Analysis of Organic and Elemental Carbon Concentrations in Carbonaceous Aerosols in Three European Cities. Atmos. Environ. 2007, 41, 5972–5983. [Google Scholar] [CrossRef]
- Jones, A.M.; Harrison, R.M. Interpretation of Particulate Elemental and Organic Carbon Concentrations at Rural, Urban and Kerbside Sites. Atmos. Environ. 2005, 39, 7114–7126. [Google Scholar] [CrossRef]
- Godec, R.; Šega, K.; Bešlić, I.; Davila, S. Carbon Mass Concentrations in Southern Zagreb during a Five-Year Period. In Proceedings of the 5th WeBIOPATR Workshop & Conference, Belgrade, Serbia, 14–16 October 2015; Ovašević-Stojanović, M., Bartoňová, A., Eds.; Vinča Institute of Nuclear Science: Belgrade, Serbia, 2016; pp. 24–29. [Google Scholar]
- Witkowska, A.; Lewandowska, A.U.; Saniewska, D.; Falkowska, L.M. Effect of Agriculture and Vegetation on Carbonaceous Aerosol Concentrations (PM2.5 and PM10) in Puszcza Borecka National Nature Reserve (Poland). Air Qual. Atmos. Health 2016, 9, 761–773. [Google Scholar] [CrossRef]
- Kaskaoutis, D.G.; Grivas, G.; Oikonomou, K.; Tavernaraki, P.; Papoutsidaki, K.; Tsagkaraki, M.; Stavroulas, I.; Zarmpas, P.; Paraskevopoulou, D.; Bougiatioti, A.; et al. Impacts of Severe Residential Wood Burning on Atmospheric Processing, Water-Soluble Organic Aerosol and Light Absorption, in an Inland City of Southeastern Europe. Atmos. Environ. 2022, 280, 119139. [Google Scholar] [CrossRef]
- Bari, M.A.; Baumbach, G.; Kuch, B.; Scheffknecht, G. Wood Smoke as a Source of Particle-Phase Organic Compounds in Residential Areas. Atmos. Environ. 2009, 43, 4722–4732. [Google Scholar] [CrossRef]
- Caseiro, A.; Oliveira, C. Variations in Wood Burning Organic Marker Concentrations in the Atmospheres of Four European Cities. J. Environ. Monit. 2012, 14, 2261–2269. [Google Scholar] [CrossRef]
- Hedberg, E.; Johansson, C.; Johansson, L.; Swietlicki, E.; Brorström-Lundén, E. Is Levoglucosan a Suitable Quantitative Tracer for Wood Burning? Comparison with Receptor Modeling on Trace Elements in Lycksele, Sweden. J. Air Waste Manag. Assoc. 2006, 56, 1669–1678. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, A.; Gouveia, S.; Scotto, M.; Sorte, S.; Gama, C.; Gianelle, V.L.; Colombi, C.; Alves, C. Investigating PM10 Episodes Using Levoglucosan as Tracer. Air Qual. Atmos. Health 2018, 11, 61–68. [Google Scholar] [CrossRef]
- Piazzalunga, A.; Belis, C.; Bernardoni, V.; Cazzuli, O.; Fermo, P.; Valli, G.; Vecchi, R. Estimates of Wood Burning Contribution to PM by the Macro-Tracer Method Using Tailored Emission Factors. Atmos. Environ. 2011, 45, 6642–6649. [Google Scholar] [CrossRef]
- Szidat, S.; Jenk, T.M.; Synal, H.-A.; Kalberer, M.; Wacker, L.; Hajdas, I.; Kasper-Giebl, A.; Baltensperger, U. Contributions of Fossil Fuel, Biomass-burning, and Biogenic Emissions to Carbonaceous Aerosols in Zurich as Traced by 14 C. J. Geophys. Res. Atmos. 2006, 111, D07206. [Google Scholar] [CrossRef]
- Hennigan, C.J.; Sullivan, A.P.; Collett, J.L.; Robinson, A.L. Levoglucosan Stability in Biomass Burning Particles Exposed to Hydroxyl Radicals. Geophys. Res. Lett. 2010, 37, L09806. [Google Scholar] [CrossRef]
- Pfeffer, U.; Breuer, L.; Gladtke, D.; Schud, T.J. Contribution of Wood Burning to the Exceedance of PM10 Limit Values in North Rhine-Westphalia. Gefahrstoffe Reinhalt. Luft 2013, 73, 239–245. [Google Scholar]
- Tao, J.; Gao, J.; Zhang, L.; Zhang, R.; Che, H.; Zhang, Z.; Lin, Z.; Jing, J.; Cao, J.; Hsu, S.C. PM2.5 Pollution in a Megacity of Southwest China: Source Apportionment and Implication. Atmos. Chem. Phys. 2014, 14, 8679–8699. [Google Scholar] [CrossRef]
- Font, A.; de Brito, J.F.; Riffault, V.; Conil, S.; Jaffrezo, J.L.; Bourin, A. Long-Term Measurements of Aerosol Composition at Rural Background Sites in France: Sources, Seasonality and Mass Closure of PM2.5. Atmos. Environ. 2024, 334, 120724. [Google Scholar] [CrossRef]
- Schmidl, C.; Marr, I.L.; Caseiro, A.; Kotianová, P.; Berner, A.; Bauer, H.; Kasper-Giebl, A.; Puxbaum, H. Chemical Characterisation of Fine Particle Emissions from Wood Stove Combustion of Common Woods Growing in Mid-European Alpine Regions. Atmos. Environ. 2008, 42, 126–141. [Google Scholar] [CrossRef]
- Mcdonald, J.D.; Zielinska, B.; Fujita, E.M.; Sagebiel, J.C.; Chow, J.C.; Watson, J.G. Fine Particle and Gaseous Emission Rates from Residential Wood Combustion. Environ. Sci. Technol. 2000, 34, 2080–2091. [Google Scholar] [CrossRef]
- Šimić, I.; Godec, R.; Bešlić, I.; Davila, S. Carbon Mass Concentrations in the Air at the Plitvice Lakes National Park. Kem. Ind. 2018, 67, P127–P133. [Google Scholar] [CrossRef]
- Tian, J.; Ni, H.; Cao, J.; Han, Y.; Wang, Q.; Wang, X.; Chen, L.W.A.; Chow, J.C.; Watson, J.G.; Wei, C.; et al. Characteristics of Carbonaceous Particles from Residential Coal Combustion and Agricultural Biomass Burning in China. Atmos. Pollut. Res. 2017, 8, 521–527. [Google Scholar] [CrossRef]
- Ma, L.; Hu, D.; Yan, Y.; Niu, Y.; Duan, X.; Guo, Y.; Li, W.; Peng, L. Pollution Characteristics and Source Analysis of Carbonaceous Components in PM2.5 in a Typical Industrial City. Aerosol Air Qual. Res. 2024, 24, 240014. [Google Scholar] [CrossRef]
- Miyazaki, Y.; Kondo, Y.; Takegawa, N.; Komazaki, Y.; Fukuda, M.; Kawamura, K.; Mochida, M.; Okuzawa, K.; Weber, R.J. Time-Resolved Measurements of Water-Soluble Organic Carbon in Tokyo. J. Geophys. Res. Atmos. 2006, 111, D23206. [Google Scholar] [CrossRef]
- Wu, T.; Boor, B.E. Urban Aerosol Size Distributions: A Global Perspective. Atmos. Chem. Phys. 2021, 21, 8883–8914. [Google Scholar] [CrossRef]
- Harni, S.D.; Saarikoski, S.; Kuula, J.; Helin, A.; Aurela, M.; Niemi, J.V.; Kousa, A.; Rönkkö, T.; Timonen, H. Effects of Emission Sources on the Particle Number Size Distribution of Ambient Air in the Residential Area. Atmos. Environ. 2023, 293, 119419. [Google Scholar] [CrossRef]
- Casquero-vera, J.A.; Pérez-ramírez, D.; Lyamani, H.; Rejano, F.; Casans, A.; Titos, G.; Olmo, F.J.; Dada, L.; Hakala, S.; Hussein, T.; et al. Impact of Desert Dust on New Particle Formation Events and Cloud Condensation Nuclei Budget in Dust-Influenced Areas. Atmos. Chem. Phys. 2023, 23, 15795–15814. [Google Scholar] [CrossRef]
- Alves, C.A.; Vicente, E.D.; Rocha, S.; Vicente, A.M. Organic Tracers in Aerosols from the Residential Combustion of Pellets and Agro-Fuels. Air Qual. Atmos. Health 2017, 10, 37–45. [Google Scholar] [CrossRef]
- Du, Z.; He, K.; Cheng, Y.; Duan, F.; Ma, Y.; Liu, J.; Zhang, X.; Zheng, M.; Weber, R. A Yearlong Study of Water-Soluble Organic Carbon in Beijing I: Sources and Its Primary vs. Secondary Nature. Atmos. Environ. 2014, 92, 514–521. [Google Scholar] [CrossRef]
- Choudhary, V.; Rajput, P.; Gupta, T. Absorption Properties and Forcing Efficiency of Light-Absorbing Water-Soluble Organic Aerosols: Seasonal and Spatial Variability. Environ. Pollut. 2021, 272, 115932. [Google Scholar] [CrossRef] [PubMed]
- Satish, R.; Shamjad, P.; Thamban, N.; Tripathi, S.; Rastogi, N. Temporal Characteristics of Brown Carbon over the Central Indo-Gangetic Plain. Environ. Sci. Technol. 2017, 51, 6765–6772. [Google Scholar] [CrossRef]
- Park, S.S.; Cho, S.Y. Tracking Sources and Behaviors of Water-Soluble Organic Carbon in Fine Particulate Matter Measured at an Urban Site in Korea. Atmos. Environ. 2011, 45, 60–72. [Google Scholar] [CrossRef]
- Yu, Q.; Chen, J.; Qin, W.; Cheng, S.; Zhang, Y.; Sun, Y.; Xin, K.; Ahmad, M. Characteristics, Primary Sources and Secondary Formation of Water-Soluble Organic Aerosols in Downtown Beijing. Atmos. Chem. Phys. 2021, 21, 1775–1796. [Google Scholar] [CrossRef]
- Chen, T.; Zhang, P.; Chu, B.; Ma, Q.; Ge, Y.; Liu, J.; He, H. Secondary Organic Aerosol Formation from Mixed Volatile Organic Compounds: Effect of RO2 Chemistry and Precursor Concentration. npj Clim. Atmos. Sci. 2022, 5, 1–8. [Google Scholar] [CrossRef]
- Mutzel, A.; Zhang, Y.; Böge, O.; Rodigast, M.; Kolodziejczyk, A.; Wang, X.; Herrmann, H. Importance of SOA Formation of α-Pinene, Limonene and m-Cresol Comparing Day-and Night-Time Radical Chemistry. Atmos. Chem. Phys. 2020, 21, 8479–8498. [Google Scholar] [CrossRef]
- Utry, N.; Ajtai, T.; Filep, Á.; Pintér, M.; Török, Z.; Bozóki, Z.; Szabó, G. Correlations between Absorption Angström Exponent (AAE) of Wintertime Ambient Urban Aerosol and Its Physical and Chemical Properties. Atmos. Environ. 2014, 91, 52–59. [Google Scholar] [CrossRef]
- Caseiro, A.; Bauer, H.; Schmidl, C.; Pio, C.A.; Puxbaum, H. Wood Burning Impact on PM10 in Three Austrian Regions. Atmos. Environ. 2009, 43, 2186–2195. [Google Scholar] [CrossRef]
- Graber, E.R.; Rudich, Y. Atmospheric HULIS: How Humic-like Are They? A Comprehensive and Critical Review. Atmos. Chem. Phys. 2006, 6, 729–753. [Google Scholar] [CrossRef]
- Mace, K.A.; Kubilay, N.; Duce, R.A. Organic Nitrogen in Rain and Aerosol in the Eastern Mediterranean Atmosphere: An Association with Atmospheric Dust. J. Geophys. Res. 2003, 108, 4320. [Google Scholar] [CrossRef]
- Cordell, R.L.; Mazet, M.; Dechoux, C.; Hama, S.M.L.; Staelens, J.; Hofman, J.; Stroobants, C.; Roekens, E.; Kos, G.P.A.; Weijers, E.P.; et al. Evaluation of Biomass Burning across North West Europe and Its Impact on Air Quality. Atmos. Environ. 2016, 141, 276–286. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sopčić, S.; Godec, R.; Jakovljević, I.; Bešlić, I. The Influence of Biomass Burning on the Organic Content of Urban Aerosols. Biomass 2025, 5, 1. https://doi.org/10.3390/biomass5010001
Sopčić S, Godec R, Jakovljević I, Bešlić I. The Influence of Biomass Burning on the Organic Content of Urban Aerosols. Biomass. 2025; 5(1):1. https://doi.org/10.3390/biomass5010001
Chicago/Turabian StyleSopčić, Suzana, Ranka Godec, Ivana Jakovljević, and Ivan Bešlić. 2025. "The Influence of Biomass Burning on the Organic Content of Urban Aerosols" Biomass 5, no. 1: 1. https://doi.org/10.3390/biomass5010001
APA StyleSopčić, S., Godec, R., Jakovljević, I., & Bešlić, I. (2025). The Influence of Biomass Burning on the Organic Content of Urban Aerosols. Biomass, 5(1), 1. https://doi.org/10.3390/biomass5010001