Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (31)

Search Parameters:
Keywords = aerenchyma formation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2013 KiB  
Article
The Early Growth of Maize Under Waterlogging Stress, as Measured by Growth, Biochemical, and Molecular Characteristics
by Ana Nikolić, Manja Božić, Nikola Delić, Ksenija Marković, Marija Milivojević, Zoran Čamdžija and Dragana Ignjatović Micić
Biology 2025, 14(2), 111; https://doi.org/10.3390/biology14020111 - 22 Jan 2025
Viewed by 1376
Abstract
An effective strategy to address the impacts of climate change on maize involves early planting, which mitigates drought stress during critical growth phases, preventing yield reductions. The research assessed two maize inbred lines (sensitive and tolerant to low temperature) under conditions of waterlogging [...] Read more.
An effective strategy to address the impacts of climate change on maize involves early planting, which mitigates drought stress during critical growth phases, preventing yield reductions. The research assessed two maize inbred lines (sensitive and tolerant to low temperature) under conditions of waterlogging stress. This is crucial since early sowing often faces both low temperatures and heavy rain. Morphological, biochemical, and molecular responses were recorded after 24 h, 72 h, and 7 days of stress during the growth stage of 5-day-old seedlings. The findings indicated a more pronounced decline in all morphological characteristics in the sensitive line. Both genotypes displayed an increased root-to-shoot ratio, suggesting that the shoots deteriorate more rapidly than the roots. Physiological evaluations demonstrated that the tolerant line was more effective in managing ROS levels compared to the sensitive line. The involvement of H2O2 in aerenchyma formation implies that the decreased POD activity and elevated MDA levels observed after seven days may be associated with aerenchyma development in the tolerant line. Genes essential for PSII function revealed that waterlogging adversely affected photosynthesis in the sensitive genotype. In summary, the low-temperature tolerant genotype exhibited significant resilience to waterlogging, indicating potential interaction between the pathways governing these two abiotic stressors. Full article
(This article belongs to the Section Plant Science)
Show Figures

Figure 1

16 pages, 4176 KiB  
Article
Physiological, Cellular, and Transcriptomic Analyses Provide Insights into the Tolerance Response of Arundo donax to Waterlogging Stress
by Dandan Wu, Zhaoran Tian, Jialin Guo, Zhengqing Xie, Baoming Tian, Ziqi Liu, Weiwei Chen, Gangqiang Cao, Luyue Zhang, Tian Yang, Fang Wei and Gongyao Shi
Horticulturae 2024, 10(7), 717; https://doi.org/10.3390/horticulturae10070717 - 5 Jul 2024
Cited by 2 | Viewed by 1968
Abstract
Arundo donax is widely used as an ornamental plant in landscape gardening because of its adaptability to varying degrees of waterlogged conditions. However, to date, little information is available about the adaptive mechanism of A. donax under waterlogging stress. The results showed that [...] Read more.
Arundo donax is widely used as an ornamental plant in landscape gardening because of its adaptability to varying degrees of waterlogged conditions. However, to date, little information is available about the adaptive mechanism of A. donax under waterlogging stress. The results showed that long-term mild waterlogging efficiently induced the formation of adventitious roots (ARs) and further promoted root aerenchyma development, and that the activity of antioxidant enzymes (SOD, POD, and CAT) in Ars also was greatly enhanced after waterlogging. At the transcriptomic level, the expression of genes related to apoptosis, the regulation of cell division, ethylene biosynthesis, alginate synthesis, auxin signaling pathways, and anaerobic respiration was mostly up-regulated after the occurrence of waterlogging stress but genes involved in the abscisic acid signaling pathways were partly down-regulated, which indicated a preferential and favorable transcriptional response in regulating adventitious root development. Taken together, this study definitely advances our knowledge of the morphological, physiological, and transcriptomic responses of A. donax under waterlogging stress and sheds new lights on its adaptive mechanisms. Full article
Show Figures

Figure 1

21 pages, 3247 KiB  
Article
Response to Waterlogging Stress in Wild and Domesticated Accessions of Timothy (Phleum pratense) and Its Relatives P. alpinum and P. nodosum
by Silvana Moreno, Girma Bedada, Yousef Rahimi, Pär K. Ingvarsson, Anna Westerbergh and Per-Olof Lundquist
Plants 2023, 12(23), 4033; https://doi.org/10.3390/plants12234033 - 30 Nov 2023
Cited by 3 | Viewed by 1734
Abstract
Timothy (Phleum pratense) is a cool-season perennial forage grass widely grown for silage and hay production in northern regions. Climate change scenarios predict an increase in extreme weather events with fluctuating periods of high rainfall, requiring new varieties adapted to waterlogging [...] Read more.
Timothy (Phleum pratense) is a cool-season perennial forage grass widely grown for silage and hay production in northern regions. Climate change scenarios predict an increase in extreme weather events with fluctuating periods of high rainfall, requiring new varieties adapted to waterlogging (WL). Wild accessions could serve as germplasm for breeding, and we evaluated the responses of 11 wild and 8 domesticated accessions of timothy, P. nodosum and P. alpinum from different locations in northern Europe. Young plants at tillering stage were exposed to WL for 21 days in a greenhouse, and responses in growth allocation and root anatomy were studied. All accessions produced adventitious roots and changed allocation of growth between shoot and root as a response to WL, but the magnitude of these responses varied among species and among accessions. P. pratense responded less in these traits in response to WL than the other two species. The ability to form aerenchyma in the root cortex in response to WL was found for all species and also varied among species and among accessions, with the highest induction in P. pratense. Interestingly, some accessions were able to maintain and even increase root growth, producing more leaves and tillers, while others showed a reduction in the root system. Shoot dry weight (SDW) was not significantly affected by WL, but some accessions showed different and significant responses in the rate of production of leaves and tillers. Overall correlations between SDW and aerenchyma and between SDW and adventitious root formation were found. This study identified two wild timothy accessions and one wild P. nodosum accession based on shoot and root system growth, aerenchyma formation and having a root anatomy considered to be favorable for WL tolerance. These accessions are interesting genetic resources and candidates for development of climate-resilient timothy varieties. Full article
(This article belongs to the Special Issue Wild and Cultivated Plants under Climate Change)
Show Figures

Figure 1

16 pages, 2985 KiB  
Article
The Developmental Mechanism of the Root System of Cultivated Terrestrial Watercress
by Jiajun Ran, Qiang Ding, Guangpeng Wang, Yunlou Shen, Zhanyuan Gao, Yue Gao, Xiaoqing Ma and Xilin Hou
Plants 2023, 12(20), 3523; https://doi.org/10.3390/plants12203523 - 10 Oct 2023
Cited by 3 | Viewed by 2066
Abstract
A well-developed root system is crucial for the rapid growth, asexual reproduction, and adaptation to the drought environments of the watercress. After analyzing the transcriptome of the watercress root system, we found that a high concentration of auxin is key to its adaptation [...] Read more.
A well-developed root system is crucial for the rapid growth, asexual reproduction, and adaptation to the drought environments of the watercress. After analyzing the transcriptome of the watercress root system, we found that a high concentration of auxin is key to its adaptation to dry conditions. For the first time, we obtained DR5::EGFP watercress, which revealed the dynamic distribution of auxin in watercress root development under drought conditions. Via the application of naphthylphthalamic acid (NPA), 4-biphenylboronic acid (BBO), ethylene (ETH), abscisic acid (ABA), and other factors, we confirmed that auxin has a significant impact on the root development of watercress. Finally, we verified the role of auxin in root development using 35S::NoYUC8 watercress and showed that the synthesis of auxin in the root system mainly depends on the tryptophan, phenylalanine, and tyrosine amino acids (TAA) synthesis pathway. After the level of auxin increases, the root system of the watercress develops toward adaptation to dry environments. The formation of root aerenchyma disrupts the concentration gradient of auxin and is a key factor in the differentiation of lateral root primordia and H cells in watercress. Full article
(This article belongs to the Special Issue Role of Auxin in Plant Growth and Development)
Show Figures

Figure 1

18 pages, 1980 KiB  
Article
Biotechnological Potential of the Stress Response and Plant Cell Death Regulators Proteins in the Biofuel Industry
by Maciej Jerzy Bernacki, Jakub Mielecki, Andrzej Antczak, Michał Drożdżek, Damian Witoń, Joanna Dąbrowska-Bronk, Piotr Gawroński, Paweł Burdiak, Monika Marchwicka, Anna Rusaczonek, Katarzyna Dąbkowska-Susfał, Wacław Roman Strobel, Ewa J. Mellerowicz, Janusz Zawadzki, Magdalena Szechyńska-Hebda and Stanisław Karpiński
Cells 2023, 12(16), 2018; https://doi.org/10.3390/cells12162018 - 8 Aug 2023
Cited by 4 | Viewed by 2329
Abstract
Production of biofuel from lignocellulosic biomass is relatively low due to the limited knowledge about natural cell wall loosening and cellulolytic processes in plants. Industrial separation of cellulose fiber mass from lignin, its saccharification and alcoholic fermentation is still cost-ineffective and environmentally unfriendly. [...] Read more.
Production of biofuel from lignocellulosic biomass is relatively low due to the limited knowledge about natural cell wall loosening and cellulolytic processes in plants. Industrial separation of cellulose fiber mass from lignin, its saccharification and alcoholic fermentation is still cost-ineffective and environmentally unfriendly. Assuming that the green transformation is inevitable and that new sources of raw materials for biofuels are needed, we decided to study cell death—a natural process occurring in plants in the context of reducing the recalcitrance of lignocellulose for the production of second-generation bioethanol. “Members of the enzyme families responsible for lysigenous aerenchyma formation were identified during the root hypoxia stress in Arabidopsis thaliana cell death mutants. The cell death regulatory genes, LESION SIMULATING DISEASE 1 (LSD1), PHYTOALEXIN DEFICIENT 4 (PAD4) and ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1) conditionally regulate the cell wall when suppressed in transgenic aspen. During four years of growth in the field, the following effects were observed: lignin content was reduced, the cellulose fiber polymerization degree increased and the growth itself was unaffected. The wood of transgenic trees was more efficient as a substrate for saccharification, alcoholic fermentation and bioethanol production. The presented results may trigger the development of novel biotechnologies in the biofuel industry. Full article
Show Figures

Figure 1

27 pages, 3921 KiB  
Article
Aspergillus nomiae and fumigatus Ameliorating the Hypoxic Stress Induced by Waterlogging through Ethylene Metabolism in Zea mays L.
by Khalil Ur Rahman, Kashmala Ali, Mamoona Rauf and Muhammad Arif
Microorganisms 2023, 11(8), 2025; https://doi.org/10.3390/microorganisms11082025 - 7 Aug 2023
Cited by 6 | Viewed by 2466
Abstract
Transient and prolonged waterlogging stress (WS) stimulates ethylene (ET) generation in plants, but their reprogramming is critical in determining the plants’ fate under WS, which can be combated by the application of symbiotically associated beneficial microbes that induce resistance to WS. The present [...] Read more.
Transient and prolonged waterlogging stress (WS) stimulates ethylene (ET) generation in plants, but their reprogramming is critical in determining the plants’ fate under WS, which can be combated by the application of symbiotically associated beneficial microbes that induce resistance to WS. The present research was rationalized to explore the potential of the newly isolated 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase-producing fungal endophytic consortium of Aspergillus nomiae (MA1) and Aspergillus fumigatus (MA4) on maize growth promotion under WS. MA1 and MA4 were isolated from the seeds of Moringa oleifera L., which ably produced a sufficient amount of IAA, proline, phenols, and flavonoids. MA1 and MA4 proficiently colonized the root zone of maize (Zea mays L.). The symbiotic association of MA1 and MA4 promoted the growth response of maize compared with the non-inoculated plants under WS stress. Moreover, MA1- and MA4-inoculated maize plants enhanced the production of total soluble protein, sugar, lipids, phenolics, and flavonoids, with a reduction in proline content and H2O2 production. MA1- and MA4-inoculated maize plants showed an increase in the DPPH activity and antioxidant enzyme activities of CAT and POD, along with an increased level of hormonal content (GA3 and IAA) and decreased ABA and ACC contents. Optimal stomatal activity in leaf tissue and adventitious root formation at the root/stem junction was increased in MA1- and MA4-inoculated maize plants, with reduced lysigenous aerenchyma formation, ratio of cortex-to-stele, water-filled cells, and cell gaps within roots; increased tight and round cells; and intact cortical cells without damage. MA1 and MA4 induced a reduction in deformed mesophyll cells, and deteriorated epidermal and vascular bundle cells, as well as swollen metaxylem, phloem, pith, and cortical area, in maize plants under WS compared with control. Moreover, the transcript abundance of ethylene-responsive gene ZmEREB180, responsible for the induction of the WS tolerance in maize, showed optimally reduced expression sufficient for induction in WS tolerance, in MA1- and MA4-inoculated maize plants under WS compared with the non-inoculated control. The existing research supported the use of MA1 and MA4 isolates for establishing the bipartite mutualistic symbiosis in maize to assuage the adverse effects of WS by optimizing ethylene production. Full article
Show Figures

Figure 1

29 pages, 10676 KiB  
Article
Response of Prolyl 4 Hydroxylases, Arabinogalactan Proteins and Homogalacturonans in Four Olive Cultivars under Long-Term Salinity Stress in Relation to Physiological and Morphological Changes
by Aristotelis Azariadis, Filippos Vouligeas, Elige Salame, Mohamed Kouhen, Myrto Rizou, Kostantinos Blazakis, Penelope Sotiriou, Lamia Ezzat, Khansa Mekkaoui, Aline Monzer, Afroditi Krokida, Ioannis-Dimosthenis Adamakis, Faten Dandachi, Boushra Shalha, George Kostelenos, Eleftheria Figgou, Eleni Giannoutsou and Panagiotis Kalaitzis
Cells 2023, 12(11), 1466; https://doi.org/10.3390/cells12111466 - 24 May 2023
Cited by 3 | Viewed by 2223
Abstract
Olive (Olea europeae L.) salinity stress induces responses at morphological, physiological and molecular levels, affecting plant productivity. Four olive cultivars with differential tolerance to salt were grown under saline conditions in long barrels for regular root growth to mimic field conditions. Arvanitolia [...] Read more.
Olive (Olea europeae L.) salinity stress induces responses at morphological, physiological and molecular levels, affecting plant productivity. Four olive cultivars with differential tolerance to salt were grown under saline conditions in long barrels for regular root growth to mimic field conditions. Arvanitolia and Lefkolia were previously reported as tolerant to salinity, and Koroneiki and Gaidourelia were characterized as sensitive, exhibiting a decrease in leaf length and leaf area index after 90 days of salinity. Prolyl 4-hydroxylases (P4Hs) hydroxylate cell wall glycoproteins such as arabinogalactan proteins (AGPs). The expression patterns of P4Hs and AGPs under saline conditions showed cultivar-dependent differences in leaves and roots. In the tolerant cultivars, no changes in OeP4H and OeAGP mRNAs were observed, while in the sensitive cultivars, the majority of OeP4Hs and OeAGPs were upregulated in leaves. Immunodetection showed that the AGP signal intensity and the cortical cell size, shape and intercellular spaces under saline conditions were similar to the control in Arvanitolia, while in Koroneiki, a weak AGP signal was associated with irregular cells and intercellular spaces, leading to aerenchyma formation after 45 days of NaCl treatment. Moreover, the acceleration of endodermal development and the formation of exodermal and cortical cells with thickened cell walls were observed, and an overall decrease in the abundance of cell wall homogalacturonans was detected in salt-treated roots. In conclusion, Arvanitolia and Lefkolia exhibited the highest adaptive capacity to salinity, indicating that their use as rootstocks might provide increased tolerance to irrigation with saline water. Full article
Show Figures

Figure 1

24 pages, 1491 KiB  
Review
Nitrate–Nitrite–Nitric Oxide Pathway: A Mechanism of Hypoxia and Anoxia Tolerance in Plants
by Arbindra Timilsina, Wenxu Dong, Mirza Hasanuzzaman, Binbin Liu and Chunsheng Hu
Int. J. Mol. Sci. 2022, 23(19), 11522; https://doi.org/10.3390/ijms231911522 - 29 Sep 2022
Cited by 34 | Viewed by 5269
Abstract
Oxygen (O2) is the most crucial substrate for numerous biochemical processes in plants. Its deprivation is a critical factor that affects plant growth and may lead to death if it lasts for a long time. However, various biotic and abiotic factors [...] Read more.
Oxygen (O2) is the most crucial substrate for numerous biochemical processes in plants. Its deprivation is a critical factor that affects plant growth and may lead to death if it lasts for a long time. However, various biotic and abiotic factors cause O2 deprivation, leading to hypoxia and anoxia in plant tissues. To survive under hypoxia and/or anoxia, plants deploy various mechanisms such as fermentation paths, reactive oxygen species (ROS), reactive nitrogen species (RNS), antioxidant enzymes, aerenchyma, and adventitious root formation, while nitrate (NO3), nitrite (NO2), and nitric oxide (NO) have shown numerous beneficial roles through modulating these mechanisms. Therefore, in this review, we highlight the role of reductive pathways of NO formation which lessen the deleterious effects of oxidative damages and increase the adaptation capacity of plants during hypoxia and anoxia. Meanwhile, the overproduction of NO through reductive pathways during hypoxia and anoxia leads to cellular dysfunction and cell death. Thus, its scavenging or inhibition is equally important for plant survival. As plants are also reported to produce a potent greenhouse gas nitrous oxide (N2O) when supplied with NO3 and NO2, resembling bacterial denitrification, its role during hypoxia and anoxia tolerance is discussed here. We point out that NO reduction to N2O along with the phytoglobin-NO cycle could be the most important NO-scavenging mechanism that would reduce nitro-oxidative stress, thus enhancing plants’ survival during O2-limited conditions. Hence, understanding the molecular mechanisms involved in reducing NO toxicity would not only provide insight into its role in plant physiology, but also address the uncertainties seen in the global N2O budget. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

23 pages, 5679 KiB  
Article
Waterlogging Stress Induces Antioxidant Defense Responses, Aerenchyma Formation and Alters Metabolisms of Banana Plants
by Ee Yang Teoh, Chee How Teo, Nadiya Akmal Baharum, Teen-Lee Pua and Boon Chin Tan
Plants 2022, 11(15), 2052; https://doi.org/10.3390/plants11152052 - 5 Aug 2022
Cited by 42 | Viewed by 6332
Abstract
Flooding caused or exacerbated by climate change has threatened plant growth and food production worldwide. The lack of knowledge on how crops respond and adapt to flooding stress imposes a major barrier to enhancing their productivity. Hence, understanding the flooding-responsive mechanisms of crops [...] Read more.
Flooding caused or exacerbated by climate change has threatened plant growth and food production worldwide. The lack of knowledge on how crops respond and adapt to flooding stress imposes a major barrier to enhancing their productivity. Hence, understanding the flooding-responsive mechanisms of crops is indispensable for developing new flooding-tolerant varieties. Here, we examined the banana (Musa acuminata cv. Berangan) responses to soil waterlogging for 1, 3, 5, 7, 14, and 24 days. After waterlogging stress, banana root samples were analyzed for their molecular and biochemical changes. We found that waterlogging treatment induced the formation of adventitious roots and aerenchyma with conspicuous gas spaces. In addition, the antioxidant activities, hydrogen peroxide, and malondialdehyde contents of the waterlogged bananas increased in response to waterlogging stress. To assess the initial response of bananas toward waterlogging stress, we analyzed the transcriptome changes of banana roots. A total of 3508 unigenes were differentially expressed under 1-day waterlogging conditions. These unigenes comprise abiotic stress-related transcription factors, such as ethylene response factors, basic helix-loop-helix, myeloblastosis, plant signal transduction, and carbohydrate metabolisms. The findings of the study provide insight into the complex molecular events of bananas in response to waterlogging stress, which could later help develop waterlogging resilient crops for the future climate. Full article
(This article belongs to the Special Issue The Impacts of Abiotic Stresses on Plant Development 2.0)
Show Figures

Figure 1

10 pages, 957 KiB  
Review
The Pyramiding of Three Key Root Traits Aid Breeding of Flood-Tolerant Rice
by Chen Lin, Tongtong Zhu, Lucas León Peralta Ogorek, Youping Wang, Margret Sauter and Ole Pedersen
Plants 2022, 11(15), 2033; https://doi.org/10.3390/plants11152033 - 4 Aug 2022
Cited by 10 | Viewed by 2898
Abstract
Flooding is constantly threatening the growth and yield of crops worldwide. When flooding kicks in, the soil becomes water-saturated and, therefore, the roots are the first organs to be exposed to excess water. Soon after flooding, the soil turns anoxic and the roots [...] Read more.
Flooding is constantly threatening the growth and yield of crops worldwide. When flooding kicks in, the soil becomes water-saturated and, therefore, the roots are the first organs to be exposed to excess water. Soon after flooding, the soil turns anoxic and the roots can no longer obtain molecular oxygen for respiration from the rhizosphere, rendering the roots dysfunctional. Rice, however, is a semi-aquatic plant and therefore relatively tolerant to flooding due to adaptive traits developed during evolution. In the present review, we have identified three key root traits, viz. cortical aerenchyma formation, a barrier to radial oxygen loss and adventitious root growth. The understanding of the physiological function, the molecular mechanisms, and the genetic regulation of these three traits has grown substantially and therefore forms the backbone of this review. Our synthesis of the recent literature shows each of the three key root traits contributes to flood tolerance in rice. One trait, however, is generally insufficient to enhance plant tolerance to flooding. Consequently, we suggest comprehensive use of all three adaptive traits in a pyramiding approach in order to improve tolerance to flooding in our major crops, in general, and in rice, in particular. Full article
(This article belongs to the Special Issue Plant–Soil Interactions in Wetlands and Flooded Environments)
Show Figures

Figure 1

18 pages, 4301 KiB  
Article
Waterlogging Priming Enhances Hypoxia Stress Tolerance of Wheat Offspring Plants by Regulating Root Phenotypic and Physiological Adaption
by Kai Feng, Xiao Wang, Qin Zhou, Tingbo Dai, Weixing Cao, Dong Jiang and Jian Cai
Plants 2022, 11(15), 1969; https://doi.org/10.3390/plants11151969 - 28 Jul 2022
Cited by 15 | Viewed by 2832
Abstract
With global climate change, waterlogging stress is becoming more frequent. Waterlogging stress inhibits root growth and physiological metabolism, which ultimately leads to yield loss in wheat. Waterlogging priming has been proven to effectively enhance waterlogging tolerance in wheat. However, it is not known [...] Read more.
With global climate change, waterlogging stress is becoming more frequent. Waterlogging stress inhibits root growth and physiological metabolism, which ultimately leads to yield loss in wheat. Waterlogging priming has been proven to effectively enhance waterlogging tolerance in wheat. However, it is not known whether waterlogging priming can improve the offspring’s waterlogging resistance. Here, wheat seeds that applied waterlogging priming for one generation, two generations and three generations are separately used to test the hypoxia stress tolerance in wheat, and the physiological mechanisms are evaluated. Results found that progeny of primed plants showed higher plant biomass by enhancing the net photosynthetic rate and antioxidant enzyme activity. Consequently, more sugars are transported to roots, providing a metabolic substrate for anaerobic respiration and producing more ATP to maintain the root growth in the progeny of primed plants compared with non-primed plants. Furthermore, primed plants’ offspring promote ethylene biosynthesis and further induce the formation of a higher rate of aerenchyma in roots. This study provides a theoretical basis for improving the waterlogging tolerance of wheat. Full article
Show Figures

Figure 1

15 pages, 15321 KiB  
Article
Genome-Wide Association Study Reveals Marker Trait Associations (MTA) for Waterlogging-Triggered Adventitious Roots and Aerenchyma Formation in Barley
by S. M. Nuruzzaman Manik, Md Quamruzzaman, Chenchen Zhao, Peter Johnson, Ian Hunt, Sergey Shabala and Meixue Zhou
Int. J. Mol. Sci. 2022, 23(6), 3341; https://doi.org/10.3390/ijms23063341 - 19 Mar 2022
Cited by 9 | Viewed by 3944
Abstract
Waterlogging is an environmental stress, which severely affects barley growth and development. Limited availability of oxygen in the root zone negatively affects the metabolism of the whole plant. Adventitious roots (AR) and root cortical aerenchyma (RCA) formation are the most important adaptive traits [...] Read more.
Waterlogging is an environmental stress, which severely affects barley growth and development. Limited availability of oxygen in the root zone negatively affects the metabolism of the whole plant. Adventitious roots (AR) and root cortical aerenchyma (RCA) formation are the most important adaptive traits that contribute to a plant’s ability to survive in waterlogged soil conditions. This study used a genome-wide association (GWAS) approach using 18,132 single nucleotide polymorphisms (SNPs) in a panel of 697 barley genotypes to reveal marker trait associations (MTA) conferring the above adaptive traits. Experiments were conducted over two consecutive years in tanks filled with soil and then validated in field experiments. GWAS analysis was conducted using general linear models (GLM), mixed linear models (MLM), and fixed and random model circulating probability unification models (FarmCPU model), with the FarmCPU showing to be the best suited model. Six and five significant (approximately −log10 (p) ≥ 5.5) MTA were identified for AR and RCA formation under waterlogged conditions, respectively. The highest −log10 (p) MTA for adventitious root and aerenchyma formation were approximately 9 and 8 on chromosome 2H and 4H, respectively. The combination of different MTA showed to be more effective in forming RCA and producing more AR under waterlogging stress. Genes from major facilitator superfamily (MFS) transporter and leucine-rich repeat (LRR) families for AR formation, and ethylene responsive factor (ERF) family genes and potassium transporter family genes for RCA formation were the potential candidate genes involved under waterlogging conditions. Several genotypes, which performed consistently well under different conditions, can be used in breeding programs to develop waterlogging-tolerant varieties. Full article
(This article belongs to the Special Issue Plant Genetic Diversity and Genomics)
Show Figures

Figure 1

14 pages, 1894 KiB  
Article
Salicylic Acid Enhances Adventitious Root and Aerenchyma Formation in Wheat under Waterlogged Conditions
by Murali Krishna Koramutla, Pham Anh Tuan and Belay T. Ayele
Int. J. Mol. Sci. 2022, 23(3), 1243; https://doi.org/10.3390/ijms23031243 - 23 Jan 2022
Cited by 34 | Viewed by 4149
Abstract
The present study investigated the role of salicylic acid (SA) in regulating morpho-anatomical adaptive responses of a wheat plant to waterlogging. Our pharmacological study showed that treatment of waterlogged wheat plants with exogenous SA promotes the formation axile roots and surface adventitious roots [...] Read more.
The present study investigated the role of salicylic acid (SA) in regulating morpho-anatomical adaptive responses of a wheat plant to waterlogging. Our pharmacological study showed that treatment of waterlogged wheat plants with exogenous SA promotes the formation axile roots and surface adventitious roots that originate from basal stem nodes, but inhibits their elongation, leading to the formation of a shallow root system. The treatment also enhanced axile root formation in non-waterlogged plants but with only slight reductions in their length and branch root formation. Exogenous SA enhanced the formation of root aerenchyma, a key anatomical adaptive response of plants to waterlogging. Consistent with these results, waterlogging enhanced SA content in the root via expression of specific isochorismate synthase (ICS; ICS1 and ICS2) and phenylalanine ammonia lyase (PAL; PAL4, PAL5 and PAL6) genes and in the stem nodes via expression of specific PAL (PAL5 and PAL6) genes. Although not to the same level observed in waterlogged plants, exogenous SA also induced aerenchyma formation in non-waterlogged plants. The findings of this study furthermore indicated that inhibition of ethylene synthesis in SA treated non-waterlogged and waterlogged plants does not have any effect on SA-induced emergence of axile and/or surface adventitious roots but represses SA-mediated induction of aerenchyma formation. These results highlight that the role of SA in promoting the development of axile and surface adventitious roots in waterlogged wheat plants is ethylene independent while the induction of aerenchyma formation by SA requires the presence of ethylene. Full article
(This article belongs to the Special Issue Environmental Stress and Plants)
Show Figures

Figure 1

12 pages, 3151 KiB  
Article
Aerenchyma Formation in Adventitious Roots of Tall Fescue and Cocksfoot under Waterlogged Conditions
by Nguyen Thi Mui, Meixue Zhou, David Parsons and Rowan William Smith
Agronomy 2021, 11(12), 2487; https://doi.org/10.3390/agronomy11122487 - 8 Dec 2021
Cited by 10 | Viewed by 4370
Abstract
The formation of aerenchyma in adventitious roots is one of the most crucial adaptive traits for waterlogging tolerance in plants. Pasture grasses, like other crops, can be affected by waterlogging, and there is scope to improve tolerance through breeding. In this study, two [...] Read more.
The formation of aerenchyma in adventitious roots is one of the most crucial adaptive traits for waterlogging tolerance in plants. Pasture grasses, like other crops, can be affected by waterlogging, and there is scope to improve tolerance through breeding. In this study, two summer-active cocksfoot (Dactylis glomerata L.) cultivars, Lazuly and Porto, and two summer-active tall fescue (Lolium arundinaceum Schreb., syn. Festuca arundinacea Schreb.) cultivars, Hummer and Quantum II MaxP, were selected to investigate the effects of waterlogging on root growth and morphological change. Cultivars were subjected to four periods of waterlogging treatments (7, 14, 21 and 28 days), while comparable plants were kept under free drained control conditions. The experiment was arranged as a split–split plot design, with waterlogging treatments (waterlogged, control) considered as main plots, time periods (days of waterlogging) as subplots and cultivars as sub-subplots. Plants began to show signs of waterlogging stress 14–21 days after the onset of waterlogging treatments. There were no significant differences in shoot biomass between the waterlogged and control plants of any cultivar. However, waterlogging significantly reduced root dry matter in all cultivars, with greater reduction in cocksfoot (56%) than in tall fescue (38%). Waterlogging also led to increased adventitious root and aerenchyma formation in both species. Cocksfoot cultivars showed a greater increase in adventitious roots, while tall fescue cultivars had a greater proportion of aerenchyma. Both cultivars within each species showed similar responses to waterlogging treatments. However, an extended screening program is needed to identify whether there are varietal differences within species, which could be used to discover genes related to aerenchyma or adventitious root formation (waterlogging tolerance) for use in breeding programs. Full article
(This article belongs to the Collection Crop Breeding for Stress Tolerance)
Show Figures

Figure 1

15 pages, 6224 KiB  
Article
Stem and Leaf Anatomy of Aragoa (Plantaginaceae): In Search of Lost Rays
by Alexei Oskolski, Nathi Vuza and Alexey Shipunov
Plants 2021, 10(9), 1773; https://doi.org/10.3390/plants10091773 - 26 Aug 2021
Cited by 2 | Viewed by 3362
Abstract
Aragoa is a shrubby genus endemic to páramo in the northern Andes representing the sister group to Plantago and Limosella. Stem and leaf structure of Aragoa corrugatifolia were studied to clarify the evolutionary pathways and ecological significance of their anatomical traits. Aragoa [...] Read more.
Aragoa is a shrubby genus endemic to páramo in the northern Andes representing the sister group to Plantago and Limosella. Stem and leaf structure of Aragoa corrugatifolia were studied to clarify the evolutionary pathways and ecological significance of their anatomical traits. Aragoa and Plantago share a non-fascicular primary vascular system, rayless wood and secondary phloem, and anomocytic stomata. Aragoa is distinctive from most Plantaginaceae in the presence of cortical aerenchyma and of helical thickenings in vessels. Its procambium emerges in the primary meristem ring as a continuous cylinder. The view on the ring meristem and procambial strands as developmental stages in the formation of a primary vascular system is not relevant for Aragoa, and probably for other Plantaginaceae. The raylessness is synapomorphic for the crown clade of Plantaginaceae comprising Aragoa, Littorella, Plantago, Veronica, Picrorhiza, Wulfenia, and Veronicastrum. The loss of rays is thought to be predetermined by procambium rather than by the vascular cambium. The extremely narrow vessels with helical thickenings are presumably adaptive to hydric and thermic conditions of páramo. Cortical aerenchyma is thought to be a response to the local hypoxia caused by the water retained by ericoid leaves. Trichomes on juvenile leaves are expected to be the traits of considerable taxonomic importance. Full article
(This article belongs to the Special Issue Diversity and Phylogeny of Plantaginaceae)
Show Figures

Figure 1

Back to TopTop