Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,502)

Search Parameters:
Keywords = adult rat

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2968 KiB  
Article
Engineered Neural Tissue (EngNT) Containing Human iPSC-Derived Schwann Cell Precursors Promotes Axon Growth in a Rat Model of Peripheral Nerve Injury
by Rebecca A. Powell, Emily A. Atkinson, Poppy O. Smith, Rickie Patani, Parmjit S. Jat, Owein Guillemot-Legris and James B. Phillips
Bioengineering 2025, 12(9), 904; https://doi.org/10.3390/bioengineering12090904 (registering DOI) - 23 Aug 2025
Abstract
Tissue engineering has the potential to overcome the limitations of using autografts in nerve gap repair, using cellular biomaterials to bridge the gap and support neuronal regeneration. Various types of therapeutic cells could be considered for use in aligned collagen-based engineered neural tissue [...] Read more.
Tissue engineering has the potential to overcome the limitations of using autografts in nerve gap repair, using cellular biomaterials to bridge the gap and support neuronal regeneration. Various types of therapeutic cells could be considered for use in aligned collagen-based engineered neural tissue (EngNT), including Schwann cells and their precursors, which can be derived from human induced pluripotent stem cells (hiPSCs). Using Schwann cell precursors may have practical advantages over mature Schwann cells as they expand readily in vitro and involve a shorter differentiation period. However, the performance of each cell type needs to be tested in EngNT. By adapting established protocols, hiPSCs were differentiated into Schwann cell precursors and Schwann cells, with distinctive molecular profiles confirmed using immunocytochemistry and RT-qPCR. For the first time, both cell types were incorporated into EngNT using gel aspiration–ejection, a technique used to align and simultaneously stabilise the cellular hydrogels. Both types of cellular constructs supported and guided aligned neurite outgrowth from adult rat dorsal root ganglion neurons in vitro. Initial experiments in a rat model of nerve gap injury demonstrated the extent to which the engrafted cells survived after 2 weeks and indicated that both types of hiPSC-derived cells supported the infiltration of host neurons, Schwann cells and endothelial cells. In summary, we show that human Schwann cell precursors promote infiltrating endogenous axons in a model of peripheral nerve injury to a greater degree than their terminally differentiated Schwann cell counterparts. Full article
(This article belongs to the Special Issue Nerve Regeneration)
Show Figures

Figure 1

14 pages, 2288 KiB  
Article
Dual Protective Effects of Postbiotics and Cichorium intybus L. Mixture in the Sarcopenic and Inflammatory Models
by Harang Park, Jinsu Choi, Eunwoo Jeong, Hye-Yeong Song, Juyeong Moon, Min-ah Kim, Chunghyeon Lee, Junsoo Park, Jong Kwang Hong and Tack-Joong Kim
Biomedicines 2025, 13(9), 2046; https://doi.org/10.3390/biomedicines13092046 - 22 Aug 2025
Abstract
Background/Objectives: Recently, concerns about age-related conditions, such as sarcopenia and chronic inflammation, have increased owing to the global acceleration of population aging. Notably, these conditions are interrelated and further exacerbate functional decline in older adults. Therefore, this study aimed to evaluate the [...] Read more.
Background/Objectives: Recently, concerns about age-related conditions, such as sarcopenia and chronic inflammation, have increased owing to the global acceleration of population aging. Notably, these conditions are interrelated and further exacerbate functional decline in older adults. Therefore, this study aimed to evaluate the efficacy of a novel bioactive compound, DuoX (a mixture of the postbiotic beLP1 and Cichorium intybus L.), in alleviating muscle wasting and chronic inflammation. Specifically, the mixture consisted of inulin-rich C. intybus L. root extract, known for its anti-inflammatory effects, and beLP1, a postbiotic previously shown to exert anti-sarcopenic effects. Methods: To assess the multifunctional effects of the DuoX, dexamethasone-induced sarcopenia models (C2C12 myotubes and an in vivo rat model) and a lipopolysaccharide-stimulated RAW 264.7 macrophage inflammation model were established. Results: Pretreatment with DuoX prevented the dexamethasone-induced reduction in myotube diameter and effectively inhibited muscle degradation by downregulating the expression of atrogin-1 caused by dexamethasone treatment. In rats with DEX-induced sarcopenia, DuoX prevented muscle weight loss, grip strength reduction, and the upregulation of atrogin-1 expression in vivo. In lipopolysaccharide-stimulated RAW 264.7 macrophages, DuoX significantly reduced nitric oxide production and cyclooxygenase-2 protein expression and suppressed p38 and ERK phosphorylation in the MAPK signaling pathway, thereby alleviating inflammatory responses. Conclusions: DuoX holds promise as a dual-functional candidate with both anti-sarcopenic and anti-inflammatory properties. Further preclinical and clinical studies are required to validate its therapeutic efficacy and safety in humans, which may contribute to the development of preventive strategies for healthy aging. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Figure 1

30 pages, 9603 KiB  
Article
Pinealectomy-Induced Neuroinflammation Varies with Age in Rats
by Dimitrinka Atanasova, Desislava Krushovlieva, Pavel Rashev, Milena Mourdjeva, Despina Pupaki and Jana Tchekalarova
Int. J. Mol. Sci. 2025, 26(16), 8093; https://doi.org/10.3390/ijms26168093 - 21 Aug 2025
Abstract
It is widely accepted that chronic inflammation constitutes a significant mechanism that promotes the biological aging process. The pineal gland is regarded as being closely related to the control of the “life clock”. The present study aimed to determine the inflammation associated with [...] Read more.
It is widely accepted that chronic inflammation constitutes a significant mechanism that promotes the biological aging process. The pineal gland is regarded as being closely related to the control of the “life clock”. The present study aimed to determine the inflammation associated with pinealectomy in the rat hippocampus and to investigate the extent to which age stage impacts the severity of this inflammation. We evaluated the expression of the Akt/NF-kB signaling pathway in neurons and gliosis level in the dorsal hippocampus (dHipp) of rats subjected to sham surgery or pinealectomy at 3, 14, or 18 months of age. The assessment was conducted using immunohistochemistry. Removal of the pineal gland resulted in significant, region-specific increases in NF-kB expression in neurons of the dHipp in the youngest and middle-aged groups. However, the change in expression of the phosphorylated form of Akt (pAkt1) in neurons went in the opposite direction in these two age groups, and there were also regional differences. Pinealectomy triggered microgliosis in both young and old rats, but middle-aged rats were resistant to microglia activation. Conversely, astrogliosis was observed in young adult and middle-aged groups with melatonin deficiency in certain regions of the dHipp. It is noteworthy that young adult rats demonstrated the highest degree of vulnerability to inflammation associated with the loss of melatonin as a hormone. In contrast, middle-aged rats with pinealectomy exhibited a complex and partial adaptive response. These findings emphasize the dynamic and age-dependent nature of neuroinflammation following pinealectomy, underscoring the developmental stage as a critical determinant of inflammatory susceptibility. Full article
Show Figures

Figure 1

13 pages, 2120 KiB  
Article
The Effect of Co-Administration of Levetiracetam or Brivaracetam with Ethanol on the Associative Learning and Anxiety Level of Rats
by Ewa Zwierzyńska and Bogusława Pietrzak
Future Pharmacol. 2025, 5(3), 45; https://doi.org/10.3390/futurepharmacol5030045 - 21 Aug 2025
Viewed by 84
Abstract
Background: Ethanol intake leads to cognitive deficits. Recent research demonstrated that a dysregulation of synaptic vesicle glycoprotein 2A (SV2A) expression seems to be linked to anxiety and memory disorders. Levetiracetam and brivaracetam are two antiseizure drugs that affect the SV2A protein. This study [...] Read more.
Background: Ethanol intake leads to cognitive deficits. Recent research demonstrated that a dysregulation of synaptic vesicle glycoprotein 2A (SV2A) expression seems to be linked to anxiety and memory disorders. Levetiracetam and brivaracetam are two antiseizure drugs that affect the SV2A protein. This study aimed to assess the impact of these drugs on associative learning and anxiety-like behaviors in ethanol-treated rats. Methods: Adult male Wistar rats (n = 64) were given brivaracetam or levetiracetam via i.g. for three weeks at doses of 300 mg/kg or 6 mg/kg, respectively. Ethanol was administered as a 20% solution twice a day, via i.g., at a morning dose of 1.5 g/kg b.w. and an afternoon dose of 3.5 g/kg b.w. Additionally, 5% ethanol was available ad libitum between 4:00 p.m. and 8:00 a.m. Associative learning was evaluated using the passive avoidance test during the alcohol administration period, as well as the contextual fear conditioning and cued fear conditioning tests during the withdrawal period. The level of anxiety was determined using the elevated plus maze test in withdrawal rats. Results: Ethanol consumption resulted in impaired associative memory, and its withdrawal was linked to increased anxiety levels. Levetiracetam enhanced memory performance in the passive avoidance test, but brivaracetam disturbed memory associated with unpleasant stimuli in the contextual fear conditioning. Additionally, withdrawal-induced disturbance of locomotor activity persisted, particularly in animals receiving levetiracetam in the elevated plus maze. Conclusions: Levetiracetam appears to provide certain beneficial effects, whereas brivaracetam may worsen memory disturbances in rats. Full article
Show Figures

Graphical abstract

15 pages, 2923 KiB  
Article
Ivermectin Identified Using a High-Throughput Screening System Exhibits Anti-Clonorchis sinensis Activity in Rats
by Soon-Ok Lee, Hyeryon Lee, Ki Back Chu, Jianhua Li, Sung-Jong Hong, Sung Soo Kim, Joo Hwan No and Fu-Shi Quan
Antibiotics 2025, 14(8), 837; https://doi.org/10.3390/antibiotics14080837 - 19 Aug 2025
Viewed by 215
Abstract
Background: Clonorchiasis, caused by the parasite Clonorchis sinensis, remains a public health concern in East Asian countries. Methods: In this study, high-throughput screening was used to analyze 320 compounds for potential inhibitory activity against Clonorchis sinensis. To ensure the selection of [...] Read more.
Background: Clonorchiasis, caused by the parasite Clonorchis sinensis, remains a public health concern in East Asian countries. Methods: In this study, high-throughput screening was used to analyze 320 compounds for potential inhibitory activity against Clonorchis sinensis. To ensure the selection of high-confidence hits, a stringent inhibition threshold of 80% was applied, leading to the identification of three active compounds: moxifloxacin, hexachlorophene, and ivermectin (IVM). Ivermectin emerged as a hit compound and was assessed for its anti-C. sinensis efficacy. Results: Ivermectin demonstrated dose-dependent trematocidal activity against C. sinensis metacercariae (CsMC) and newly excysted juveniles (CsNEJs), showing superior efficacy against CsMC and CsNEJs compared to praziquantel. To assess in vivo efficacy, rats were infected with CsMC and treated with ivermectin at 1 and 4 weeks post-infection (wpi) to target larval and adult stages, respectively. A significant worm burden reduction was observed compared to untreated control when treatment was administered at 1 wpi, showing an antiparasitic effect against larvae. Parasite-specific IgG levels and ALT/AST responses were comparable to those of the infection control group. Conclusions: These findings suggest that ivermectin may serve as a potential alternative drug targeting C. sinensis larvae. Full article
Show Figures

Figure 1

18 pages, 3824 KiB  
Article
Changes in Artemin Correlate with Anxiety- and Depression-like Behaviors in a Lipopolysaccharide-Induced Rat Neuroinflammation Model
by Hasan Çalışkan and Seda Koçak
Biomolecules 2025, 15(8), 1192; https://doi.org/10.3390/biom15081192 - 19 Aug 2025
Viewed by 195
Abstract
Artemin is a neurotrophic factor that belongs to the four-member family of Glial-derived growth factors. This study aims to investigate changes in artemin correlated with anxiety and depression-like behaviors in a neuroinflammation rodent model. In adult male Wistar rats, neuroinflammation was established through [...] Read more.
Artemin is a neurotrophic factor that belongs to the four-member family of Glial-derived growth factors. This study aims to investigate changes in artemin correlated with anxiety and depression-like behaviors in a neuroinflammation rodent model. In adult male Wistar rats, neuroinflammation was established through administration of 2 mg/kg LPS. Anxiety-like behaviors and locomotor activity were evaluated by the open field test. The sucrose preference test and the splash test analyzed depression-like behaviors. Tumor necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1β), and artemin levels were measured in the prefrontal cortex, striatum, and serum. In the neuroinflammation group, rearing, total distance traveled, time spent in the central region, and sucrose solution consumption decreased in the open-field test (p < 0.0001). Grooming time and frequency were shortened, and grooming latency was prolonged in the neuroinflammation group (p < 0.0001). TNF-α was significantly increased in the prefrontal cortex (p < 0.05) and striatum (p < 0.01). lL-1β did not change between groups (p > 0.05). Artemin levels decreased in the prefrontal cortex and striatum (p < 0.05). No difference was observed in serum artemin levels; however, artemin levels of brain regions were higher than those in the serum. An increase in anxiety–depression-like behaviors has accompanied decreased levels of artemin in the brain. Artemin may be a target molecule in psychiatric disorders. Further studies are needed to examine the role of artemin in neuropsychiatric disorders. Full article
(This article belongs to the Special Issue Neuroimmune Interactions in Neuropsychiatric Diseases)
Show Figures

Figure 1

23 pages, 9723 KiB  
Article
Effect of Spirulina platensis Versus Simvastatin on the Skeletal Muscles of Experimentally Induced Dyslipidemia: A Multitarget Approach to Muscle Ultrastructural and Cytomolecular Modulation
by Mai E. Abdelhady, Khaled H. Elmosalamy, Asmaa A. A. Kattaia and Mai A. Samak
Med. Sci. 2025, 13(3), 137; https://doi.org/10.3390/medsci13030137 - 15 Aug 2025
Viewed by 260
Abstract
Background/Objectives: Dyslipidemia is a prevalent metabolic disorder closely linked to cardiovascular complications and muscular pathologies, often managed using statins such as simvastatin. However, statin-induced myopathy remains a significant treatment-limiting side effect, necessitating the exploration of safe, natural alternatives. Spirulina platensis, a phytochemical-rich [...] Read more.
Background/Objectives: Dyslipidemia is a prevalent metabolic disorder closely linked to cardiovascular complications and muscular pathologies, often managed using statins such as simvastatin. However, statin-induced myopathy remains a significant treatment-limiting side effect, necessitating the exploration of safe, natural alternatives. Spirulina platensis, a phytochemical-rich marine-derived cyanobacterium, has emerged as a promising bioactive nutraceutical with potent antioxidant and anti-inflammatory properties. This study evaluated the comparative effects of Spirulina platensis and simvastatin in attenuating dyslipidemia-induced skeletal muscle injury in adult male albino rats. Methods: Forty animals were allocated to the control and high-fat diet (HFD) groups. After 4 weeks, the dyslipidemic rats were subdivided into untreated, simvastatin-treated, and Spirulina platensis-treated subgroups. Serum lipid profile, creatine kinase (CK), and malondialdehyde (MDA) levels were assessed. Histological, ultrastructural, and immunohistochemical analyses were conducted to assess muscle fiber integrity and expression of TGF-β1 and Bcl2. Results: Spirulina platensis significantly improved lipid parameters, reduced CK and MDA levels, preserved muscle histoarchitecture, and downregulated fibrotic (↓TGF-β1) and apoptotic (↑Bcl2) responses compared to the dyslipidemic and simvastatin-treated groups. Our results proved that Spirulina platensis ameliorates the effects of statin-associated myopathy while exerting lipid-lowering, cytoprotective, and antifibrotic effects. Conclusion: These molecular and ultrastructural benefits position Spirulina platensis as a promising, natural alternative to statins for managing dyslipidemia and preventing statin-induced myopathy. Future translational and clinical studies are warranted to further validate its efficacy and safety, supporting its broader application in metabolic and muscle-related disorders. Full article
Show Figures

Figure 1

16 pages, 1534 KiB  
Article
Juvenile Lesions of the Cerebellar Fastigial Nucleus Cause Lasting Cognitive Deficits and Prefrontal Cortex Dysfunction in Adult Rats: Implications for the Cerebellar Cognitive Affective Syndrome
by Franziska Maria Decker, Jonas Jelinek, Franck Fogaing Kamgaing, Mesbah Alam, Shadi Al-Afif, Joachim K. Krauss, Kerstin Schwabe and Elvis J. Hermann
Brain Sci. 2025, 15(8), 862; https://doi.org/10.3390/brainsci15080862 - 13 Aug 2025
Viewed by 327
Abstract
Background/Objectives: Cerebellar cognitive affective syndrome (CCAS) is a well-recognized postoperative complication in children following resection of brain tumors involving cerebellar midline structures. The fastigial nucleus is regarded as relevant, but the underlying neural mechanisms remain incompletely understood. This study uses an oddball paradigm [...] Read more.
Background/Objectives: Cerebellar cognitive affective syndrome (CCAS) is a well-recognized postoperative complication in children following resection of brain tumors involving cerebellar midline structures. The fastigial nucleus is regarded as relevant, but the underlying neural mechanisms remain incompletely understood. This study uses an oddball paradigm designed to model attentional and learning processes relevant to CCAS to investigate how early-life lesions of the fastigial nucleus in rats affect cognitive performance and neural information processing in the medial prefrontal cortex (mPFC) in adulthood. Methods: Fastigial lesions were induced stereotaxically in 23-day-old male Sprague Dawley rats [n = 9]. Naïve [n = 9] and sham-lesioned rats [n = 6] served as controls. As adults, all rats were trained in an oddball paradigm requiring discrimination of a rare target tone from a rare distractor and a frequent standard tone. Local field potentials (LFPs) were recorded from electrodes implanted in the mPFC during oddball testing and event-related potentials (ERPs) were analyzed. Results: Rats with fastigial lesions required significantly more training days to reach ≥70% correct performance criterion. In fully trained rats, analysis of neural recordings during behavioral testing revealed reduced ERP amplitudes and prolonged latencies of late ERP components after target stimuli. Developmental fastigial lesions lead to lasting deficits in cognitive learning capacity and neural mPFC processing, highlighting the integrative role of cerebellar midline structures in higher-order cognitive function and sensory discrimination. Conclusions: This rodent model provides a valuable translational platform for further investigating the neural basis of CCAS and may inform neurosurgical strategies aimed at minimizing cognitive sequelae in children undergoing cerebellar tumor resection. Full article
(This article belongs to the Section Cognitive, Social and Affective Neuroscience)
Show Figures

Figure 1

21 pages, 3228 KiB  
Article
CUSP06, a Novel CDH6-Targeted Antibody-Drug Conjugate, Demonstrates Antitumor Efficacy in Multiple CDH6-Expressing Human Cancer Models
by Wei Lu, Jing Shi, Wentao Zhang, Nicole Covino, Amy Penticoff, Robert Phillips, John Cogswell, Laurie Tatalick, Stephanie Pasas-Farmer, Jianjian Zhang, Caiwei Chen, Yixuan Wang, Huiyan Shi, Shuhui Liu, Xun Meng and Eric Slosberg
Pharmaceutics 2025, 17(8), 1049; https://doi.org/10.3390/pharmaceutics17081049 - 13 Aug 2025
Viewed by 417
Abstract
Background/Objectives: Cadherin-6 (CDH6), also known as K-cadherin, is a type II classic cadherin molecule that plays an important role in the embryonic development of the kidney but has very limited expression in adult tissues. It is overexpressed in several human malignancies, primarily in [...] Read more.
Background/Objectives: Cadherin-6 (CDH6), also known as K-cadherin, is a type II classic cadherin molecule that plays an important role in the embryonic development of the kidney but has very limited expression in adult tissues. It is overexpressed in several human malignancies, primarily in ovarian cancer, renal cell carcinoma, as well as, less frequently, cholangiocarcinoma, uterine serous carcinoma, glioma, lung, pancreatic and thyroid cancers. The characteristic of limited expression in normal tissues, high expression in tumor tissues, and rapid internalization upon antibody binding makes CDH6 a well-suited antibody-drug conjugate (ADC) target. Methods: We developed a novel CDH6-targeting ADC, CUSP06, consisting of a proprietary humanized antibody selective for CDH6, a protease cleavable linker, and an exatecan payload, with a drug-to-antibody ratio (DAR) of 8. We further characterized the pharmacological activities of CUSP06 in multiple in vitro and in vivo models. Results: CUSP06 was selectively bound to cell surface CDH6 and was efficiently internalized into CDH6-positive ovarian cancer cells, and led to the induction of DNA damage and apoptosis of CDH6-positive cancer cells. CUSP06 exhibited strong antiproliferative activity against several CDH6-positive cancer cell lines and demonstrated strong bystander cell killing effect in the cell mixing experiments in vitro. CUSP06 exhibits excellent in vivo antitumor efficacy in CDH6-high or -low cell line-derived xenograft (CDX) or patient-derived xenograft (PDX) models from human ovarian, renal and uterine cancers, as well as cholangiocarcinoma. CUSP06 demonstrated a favorable safety profile in GLP-compliant toxicology studies in Sprague Dawley rats and cynomolgus monkeys. Conclusions: The preclinical data highlighted the therapeutic potential of CUSP06 in multiple CDH6-positive human cancers. Full article
(This article belongs to the Special Issue Advancements and Innovations in Antibody Drug Conjugates)
Show Figures

Figure 1

21 pages, 15244 KiB  
Article
An Investigation of the Effects of Melatonin and Vitamin D on the Ovaries of a Rat Model of Premature Ovarian Failure Induced by Cyclophosphamide
by Özdem Karaoğlan, Yurdun Kuyucu, Dilek Şaker, Gülçin Dağlıoğlu and Özgül Tap
Int. J. Mol. Sci. 2025, 26(16), 7772; https://doi.org/10.3390/ijms26167772 - 12 Aug 2025
Viewed by 446
Abstract
In this study, we evaluated the protective effects of combined melatonin and vitamin D3 treatment on ovarian reserve and tissue architecture in a cyclophosphamide-induced premature ovarian failure (POF) rat model. Forty-nine adult female rats were randomly assigned to seven groups, including intact control [...] Read more.
In this study, we evaluated the protective effects of combined melatonin and vitamin D3 treatment on ovarian reserve and tissue architecture in a cyclophosphamide-induced premature ovarian failure (POF) rat model. Forty-nine adult female rats were randomly assigned to seven groups, including intact control (group 1), single-agent control (groups 2 and 3), POF (group 4), and POF + treatment (groups 5, 6, and 7) groups. Cyclophosphamide exposure led to elevated FSH and LH levels, reduced estradiol and progesterone levels, extensive follicular atresia, stromal fibrosis, and the marked degeneration of the ovarian ultrastructure. Additionally, the expression levels of PTEN, FOXO3a, and AMH were significantly downregulated, while caspase-3 and TNF-α immunoreactivities were increased. Notably, co-treatment with melatonin and vitamin D3 preserved primordial and growing follicle populations, restored hormonal balance, reduced stromal fibrosis, and attenuated apoptosis and inflammation markers. These findings highlight the potential of combined melatonin and vitamin D3 therapy as a fertility-preserving strategy that functions by mitigating chemotherapy-induced ovarian injury through multi-pathway modulation. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Figure 1

16 pages, 2967 KiB  
Article
Adeno-Associated Viral Gene Delivery of Wild-Type Human Tau Induces Progressive Hyperphosphorylation and Neuronal Cell Death in the Hippocampi of Middle-Aged Rats
by Ryan C. Gorzek, Aurelie Joly-Amado, Natalia Hurst-Calle, Graham L. Gabrielson, Maxine Miller, Sue Osting, Kevin R. Nash and Corinna Burger
Cells 2025, 14(16), 1238; https://doi.org/10.3390/cells14161238 - 11 Aug 2025
Viewed by 394
Abstract
Tau aggregation and the subsequent formation of neurofibrillary tangles are hallmarks of Alzheimer’s disease (AD) and other dementias. While accumulation of tau aggregates is believed to contribute to cell death and neurodegeneration, tau aggregation and hyperphosphorylation are also correlated with cognitive impairment in [...] Read more.
Tau aggregation and the subsequent formation of neurofibrillary tangles are hallmarks of Alzheimer’s disease (AD) and other dementias. While accumulation of tau aggregates is believed to contribute to cell death and neurodegeneration, tau aggregation and hyperphosphorylation are also correlated with cognitive impairment in AD. To understand the role of tau in neurodegeneration, we used adeno-associated virus serotype 9 (AAV9) to express human wild-type 4-repeat, 0-N-terminus tau isoform (AAV-htau) in the Cornu ammonis area 1 (CA1) region of the dorsal hippocampus of adult 6-month-old Fischer 344 rats. AAV expressing green fluorescent protein (AAV-GFP) or uninjected rats were used as controls. To characterize early phenotypes, we investigated pathological changes at 3, 8, and 12 weeks post-injection of AAV-htau. Our results show that at 3 weeks post-injection, there was already robust expression of human tau in the CA1 region of animals injected with AAV-htau compared to those injected with AAV-GFP or the uninjected controls. At 12 weeks post-injection, area CA1 showed a statistically significant reduction in cell number and a thinner neuronal layer all throughout the anterior dorsal hippocampus, as well as redistribution to the somatodendritic areas of CA1. We also found hyperphosphorylation of tau at all three timepoints. In spite of this pathology, we did not find any hippocampal-dependent cognitive impairment in rats overexpressing human tau. These results provide evidence of AAV-htau as a progressive model of tauopathy pathology to study changes in phosphorylation status and neuronal cell death that might precede cognitive impairment. Full article
(This article belongs to the Special Issue Experimental Systems to Model Aging Processes)
Show Figures

Figure 1

15 pages, 17231 KiB  
Article
ArfGAP with Dual Pleckstrin Homology Domains 2 Promotes Hypertrophy of Cultured Neonatal Cardiomyocytes
by Jonathan Berthiaume, Audrey-Ann Dumont, Lauralyne Dumont, Marie-Frédérique Roy, Hugo Giguère and Mannix Auger-Messier
Int. J. Mol. Sci. 2025, 26(15), 7588; https://doi.org/10.3390/ijms26157588 - 6 Aug 2025
Viewed by 236
Abstract
Cardiomyocyte hypertrophy is regulated by several factors, including the ADP-ribosylation factor (Arf) family of small G proteins, among others. For instance, ArfGAP with dual pleckstrin homology domains 1 (Adap1) exerts an anti-hypertrophic effect in cultured cardiomyocytes. Its homologous protein, Adap2, is also expressed [...] Read more.
Cardiomyocyte hypertrophy is regulated by several factors, including the ADP-ribosylation factor (Arf) family of small G proteins, among others. For instance, ArfGAP with dual pleckstrin homology domains 1 (Adap1) exerts an anti-hypertrophic effect in cultured cardiomyocytes. Its homologous protein, Adap2, is also expressed in the heart but its role remains elusive. To elucidate its function, we investigated the effects of adenoviral-mediated overexpression of Adap2 in cultured neonatal rat ventricular myocytes under both basal and pro-hypertrophic conditions, employing a range of microscopy and biochemical techniques. Despite minimal detection in neonatal rat hearts, Adap2 was found to be well expressed in adult rat hearts, being predominantly localized at the membrane fraction. In contrast to Adap1, overexpression of Adap2 provokes the robust accumulation of β1-integrin at the cellular surface of cultured cardiomyocytes. Interestingly, overexpressed Adap2 relocalizes at the sarcolemma and increases the size of cardiomyocytes upon phenylephrine stimulation, despite attenuating Erk1/2 phosphorylation and Nppa gene expression. Under these same conditions, cardiomyocytes overexpressing Adap2 also express higher level of detyrosinated tubulin, a marker of hypertrophic response. These findings provide new insights into the pro-hypertrophic function of Adap2 in cardiomyocytes. Full article
Show Figures

Figure 1

24 pages, 2279 KiB  
Article
Dual Oxytocin Signals in Striatal Astrocytes
by Elisa Farsetti, Sarah Amato, Monica Averna, Diego Guidolin, Marco Pedrazzi, Guido Maura, Luigi Francesco Agnati, Chiara Cervetto and Manuela Marcoli
Biomolecules 2025, 15(8), 1122; https://doi.org/10.3390/biom15081122 - 4 Aug 2025
Viewed by 439
Abstract
The ability of the neuropeptide oxytocin to affect glial cell function is receiving increasing attention. We previously reported that oxytocin at a low nanomolar concentration could inhibit both astrocytic Ca2+ signals and glutamate release. Here, we investigate the ability of oxytocin receptors [...] Read more.
The ability of the neuropeptide oxytocin to affect glial cell function is receiving increasing attention. We previously reported that oxytocin at a low nanomolar concentration could inhibit both astrocytic Ca2+ signals and glutamate release. Here, we investigate the ability of oxytocin receptors to couple both inhibitory and stimulatory pathways in astrocytes, as already reported in neurons. We assessed the effects of oxytocin at concentrations ranging from low to high in the nanomolar range on intracellular Ca2+ signals and on the glutamate release in astrocyte processes freshly prepared from the striatum of adult rats. Our main findings are as follows: oxytocin could induce dual responses in astrocyte processes, namely the inhibition and facilitation of both Ca2+ signals and glutamate release; the inhibitory and the facilitatory response appeared dependent on activation of the Gi and the Gq pathway, respectively; both inhibitory and facilitatory responses were evoked at the same nanomolar oxytocin concentrations; and the biased agonists atosiban and carbetocin could duplicate oxytocin’s inhibitory and facilitatory response, respectively. In conclusion, due to the coupling of striatal astrocytic oxytocin receptors to different transduction pathways and the dual effects on Ca2+ signals and glutamate release, oxytocin could also play a crucial role in neuron–astrocyte bi-directional communication through a subtle regulation of striatal glutamatergic synapses. Therefore, astrocytic oxytocin receptors may offer pharmacological targets to regulate glutamatergic striatal transmission, which is potentially useful in neuropsychiatric disorders and in neurodegenerative diseases. Full article
(This article belongs to the Special Issue Neuron–Astrocyte Interactions in Neurological Function and Disease)
Show Figures

Figure 1

21 pages, 3334 KiB  
Article
Protective Efficacy of Lactobacillus plantarum Postbiotic beLP-K in a Dexamethasone-Induced Sarcopenia Model
by Juyeong Moon, Jin-Ho Lee, Eunwoo Jeong, Harang Park, Hye-Yeong Song, Jinsu Choi, Min-ah Kim, Kwon-Il Han, Doyong Kim, Han Sung Kim and Tack-Joong Kim
Int. J. Mol. Sci. 2025, 26(15), 7504; https://doi.org/10.3390/ijms26157504 - 3 Aug 2025
Viewed by 296
Abstract
Sarcopenia is characterized by a reduction in muscle function and skeletal muscle mass relative to that of healthy individuals. In older adults and those who are less resistant to sarcopenia, glucocorticoid secretion or accumulation during treatment exacerbates muscle protein degradation, potentially causing sarcopenia. [...] Read more.
Sarcopenia is characterized by a reduction in muscle function and skeletal muscle mass relative to that of healthy individuals. In older adults and those who are less resistant to sarcopenia, glucocorticoid secretion or accumulation during treatment exacerbates muscle protein degradation, potentially causing sarcopenia. This study assessed the preventive effects and mechanisms of heat-killed Lactobacillus plantarum postbiotic beLP-K (beLP-K) against dexamethasone (DEX)-induced sarcopenia in C2C12 myotubes and Sprague-Dawley rats. The administration of beLP-K did not induce cytotoxicity and mitigated cell damage caused by DEX. Furthermore, beLP-K significantly reduced the expression of forkhead box O3 α (FoxO3α), muscle atrophy f-box (MAFbx)/atrogin-1, and muscle RING-finger protein-1 (MuRF1), which are associated with muscle protein degradation. DEX induced weight loss in rats; however, in the beLP-K group, weight gain was observed. Micro-computed tomography analysis revealed that beLP-K increased muscle mass, correlating with weight and grip strength. beLP-K alleviated the DEX-induced reduction in grip strength and increased the mass of hind leg muscles. The correlation between beLP-K administration and increased muscle mass was associated with decreased expression levels of muscle degradation-related proteins such as MAFbx/atrogin-1 and MuRF1. Therefore, beLP-K may serve as a treatment for sarcopenia or as functional food material. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

18 pages, 5008 KiB  
Article
Enhanced Modulation of CaMKII in Mouse Hippocampus by an Antidepressant-like Dose of Melatonin/Ketamine Combination
by Armida Miranda-Riestra, Rosa Estrada-Reyes, Luis A. Constantino-Jonapa, Jesús Argueta, Julián Oikawa-Sala, Miguel A. Reséndiz-Gachús, Daniel Albarrán-Gaona and Gloria Benítez-King
Cells 2025, 14(15), 1187; https://doi.org/10.3390/cells14151187 - 1 Aug 2025
Viewed by 528
Abstract
Forty per cent of major depression patients are resistant to antidepressant medication. Thus, it is necessary to search for alternative treatments. Melatonin (N-acetyl-5-hydroxytryptamine) enhances neurogenesis and neuronal survival in the adult mouse hippocampal dentate gyrus. Additionally, melatonin stimulates the activity of [...] Read more.
Forty per cent of major depression patients are resistant to antidepressant medication. Thus, it is necessary to search for alternative treatments. Melatonin (N-acetyl-5-hydroxytryptamine) enhances neurogenesis and neuronal survival in the adult mouse hippocampal dentate gyrus. Additionally, melatonin stimulates the activity of Ca2+/Calmodulin-dependent Kinase II (CaMKII), promoting dendrite formation and neurogenic processes in human olfactory neuronal precursors and rat organotypic cultures. Similarly, ketamine, an N-methyl-D-aspartate receptor (NMDAR) antagonist, modulates CaMKII activity. Importantly, co-treatment of low doses of ketamine (10−7 M) in combination with melatonin (10−7 M) produces additive effects on neurogenic responses in olfactory neuronal precursors. Importantly, enhanced neurogenic responses are produced by conventional antidepressants like ISSRs. The goal of this study was to investigate whether hippocampal CaMKII participates in the signaling pathway elicited by combining doses of melatonin with ketamine acutely administered to mice, 30 min before being subjected to the forced swimming test. The results showed that melatonin, in conjunction with ketamine, significantly enhances CaMKII activation and changes its subcellular distribution in the dentate gyrus of the hippocampus. Remarkably, melatonin causes nuclear translocation of the active form of CaMKII. Luzindole, a non-selective MT1 and MT2 receptor antagonist, abolished these effects, suggesting that CaMKII is downstream of the melatonin receptor pathway that causes the antidepressant-like effects. These findings provide molecular insights into the combined effects of melatonin and ketamine on neuronal plasticity-related signaling pathways and pave the way for combating depression using combination therapy. Full article
(This article belongs to the Section Cells of the Nervous System)
Show Figures

Figure 1

Back to TopTop