Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (40)

Search Parameters:
Keywords = adsorption of fibrinogen

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 2395 KiB  
Article
Design and Characterization of Aromatic Copolyesters Containing Furan and Isophthalic Rings with Suitable Properties for Vascular Tissue Engineering
by Edoardo Bondi, Elisa Restivo, Michelina Soccio, Giulia Guidotti, Nora Bloise, Ilenia Motta, Massimo Gazzano, Marco Ruggeri, Lorenzo Fassina, Livia Visai, Gianandrea Pasquinelli and Nadia Lotti
Int. J. Mol. Sci. 2025, 26(13), 6470; https://doi.org/10.3390/ijms26136470 - 4 Jul 2025
Viewed by 435
Abstract
Cardiovascular diseases are responsible for a large number of severe disability cases and deaths worldwide. Strong research in this field has been extensively carried out, in particular for the associated complications, such as the occlusion of small-diameter (<6 mm) vessels. Accordingly, in the [...] Read more.
Cardiovascular diseases are responsible for a large number of severe disability cases and deaths worldwide. Strong research in this field has been extensively carried out, in particular for the associated complications, such as the occlusion of small-diameter (<6 mm) vessels. Accordingly, in the present research, two random copolyesters of poly(butylene 2,5-furandicarboxylate) (PBF) and poly(butylene isophthalate) (PBI), were successfully synthesized via two-step melt polycondensation and were thoroughly characterized from molecular, thermal, and mechanical perspectives. The copolymeric films displayed a peculiar thermal behavior, being easily processable in the form of films, although amorphous, with Tg close to room temperature. Their thermal stability was high in all cases, and from the mechanical point of view, the materials exhibited a high ultimate strength, together with values of elastic moduli tunable with the chemical composition. The long-term stability of these materials under physiological conditions was also demonstrated. Cytotoxicity was assessed using a direct contact assay with human umbilical vein endothelial cells (HUVECs). In addition, hemocompatibility was tested by evaluating the adhesion of blood components (such as the adsorption of human platelets and fibrinogen). As a result, a proper chemical design and, in turn, both the solid-state and functional properties, are pivotal in regulating cell behavior and opening new frontiers in the tissue engineering of soft tissues, including vascular tissues. Full article
Show Figures

Figure 1

15 pages, 2310 KiB  
Article
Fucoidan and Hyaluronic Acid Modified ZE21B Magnesium Alloy for Better Hemocompatibility and Vascular Cell Response
by Haoran Wang, Yunwei Gu, Qi Wang, Lingchuang Bai and Shaokang Guan
Coatings 2025, 15(6), 732; https://doi.org/10.3390/coatings15060732 - 19 Jun 2025
Viewed by 420
Abstract
Magnesium alloy stents exhibit significant potential in the treatment of cardiovascular and cerebrovascular diseases due to their remarkable mechanical support and biodegradability. However, bare magnesium alloy stents often degrade too quickly and exhibit inadequate biocompatibility, which severely restricts their clinical applicability. Herein, a [...] Read more.
Magnesium alloy stents exhibit significant potential in the treatment of cardiovascular and cerebrovascular diseases due to their remarkable mechanical support and biodegradability. However, bare magnesium alloy stents often degrade too quickly and exhibit inadequate biocompatibility, which severely restricts their clinical applicability. Herein, a composite coating consisting of an MgF2 conversion layer, a polydopamine (PDA) layer, fucoidan, and hyaluronic acid was prepared to enhance the corrosion resistance and biocompatibility of ZE21B alloy for a vascular stent application. The modified ZE21B alloy exhibited relatively high surface roughness, moderate wettability, and better corrosion resistance. Moreover, the modified ZE21B alloy with a low hemolysis rate and fibrinogen adsorption level confirmed improved hemocompatibility for medical requirements. Furthermore, the ZE21B alloy modified with fucoidan and hyaluronic acid enhanced the adhesion, proliferation, and NO release of endothelial cells (ECs). Simultaneously, it inhibits the adhesion and proliferation of smooth muscle cells (SMCs), promoting a competitive advantage for ECs over SMCs due to the synergistic effects of fucoidan and hyaluronic acid. The incorporation of fucoidan and hyaluronic acid markedly improved the corrosion resistance and biocompatibility of the ZE21B magnesium alloy. This development presents a straightforward and effective strategy for the advancement of biodegradable vascular stents. Full article
Show Figures

Figure 1

15 pages, 1922 KiB  
Article
Rare Earth Elements in Human Calcified Aortic Valves and Epicardial Adipose Tissue
by Barbara Poniedziałek, Bartłomiej Perek, Aleksandra Proch, Marcin Misterski, Anna Komosa, Przemysław Niedzielski, Andrzej Fal, Marek Jemielity and Piotr Rzymski
J. Clin. Med. 2025, 14(9), 2891; https://doi.org/10.3390/jcm14092891 - 22 Apr 2025
Viewed by 614
Abstract
Background/Objectives: Rare earth elements (REEs) are emerging environmental pollutants, with human exposure increasing due to recent industrial and technological activities. While most studies have focused on detecting REEs in human fluids, their presence in tissues remains understudied. Aortic valve degeneration is known to [...] Read more.
Background/Objectives: Rare earth elements (REEs) are emerging environmental pollutants, with human exposure increasing due to recent industrial and technological activities. While most studies have focused on detecting REEs in human fluids, their presence in tissues remains understudied. Aortic valve degeneration is known to facilitate the adsorption of various chemical elements; however, the occurrence of REEs in human valves has not yet been investigated. This exploratory study aimed to determine the presence of REEs in the aortic valves of patients with aortic stenosis undergoing surgical valve replacement. It also analyzed potential correlations between REE levels in the valves, epicardial adipose tissue, serum, and selected disease markers. Methods: Samples of aortic valve, epicardial adipose tissue, and serum were collected from 20 adult patients undergoing elective aortic valve replacement. The concentrations of 14 REEs in these samples were measured using inductively coupled plasma mass spectrometry. Biochemical and clinical parameters of the patients were also considered to explore potential associations with the determined REE levels. Results: Total REEs, heavy REEs, and light REEs in aortic valves, epicardial fat, and serum were not intercorrelated. Moreover, for any sample type, they were not significantly related to the patient’s demographics (age and sex), clinical characteristics (body mass index, heart failure severity, and systolic pressure gradients), kidney function (estimated glomerular filtration rate), and biochemical markers (creatinine, lipoprotein(a), total cholesterol, HDL, LDL, and fibrinogen). Smoking was the only factor influencing REE burden in studied patients, with active smokers revealing 61% higher serum REE concentrations and past smokers exhibiting 133% higher REE valvular deposition. Conclusions: The findings suggest that REE accumulation in aortic valve tissues occurs independently of systemic and clinical parameters but may be promoted by smoking, highlighting the need to investigate the underlying mechanisms of REE deposition. Given the small sample size and the cross-sectional, hypothesis-generating design, these observations should be interpreted with caution and treated as preliminary. Larger, longitudinal studies are needed to validate these results and explore potential causal relationships. Further research should also include the tissue originating from individuals without aortic stenosis for comparison. A deeper understanding of the pathways and health risks associated with REEs in cardiovascular tissues may offer valuable insights into their broader implications for human health. Full article
(This article belongs to the Section Cardiology)
Show Figures

Graphical abstract

14 pages, 3687 KiB  
Article
Construction of a Carbon Monoxide-Releasing Bioactive Hydrogel Coating on the Magnesium Alloy Surface for Better Corrosion Resistance, Anticoagulant Properties, and Endothelial Cell Growth
by Renwei Gao, Lingjie Meng and Changjiang Pan
Coatings 2024, 14(11), 1418; https://doi.org/10.3390/coatings14111418 - 8 Nov 2024
Viewed by 1116
Abstract
In this study, we first fabricated a crosslinked hydrogel coating by polymerizing methacryloyloxyethyl sulfonyl betaine and acrylamide (SBMA) on the magnesium (Mg) alloy surface employing ultraviolet (UV) polymerization. Bivalirudin and CO-releasing molecules (CORM-401) were further grafted onto the hydrogel coating surface to acquire [...] Read more.
In this study, we first fabricated a crosslinked hydrogel coating by polymerizing methacryloyloxyethyl sulfonyl betaine and acrylamide (SBMA) on the magnesium (Mg) alloy surface employing ultraviolet (UV) polymerization. Bivalirudin and CO-releasing molecules (CORM-401) were further grafted onto the hydrogel coating surface to acquire a multifunctional biocompatible coating capable of releasing CO to augment corrosion-resisting properties and biocompatibility. The findings verified that the bioactive hydrogel coating significantly increased the corrosion potential and reduced the corrosion current, thereby improving the anticorrosion performance. Meanwhile, owing to the excellent hydrophilicity, the antifouling performance of the hydrogel coating, and the excellent anticoagulant performance of bivalirudin, the hydrogel coating significantly reduced the fibrinogen adsorption, platelet adhesion and activation, and hemolysis occurrence, displaying excellent ability to inhibit blood clotting. Moreover, endothelial cell (EC) experimental results demonstrated that the hydrogel coating could significantly promote EC growth, displaying great potential to induce re-endothelialization after implantation. Specifically, in the presence of cysteine capable of catalyzing CO release, the anticoagulant performance and ability to promote EC growth were further improved significantly. Therefore, the study offers an effective strategy to prepare a hydrogel coating capable of releasing CO to improve the corrosion-resisting performance and biocompatibility of Mg alloys, which is anticipated to be applied in the surface modification of Mg alloy intravascular stents. Full article
(This article belongs to the Special Issue Advanced Alloy Degradation and Implants, 2nd Edition)
Show Figures

Figure 1

16 pages, 3171 KiB  
Article
Hemocompatibility of Albumin-Modified Magnetic Nanoparticles
by Indu Sharma, Mehdi Gaffari Sharaf, Aishwarya Pawar, Agatha Milley and Larry D. Unsworth
Int. J. Mol. Sci. 2024, 25(22), 11975; https://doi.org/10.3390/ijms252211975 - 7 Nov 2024
Cited by 3 | Viewed by 1397
Abstract
Kidney failure leads to the accumulation of metabolites in the blood compartment. This build-up of metabolites has been associated with increased mortality and morbidity in these patients; thus, these metabolites are commonly called uremic toxins. The retention of some uremic toxins in the [...] Read more.
Kidney failure leads to the accumulation of metabolites in the blood compartment. This build-up of metabolites has been associated with increased mortality and morbidity in these patients; thus, these metabolites are commonly called uremic toxins. The retention of some uremic toxins in the blood results from a strong interaction with serum albumin, preventing their clearance using standard hemodialysis techniques. Adsorbents are considered the next-generation technology for clearing uremic toxins from the blood, and iron oxide magnetic nanoparticles are a promising material due to a high surface area that is easily modified and the ability to remove them from blood with an external magnetic field. Plasma protein adsorption and clot formation kinetics were determined for unmodified and albumin-modified iron oxide magnetic nanoparticles. Albumin was selected because it can bind uremic toxins, and it is commonly used to passivate surfaces. Coatings were formed and characterized using transmission electron microscopy, thermogravimetric analysis, and zeta-potential analysis. Clotting kinetics, total protein assays, and immunoblots were used to analyze the effect surface modification has on protein adsorption events. Unmodified nanoparticles showed rapid clotting and more adsorbed protein compared to albumin-coated iron oxide nanoparticles. Immunoblots show that modified particles showed changes in albumin, protein C, Immunoglobulin G, transferrin, fibrinogen, α1-antitrypsin, vitronectin, plasminogen, prothrombin, and antithrombin levels compared to unmodified controls. The hemocompatibility of adsorbent materials is essential to their clinical application in clearing the blood of uremic toxins. Full article
(This article belongs to the Special Issue New Insight into Therapeutic Potential of Targeted Nanoparticles)
Show Figures

Graphical abstract

22 pages, 6808 KiB  
Article
Characterization and Hemocompatibility of α, β, and γ Cyclodextrin-Modified Magnetic Nano-Adsorbents
by Mehdi Ghaffari Sharaf, Shuhui Li, Elyn M. Rowe, Dana V. Devine and Larry D. Unsworth
Int. J. Mol. Sci. 2024, 25(19), 10710; https://doi.org/10.3390/ijms251910710 - 4 Oct 2024
Cited by 4 | Viewed by 1660
Abstract
Kidney dysfunction leads to the retention of metabolites within the blood that are not effectively cleared with conventional hemodialysis. Magnetic nanoparticle (MNP)-based absorbents have inherent properties that make them amenable to capturing toxins in the blood, notably a large surface area that can [...] Read more.
Kidney dysfunction leads to the retention of metabolites within the blood that are not effectively cleared with conventional hemodialysis. Magnetic nanoparticle (MNP)-based absorbents have inherent properties that make them amenable to capturing toxins in the blood, notably a large surface area that can be chemically modified to enhance toxin capture and the ability to be easily collected from the blood using an external magnetic field. Cyclodextrins (CDs) present a chemical structure that facilitates the binding of small molecules. However, the hemocompatibility of MNPs modified with films composed of different native types of CDs (α, β, or γ) has not yet been investigated, which is information crucial to the potential clinical application of MNPs to supplement hemodialysis. To this end, films of α-, β-, or γ-CDs were formed on MNPs and characterized. The impact of these films on the adsorbed protein structure, composition of key adsorbed proteins, and clotting kinetics were evaluated. It was found that modified MNPs did not significantly affect the secondary structure of some proteins (albumin, lysozyme, α-lactalbumin). The adsorbed proteome from platelet-poor human plasma was evaluated as a function of film properties. Compared to non-modified nanoparticles, CD-modified MNPs exhibited a significant decrease in the adsorbed protein per surface area of MNPs. The immunoblot results showed variations in the adsorption levels of C3, fibrinogen, antithrombin, Factor XI, and plasminogen across CD-modified MNPs. The hemocompatibility experiments showed that CD-modified MNPs are compatible with human whole blood, with no significant impact on platelet activation, hemolysis, or hemostasis. Full article
(This article belongs to the Special Issue Molecular Research on Nanotoxicology)
Show Figures

Figure 1

12 pages, 7474 KiB  
Article
Drug Release and Biocompatibility of a Paclitaxel-Coated Balloon Prepared Using the Electrostatic Spray Method
by Xi Yang, Hengquan Liu, Junxi He, Qiong Hu, Changjiang Pan, Dongfang Wang, Junfeng Li, Chunhai Liu, Ming Huang, Qian Xiang and Ren Liu
Coatings 2023, 13(10), 1674; https://doi.org/10.3390/coatings13101674 - 25 Sep 2023
Cited by 1 | Viewed by 1689
Abstract
Paclitaxel-coated balloons (PCBs) have become effective treatment options for vascular disease, but long-term drug release and biocompatibility are influenced by the drug patterns. In this work, paclitaxel coatings were prepared via electrostatic spraying, and the effect of D-tartaric acid additives was investigated. Microstructures [...] Read more.
Paclitaxel-coated balloons (PCBs) have become effective treatment options for vascular disease, but long-term drug release and biocompatibility are influenced by the drug patterns. In this work, paclitaxel coatings were prepared via electrostatic spraying, and the effect of D-tartaric acid additives was investigated. Microstructures and surface morphology were studied using Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM), respectively. Drug release was measured in vitro, and biocompatibility was evaluated using the haemolysis rate, platelet adhesion and activation, protein adsorption, cell adhesion, and cell proliferation. Our results showed that a uniform crystalline paclitaxel drug coating was obtained, and that the pattern and release of paclitaxel was influenced by the content of D-tartrate. The contact angle of all coatings was less than that of nylon 12. The drug coatings prepared at a mass ratio of paclitaxel to D-tartaric acid of 2:1 had the highest drug release in a brief period of time. The haemolysis rate of the drug coating was less than 5%. Compared with the control samples, platelet adhesion and activation were significantly reduced, albumin adsorption was increased, and the adsorption of fibrinogen was reduced on the surface of the drug coating. Endothelial cells demonstrated good proliferation after three days of cell culture. Therefore, PCBs with specific patterns have good biocompatibility and drug release, with potential clinical applications in vascular disease. Full article
Show Figures

Figure 1

24 pages, 7154 KiB  
Article
Heparin-Immobilized Polyethersulfone for Hemocompatibility Enhancement of Dialysis Membrane: In Situ Synchrotron Imaging, Experimental, and Ex Vivo Studies
by Denis Kalugin, Jumanah Bahig, Ahmed Shoker and Amira Abdelrasoul
Membranes 2023, 13(8), 718; https://doi.org/10.3390/membranes13080718 - 3 Aug 2023
Cited by 8 | Viewed by 2866
Abstract
The goal of the current study is to enhance the hemocompatibility of polyethersulfone (PES) membranes using heparin immobilization. Heparin was immobilized covalently and via electrostatic interaction with the positively charged PES surface (pseudo-zwitterionic (pZW) complex) to investigate the influence of each method on [...] Read more.
The goal of the current study is to enhance the hemocompatibility of polyethersulfone (PES) membranes using heparin immobilization. Heparin was immobilized covalently and via electrostatic interaction with the positively charged PES surface (pseudo-zwitterionic (pZW) complex) to investigate the influence of each method on the membrane hemocompatibility. In situ synchrotron radiation micro-computed tomography (SR-µCT) imaging, available at the Canadian Light Source (CLS), was used to critically assess the fibrinogen adsorption to the newly synthesized membranes qualitatively and quantitatively using an innovative synchrotron-based X-ray tomography technique. The surface roughness of the synthesized membranes was tested using atomic force microscopy (AFM) analysis. The membrane hemocompatibility was examined through the ex vivo clinical interaction of the membranes with patients’ blood to investigate the released inflammatory biomarkers (C5a, IL-1α, IL-1β, IL-6, vWF, and C5b-9). The presence and quantitative analysis of a stable hydration layer were assessed with DSC analysis. Surface modification resulted in reduced surface roughness of the heparin-PES membrane. Both types of heparin immobilization on the PES membrane surface resulted in a decrease in the absolute membrane surface charge from −60 mV (unmodified PES) to −13 mV for the pZW complex and −9.16 mV for the covalently attached heparin, respectively. The loss of human serum fibrinogen (FB) was investigated using UV analysis. The PES membrane modified with the heparin pseudo-ZW complex showed increased FB retention (90.5%), while the unmodified PES membrane and the heparin covalently attached PES membrane exhibited approximately the same level of FB retention (81.3% and 79.8%, respectively). A DSC analysis revealed an improvement in the content of the hydration layer (32% of non-freezable water) for the heparin-coated membranes compared to the unmodified PES membrane (2.84%). An SR-µCT analysis showed that the method of heparin immobilization significantly affects FB adsorption distribution across the membrane thickness. A quantitative analysis using SR-µCT showed that when heparin is attached covalently, FB tends to be deposited inside the membrane pores at the top (layer index 0–40) membrane regions, although its content peak distribution shifted to the membrane surface, whereas the unmodified PES membrane holds 90% of FB in the middle (layer index 40–60) of the membrane. The ex vivo hemocompatibility study indicates an improvement in reducing the von Willebrand factor (vWF) for the heparin pseudo-ZW PES membrane compared to the covalently attached heparin and the untreated PES. Full article
Show Figures

Figure 1

21 pages, 3365 KiB  
Article
Hemocompatibility of β-Cyclodextrin-Modified (Methacryloyloxy)ethyl Phosphorylcholine Coated Magnetic Nanoparticles
by Shuhui Li, Mehdi Ghaffari Sharaf, Elyn M. Rowe, Katherine Serrano, Dana V. Devine and Larry D. Unsworth
Biomolecules 2023, 13(8), 1165; https://doi.org/10.3390/biom13081165 - 25 Jul 2023
Cited by 11 | Viewed by 2228
Abstract
Adsorbing toxins from the blood to augment membrane-based hemodialysis is an active area of research. Films composed of β-cyclodextrin-co-(methacryloyloxy)ethyl phosphorylcholine (p(PMβCD-co-MPC)) with various monomer ratios were formed on magnetic nanoparticles and characterized. Surface chemistry effects on protein denaturation were evaluated and indicated that [...] Read more.
Adsorbing toxins from the blood to augment membrane-based hemodialysis is an active area of research. Films composed of β-cyclodextrin-co-(methacryloyloxy)ethyl phosphorylcholine (p(PMβCD-co-MPC)) with various monomer ratios were formed on magnetic nanoparticles and characterized. Surface chemistry effects on protein denaturation were evaluated and indicated that unmodified magnetic nanoparticles greatly perturbed the structure of proteins compared to coated particles. Plasma clotting assays were conducted to investigate the stability of plasma in the presence of particles, where a 2:2 monomer ratio yielded the best results for a given total surface area of particles. Total protein adsorption results revealed that modified surfaces exhibited reduced protein adsorption compared to bare particles, and pure MPC showed the lowest adsorption. Immunoblot results showed that fibrinogen, α1-antitrypsin, vitronectin, prekallikrein, antithrombin, albumin, and C3 correlated with film composition. Hemocompatibility testing with whole blood illustrated that the 1:3 ratio of CD to MPC had a negative impact on platelets, as evidenced by the increased activation, reduced response to an agonist, and reduced platelet count. Other formulations had statistically significant effects on platelet activation, but no formulation yielded apparent adverse effects on hemostasis. For the first time, p(PMβCD-co-MPC)-coated MNP were synthesized and their general hemocompatibility assessed. Full article
(This article belongs to the Special Issue Mechanisms and Kinetics of Interactions of Biomolecules at Interfaces)
Show Figures

Figure 1

14 pages, 3183 KiB  
Article
Heparin with Different Molecular Weight on Hemocompatibility and Adsorption of Activated Carbon
by Jincan Lei, Haiyan Wang, Qi Dang, Xiang Wang, Chungong Li, Jing Huang, Jingzhou Hou, Kejing Fang and Shixian Zhao
Coatings 2023, 13(7), 1248; https://doi.org/10.3390/coatings13071248 - 14 Jul 2023
Cited by 1 | Viewed by 1878
Abstract
Activated carbon (AC) is an effective adsorbent for creatinine removal in hemoperfusion. However, the hemocompatibility and adsorption capacity of AC was required to be improved further. Heparin has different anticoagulant mechanisms due to its different molecular weights. Thus, it was necessary to study [...] Read more.
Activated carbon (AC) is an effective adsorbent for creatinine removal in hemoperfusion. However, the hemocompatibility and adsorption capacity of AC was required to be improved further. Heparin has different anticoagulant mechanisms due to its different molecular weights. Thus, it was necessary to study the surface modification with unfractionated heparin (UFH) or low-molecular-weight heparin (LMWH) on improvement of hemocompatibility and adsorption. In this study, UFH and LMWH were, respectively, grafted on AC through polyethyleneimine as an intermediate layer. The modification of AC regarding morphology, mechanical strength, and pore structure was characterized by X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), texture analyzer (TA), and surface area analyzer. It was found that, compared with AC, the morphology and mechanical strength of AC-UFH and AC-LMWH could be well maintained, but the specific surface area was decreased due to the grafting of macromolecules. Furthermore, AC-UFH and AC-LMWH showed better hemocompatibility on protein adsorption, clotting time, and platelet activation compared with AC, in which AC-LMWH had lower fibrinogen adsorption and longer clotting time than AC-UFH. In addition, it was found that AC, AC-UFH, and AC-LMWH had no significant effect on blood cell composition. Finally, the adsorption capacity of adsorbents for creatinine was evaluated. Although there was no significant difference between AC-UFH and AC-LMWH, it was found that heparin could be interacted with creatinine to enhance the adsorption capacity when compared with polyethyleneimine-modified AC. This study deepened the understanding of anticoagulation of heparinized surface and provided a theoretical basis for adsorption in hemoperfusion. Full article
Show Figures

Figure 1

12 pages, 2595 KiB  
Article
Fabrication of Transparent PEGylated Antifouling Coatings via One-Step Pyrogallol Deposition
by Shang-Lin Yeh, Piyush Deval and Wei-Bor Tsai
Polymers 2023, 15(12), 2731; https://doi.org/10.3390/polym15122731 - 19 Jun 2023
Cited by 11 | Viewed by 2061
Abstract
Antifouling coatings are critical for many biomedical devices. A simple and universal technique used to anchor antifouling polymers is important in order to expand its applications. In this study, we introduced the pyrogallol (PG)-assisted immobilization of poly(ethylene glycol) (PEG) to deposit a thin [...] Read more.
Antifouling coatings are critical for many biomedical devices. A simple and universal technique used to anchor antifouling polymers is important in order to expand its applications. In this study, we introduced the pyrogallol (PG)-assisted immobilization of poly(ethylene glycol) (PEG) to deposit a thin antifouling layer on biomaterials. Briefly, biomaterials were soaked in a PG/PEG solution and PEG was immobilized onto the biomaterial surfaces via PG polymerization and deposition. The kinetics of PG/PEG deposition started with the deposition of PG on the substrates, followed by the addition of a PEG-rich adlayer. However, prolonged coating added a top-most PG-rich layer, which deteriorated the antifouling efficacy. By controlling the amounts of PG and PEG and the coating time, the PG/PEG coating was able to reduce more than 99% of the adhesion of L929 cells and the adsorption of fibrinogen. The ultrathin (tens of nanometers) and smooth PG/PEG coating was easily deposited onto a wide variety of biomaterials, and the deposition was robust enough to survive harsh sterilization conditions. Furthermore, the coating was highly transparent and allowed most of the UV and Vis light to pass through. The technique has great potential to be applied to biomedical devices that need a transparent antifouling coating, such as intraocular lenses and biosensors. Full article
(This article belongs to the Special Issue Surfaces and Interfaces of Polymer Composites)
Show Figures

Figure 1

16 pages, 6792 KiB  
Article
Improving Bioactive Characteristics of Small Diameter Polytetrafluoroethylene Stent Grafts by Electrospinning: A Comparative Hemocompatibility Study
by Meltem Avci-Adali, Gerd Grözinger, Vincent Cabane, Michiel Schreve and Hans Peter Wendel
Bioengineering 2023, 10(4), 411; https://doi.org/10.3390/bioengineering10040411 - 26 Mar 2023
Viewed by 2830
Abstract
Polytetrafluoroethylene (PTFE) is a commonly used biomaterial for the manufacturing of vascular grafts and several strategies, such as coatings, have been explored to improve the hemocompatibility of small-diameter prostheses. In this study, the hemocompatibility properties of novel stent grafts covered with electrospun PTFE [...] Read more.
Polytetrafluoroethylene (PTFE) is a commonly used biomaterial for the manufacturing of vascular grafts and several strategies, such as coatings, have been explored to improve the hemocompatibility of small-diameter prostheses. In this study, the hemocompatibility properties of novel stent grafts covered with electrospun PTFE (LimFlow Gen-1 and LimFlow Gen-2) were compared with uncoated and heparin-coated PTFE grafts (Gore Viabahn®) using fresh human blood in a Chandler closed-loop system. After 60 min of incubation, the blood samples were examined hematologically and activation of coagulation, platelets, and the complement system were analyzed. In addition, the adsorbed fibrinogen on the stent grafts was measured and the thrombogenicity was assessed by SEM. Significantly lower adsorption of fibrinogen was measured on the surface of heparin-coated Viabahn than on the surface of the uncoated Viabahn. Furthermore, LimFlow Gen-1 stent grafts showed lower fibrinogen adsorption than the uncoated Viabahn®, and the LimFlow Gen-2 stent grafts showed comparable fibrinogen adsorption as the heparin-coated Viabahn®. SEM analysis revealed no sign of thrombus formation on any of the stent surfaces. LimFlow Gen-2 stent grafts covered with electrospun PTFE exhibited bioactive characteristics and revealed improved hemocompatibility in terms of reduced adhesion of fibrinogen, activation of platelets, and coagulation (assessed by β-TG and TAT levels) similar to heparin-coated ePTFE prostheses. Thus, this study demonstrated improved hemocompatibility of electrospun PTFE. The next step is to conduct in vivo studies to confirm whether electrospinning-induced changes to the PTFE surface can reduce the risk of thrombus formation and provide clinical benefits. Full article
(This article belongs to the Special Issue Engineering Biodegradable-Implant Materials, 2nd Edition)
Show Figures

Figure 1

13 pages, 4372 KiB  
Article
Investigation on Human Serum Protein Depositions Inside Polyvinylidene Fluoride-Based Dialysis Membrane Layers Using Synchrotron Radiation Micro-Computed Tomography (SR-μCT)
by Amira Abdelrasoul, Ning Zhu and Ahmed Shoker
Membranes 2023, 13(1), 117; https://doi.org/10.3390/membranes13010117 - 16 Jan 2023
Cited by 5 | Viewed by 2553
Abstract
Hemodialysis (HD) membrane fouling with human serum proteins is a highly undesirable process that results in blood activations with further severe consequences for HD patients. Polyvinylidene fluoride (PVDF) membranes possess a great extent of protein adsorption due to hydrophobic interaction between the membrane [...] Read more.
Hemodialysis (HD) membrane fouling with human serum proteins is a highly undesirable process that results in blood activations with further severe consequences for HD patients. Polyvinylidene fluoride (PVDF) membranes possess a great extent of protein adsorption due to hydrophobic interaction between the membrane surface and non-polar regions of proteins. In this study, a PVDF membrane was modified with a zwitterionic (ZW) polymeric structure based on a poly (maleic anhydride-alt-1-decene), 3-(dimethylamino)-1-propylamine derivative and 1,3-propanesultone. Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), and zeta potential analyses were used to determine the membrane’s characteristics. Membrane fouling with human serum proteins (human serum albumin (HSA), fibrinogen (FB), and transferrin (TRF)) was investigated with synchrotron radiation micro-computed tomography (SR-μCT), which allowed us to trace the protein location layer by layer inside the membrane. Both membranes (PVDF and modified PVDF) were detected to possess the preferred FB adsorption due to the Vroman effect, resulting in an increase in FB content in the adsorbed protein compared to FB content in the protein mixture solution. Moreover, FB was shown to only replace HSA, and no significant role of TRF in the Vroman effect was detected; i.e., TRF content was nearly the same both in the adsorbed protein layer and in the protein mixture solution. Surface modification of the PVDF membrane resulted in increased FB adsorption from both the protein mixture and the FB single solution, which is supposed to be due to the presence of an uncompensated negative charge that is located at the COOH group in the ZW polymer. Full article
(This article belongs to the Special Issue Membranes and Membrane Processes in Medicine)
Show Figures

Figure 1

14 pages, 2473 KiB  
Article
Improved Hemocompatibility on Superhemophobic Micro–Nano-Structured Titanium Surfaces
by Vignesh K. Manivasagam and Ketul C. Popat
Bioengineering 2023, 10(1), 43; https://doi.org/10.3390/bioengineering10010043 - 29 Dec 2022
Cited by 13 | Viewed by 2636
Abstract
Blood-contacting titanium-based implants such as endovascular stents and heart valve casings are prone to blood clotting due to improper interactions at the surface level. In complement, the current clinical demand for cardiovascular implants is at a new apex. Hence, there is a crucial [...] Read more.
Blood-contacting titanium-based implants such as endovascular stents and heart valve casings are prone to blood clotting due to improper interactions at the surface level. In complement, the current clinical demand for cardiovascular implants is at a new apex. Hence, there is a crucial necessity to fabricate an implant with optimal mechanical properties and improved blood compatibility, while simultaneously interacting differentially with cells and other microbial agents. The present study intends to develop a superhydrophobic implant surface with the novel micro–nano topography, developed using a facile thermochemical process. The surface topography, apparent contact angle, and crystal structure are characterized on different surfaces. The hemo/blood compatibility on different surfaces is assessed by evaluating hemolysis, fibrinogen adsorption, cell adhesion and identification, thrombin generation, complement activation, and whole blood clotting kinetics. The results indicate that the super-hemo/hydrophobic micro–nano titanium surface improved hemocompatibility by significantly reducing fibrinogen adsorption, platelet adhesion, and leukocyte adhesion. Thus, the developed surface has high potential to be used as an implant. Further studies are directed towards analyzing the mechanisms causing the improved hemocompatibility of micro/nano surface features under dynamic in vitro and in vivo conditions. Full article
(This article belongs to the Special Issue Advances in Metallic Biomaterials)
Show Figures

Figure 1

21 pages, 6268 KiB  
Article
Comparative Investigation of the Corrosion Behavior and Biocompatibility of the Different Chemical Conversion Coatings on the Magnesium Alloy Surfaces
by Lingjie Meng, Xuhui Liu, Li Liu, Qingxiang Hong, Yuxin Cheng, Fei Gao, Jie Chen, Qiuyang Zhang and Changjiang Pan
Metals 2022, 12(10), 1644; https://doi.org/10.3390/met12101644 - 30 Sep 2022
Cited by 19 | Viewed by 2341
Abstract
Due to their good biodegradability and biocompatibility, magnesium alloys are widely favored as the potential candidate for the biodegradable cardiovascular stent. However, the rapid degradation and the limited biocompatibility in vivo remain the main bottlenecks that inhibit their clinical applications. The construction of [...] Read more.
Due to their good biodegradability and biocompatibility, magnesium alloys are widely favored as the potential candidate for the biodegradable cardiovascular stent. However, the rapid degradation and the limited biocompatibility in vivo remain the main bottlenecks that inhibit their clinical applications. The construction of the chemical conversion coating on the magnesium alloy surface represents one of the effective strategies to control the degradation rate and enhance the biocompatibility. In the present study, the different chemical conversion layers were prepared on the magnesium alloy surface by chemical conversion treatment, including sodium hydroxide (NaOH), hydrofluoric acid (HF), phosphoric acid (H3PO4) and phytic acid (C6H18O24P6) treatment, and the corrosion behaviors and biocompatibility of the chemical conversion layers were comparatively investigated in detail. The results showed that the different chemical treatments can produce the different conversion layers on the magnesium alloy surfaces with a variety of physicochemical characteristics, corrosion resistance and biocompatibility, and all treatments can enhance the corrosion resistance to varying degrees. The hydrophilicity and corrosion resistance of the sodium hydroxide-treated magnesium alloy were the best among all the materials. Although the hydrofluoric acid-treated magnesium alloy had produced a hydrophobic coating, the corrosion resistance still needed to be improved. Magnesium alloys treated by sodium hydroxide showed a selective promotion of albumin adsorption, while the other samples simultaneously promoted albumin and fibrinogen adsorption. For the blood compatibility, the hemolysis rates of all of the treated materials were reduced to below 5%. The samples treated by phytic acid had the smallest hemolysis rate, and the NaOH-treated magnesium alloy had the least amount of platelet adhesion and activation. An appropriate microenvironment for cell growth could be achieved by the chemical conversion treatment, according to the results of the endothelial cell adhesion and proliferation, and the NaOH-treated surface showed the best endothelial cell growth behaviors among all of the samples. In summary, the corrosion resistance and biocompatibility of the magnesium alloy were significantly improved by the sodium hydroxide treatment, and thus this treatment can be used as a pretreatment for the surface modification of the magnesium alloy in order to further enhance the biocompatibility when used as the cardiovascular implants. Full article
(This article belongs to the Special Issue Advances in Stability of Metallic Implants)
Show Figures

Figure 1

Back to TopTop