Improving Bioactive Characteristics of Small Diameter Polytetrafluoroethylene Stent Grafts by Electrospinning: A Comparative Hemocompatibility Study
Abstract
:1. Introduction
2. Methods
2.1. Experimental Setting
2.2. Stent Types
2.3. Blood Preparation
2.4. Detection of Activation Markers
2.4.1. Coagulation
2.4.2. Platelets
2.4.3. Hematology
2.4.4. Complement System
2.5. Analysis of Thrombogenicity
2.6. Statistics
3. Results
3.1. Analysis of Fibrinogen Adsorption
3.2. Analysis of Coagulation Activation
3.3. Analysis of Platelet Numbers and Activation
3.4. Hematological Analyses
3.5. Complement System
3.6. Thrombogenicity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jaganathan, S.K.; Supriyanto, E.; Murugesan, S.; Balaji, A.; Asokan, M.K. Biomaterials in Cardiovascular Research: Applications and Clinical Implications. BioMed Res. Int. 2014, 2014, 459465. [Google Scholar] [CrossRef] [PubMed]
- Lam, M.T.; Wu, J.C. Biomaterial applications in cardiovascular tissue repair and regeneration. Expert Rev. Cardiovasc. Ther. 2012, 10, 1039–1049. [Google Scholar] [CrossRef] [PubMed]
- Bian, Q.; Chen, J.; Weng, Y.; Li, S. Endothelialization strategy of implant materials surface: The newest research in recent 5 years. J. Appl. Biomater. Funct. Mater. 2022, 20, 22808000221105332. [Google Scholar] [CrossRef] [PubMed]
- Canjuga, D.; Hansen, C.; Halbrügge, F.; Hann, L.; Weiß, S.; Schlensak, C.; Wendel, H.-P.; Avci-Adali, M. Improving hemocompatibility of artificial lungs by click conjugation of glycoengineered endothelial cells onto blood-contacting surfaces. Biomater. Adv. 2022, 137, 212824. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, Y.; Zhang, C.; Cheng, M.; Huang, J.; Liu, Q.; Yuan, G.; Lin, K.; Yu, H. Challenges and strategies for in situ endothelialization and long-term lumen patency of vascular grafts. Bioact. Mater. 2020, 6, 1791–1809. [Google Scholar] [CrossRef]
- Melchiorri, A.J.; Hibino, N.; Fisher, J.P. Strategies and Techniques to Enhance the In Situ Endothelialization of Small-Diameter Biodegradable Polymeric Vascular Grafts. Tissue Eng. Part B Rev. 2013, 19, 292–307. [Google Scholar] [CrossRef] [PubMed]
- Vashaghian, M.; Ruiz-Zapata, A.; Kerkhof, M.H.; Doulabi, B.Z.; Werner, A.; Roovers, J.P.; Smit, T.H. Toward a new generation of pelvic floor implants with electrospun nanofibrous matrices: A feasibility study. Neurourol. Urodyn. 2016, 36, 565–573. [Google Scholar] [CrossRef]
- Lamichhane, S.; Anderson, J.A.; Remund, T.; Sun, H.; Larson, M.K.; Kelly, P.; Mani, G. Responses of endothelial cells, smooth muscle cells, and platelets dependent on the surface topography of polytetrafluoroethylene. J. Biomed. Mater. Res. Part A 2016, 104, 2291–2304. [Google Scholar] [CrossRef]
- Lamichhane, S.; Anderson, J.A.; Vierhout, T.; Remund, T.; Sun, H.; Kelly, P. Polytetrafluoroethylene topographies determine the adhesion, activation, and foreign body giant cell formation of macrophages. J. Biomed. Mater. Res. Part A 2017, 105, 2441–2450. [Google Scholar] [CrossRef]
- Mallis, P.; Kostakis, A.; Stavropoulos-Giokas, C.; Michalopoulos, E. Future Perspectives in Small-Diameter Vascular Graft Engineering. Bioengineering 2020, 7, 160. [Google Scholar] [CrossRef]
- Pashneh-Tala, S.; MacNeil, S.; Claeyssens, F. The tissue-engineered vascular graft—Past, present, and future. Tissue Eng. Part B Rev. 2016, 22, 68–100. [Google Scholar] [CrossRef]
- Zizhou, R.; Wang, X.; Houshyar, S. Review of Polymeric Biomimetic Small-Diameter Vascular Grafts to Tackle Intimal Hyperplasia. ACS Omega 2022, 7, 22125–22148. [Google Scholar] [CrossRef] [PubMed]
- Bui, H.T.; Friederich, A.R.; Li, E.; A Prawel, D.; James, S.P. Hyaluronan enhancement of expanded polytetrafluoroethylene cardiovascular grafts. J. Biomater. Appl. 2018, 33, 52–63. [Google Scholar] [CrossRef]
- Wise, S.G.; Liu, H.; Kondyurin, A.; Byrom, M.J.; Bannon, P.G.; Edwards, G.A.; Weiss, A.S.; Bao, S.; Bilek, M.M. Plasma Ion Activated Expanded Polytetrafluoroethylene Vascular Grafts with a Covalently Immobilized Recombinant Human Tropoelastin Coating Reducing Neointimal Hyperplasia. ACS Biomater. Sci. Eng. 2016, 2, 1286–1297. [Google Scholar] [CrossRef] [PubMed]
- Meinhart, J.G.; Schense, J.C.; Schima, H.; Gorlitzer, M.; Hubbell, J.A.; Deutsch, M.; Zilla, P. Enhanced Endothelial Cell Retention on Shear-Stressed Synthetic Vascular Grafts Precoated with RGD-Cross-Linked Fibrin. Tissue Eng. 2005, 11, 887–895. [Google Scholar] [CrossRef] [PubMed]
- Larsen, C.C.; Kligman, F.; Kottke-Marchant, K.; Marchant, R.E. The effect of RGD fluorosurfactant polymer modification of ePTFE on endothelial cell adhesion, growth, and function. Biomaterials 2006, 27, 4846–4855. [Google Scholar] [CrossRef] [PubMed]
- Walluscheck, K.; Steinhoff, G.; Kelm, S.; Haverich, A. Improved endothelial cell attachment on ePTFE vascular grafts pretreated with synthetic RGD-containing peptides. Eur. J. Vasc. Endovasc. Surg. 1996, 12, 321–330. [Google Scholar] [CrossRef]
- Schreve, M.A.; Lichtenberg, M.; Ünlü, Ç.; Branzan, D.; Schmidt, A.; Heuvel, D.A.F.V.D.; Blessing, E.; Brodmann, M.; Cabane, V.; Lin, W.T.Q.; et al. PROMISE international; a clinical post marketing trial investigating the percutaneous deep vein arterialization (LimFlow) in the treatment of no-option chronic limb ischemia patient. CVIR Endovasc. 2019, 2, 26. [Google Scholar] [CrossRef]
- A Mustapha, J.; A Saab, F.; Clair, D.; Schneider, P. Interim Results of the PROMISE I Trial to Investigate the LimFlow System of Percutaneous Deep Vein Arterialization for the Treatment of Critical Limb Ischemia. J. Am. Coll. Cardiol. 2019, 31, 57–63. [Google Scholar]
- Sandmann, R.; Köster, S. Topographic Cues Reveal Two Distinct Spreading Mechanisms in Blood Platelets. Sci. Rep. 2016, 6, 22357. [Google Scholar] [CrossRef]
- Ding, Y.; Yang, Z.; Bi, C.W.C.; Yang, M.; Xu, S.L.; Lu, X.; Huang, N.; Huang, P.; Leng, Y. Directing Vascular Cell Selectivity and Hemocompatibility on Patterned Platforms Featuring Variable Topographic Geometry and Size. ACS Appl. Mater. Interfaces 2014, 6, 12062–12070. [Google Scholar] [CrossRef] [PubMed]
- Chandler, A.B. In vitro thrombotic coagulation of the blood; a method for producing a thrombus. Lab. Investig. 1958, 7, 110–114. [Google Scholar] [PubMed]
- Sinn, S.; Scheuermann, T.; Deichelbohrer, S.; Ziemer, G.; Wendel, H.P. A novel in vitro model for preclinical testing of the hemocompatibility of intravascular stents according to ISO 10993-4. J. Mater. Sci. Mater. Med. 2011, 22, 1521–1528. [Google Scholar] [CrossRef] [PubMed]
- Biran, R.; Pond, D. Heparin coatings for improving blood compatibility of medical devices. Adv. Drug Deliv. Rev. 2017, 112, 12–23. [Google Scholar] [CrossRef]
- Wendel, H.P.; Ziemer, G. Coating-techniques to improve the hemocompatibility of artificial devices used for extracorporeal circulation. Eur. J. Cardio Thorac. Surg. 1999, 16, 342–350. [Google Scholar] [CrossRef]
- Gollub, S.; Ulin, A.W. Heparin-induced thrombocytopenia in man. J. Lab. Clin. Med. 1962, 59, 430–435. [Google Scholar]
- Natelson, E.A.; Lynch, E.C.; Alfrey, J.R.C.P.; Gross, J.B. Heparin-induced thrombocytopenia. An unexpected response to treatment of consumption coagulopathy. Ann. Intern. Med. 1969, 71, 1121–1125. [Google Scholar] [CrossRef]
- Patel, S.R.; Hughes, C.O.; Jones, K.G.; Holt, P.J.E.; Thompson, M.M.; Hinchliffe, R.J.; Karthikesalingam, A. A Systematic Review and Meta-analysis of Endovascular Popliteal Aneurysm Repair Using the Hemobahn/Viabahn Stent-Graft. J. Endovasc. Ther. 2015, 22, 330–337. [Google Scholar] [CrossRef]
- Zhang, L.; Bao, J.; Zhao, Z.; Lu, Q.; Zhou, J.; Jing, Z. Effectiveness of Viabahn in the treatment of superficial femoral artery occlusive disease: A systematic review and meta-analysis. J. Endovasc. Ther. 2015, 22, 495–505. [Google Scholar] [CrossRef]
- Choinski, K.N.; Stafford, N.J.; Rao, A.G.; George, J.M.; Krishnan, P.; Faries, P.L.; Tadros, R.O. The Feasibility and Applicability of Percutaneous Deep Vein Arterialization in Peripheral Artery Disease. Surg. Technol. Int. 2022, 40, 271–279. [Google Scholar]
- Clair, D.G.; Mustapha, J.A.; Shishehbor, M.H.; Schneider, P.A.; Henao, S.; Bernardo, N.N.; Deaton, D.H. PROMISE I: Early feasibility study of the LimFlow System for percutaneous deep vein arterialization in no-option chronic limb-threatening ischemia: 12-month results. J. Vasc. Surg. 2021, 74, 1626–1635. [Google Scholar] [CrossRef] [PubMed]
Series of Experiments | LimFlow Gen-1 | LimFlow Gen-2 | Viabahn® Uncoated | Viabahn® Coated | Baseline (Reference) | Negative Control |
---|---|---|---|---|---|---|
Series A (pilot) | 3 | 3 | 3 | 3 | 3 | |
Series B | 8 | 8 | 8 | 8 | 8 | |
Series C | 8 | 8 | 8 | 8 | 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Avci-Adali, M.; Grözinger, G.; Cabane, V.; Schreve, M.; Wendel, H.P. Improving Bioactive Characteristics of Small Diameter Polytetrafluoroethylene Stent Grafts by Electrospinning: A Comparative Hemocompatibility Study. Bioengineering 2023, 10, 411. https://doi.org/10.3390/bioengineering10040411
Avci-Adali M, Grözinger G, Cabane V, Schreve M, Wendel HP. Improving Bioactive Characteristics of Small Diameter Polytetrafluoroethylene Stent Grafts by Electrospinning: A Comparative Hemocompatibility Study. Bioengineering. 2023; 10(4):411. https://doi.org/10.3390/bioengineering10040411
Chicago/Turabian StyleAvci-Adali, Meltem, Gerd Grözinger, Vincent Cabane, Michiel Schreve, and Hans Peter Wendel. 2023. "Improving Bioactive Characteristics of Small Diameter Polytetrafluoroethylene Stent Grafts by Electrospinning: A Comparative Hemocompatibility Study" Bioengineering 10, no. 4: 411. https://doi.org/10.3390/bioengineering10040411
APA StyleAvci-Adali, M., Grözinger, G., Cabane, V., Schreve, M., & Wendel, H. P. (2023). Improving Bioactive Characteristics of Small Diameter Polytetrafluoroethylene Stent Grafts by Electrospinning: A Comparative Hemocompatibility Study. Bioengineering, 10(4), 411. https://doi.org/10.3390/bioengineering10040411