Improved Hemocompatibility on Superhemophobic Micro–Nano-Structured Titanium Surfaces
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication of Micro–Nanoporous Surfaces
2.2. Surface Characterization
2.3. Surface Preparation for Hemocompatibility Studies
2.4. Isolation of Platelet-Rich Plasma (PRP) from Human Blood
2.5. Fibrinogen Binding on Different Surfaces from PRP
2.6. Cell Adhesion on Different Surfaces
2.7. Identification of Platelets and WBCs on Different Surfaces
2.8. Platelet Activation on Different Surfaces
2.9. Hemolysis of Erythrocytes on Different Surfaces
2.10. Thrombin Generation on Different Surfaces
2.11. Complement Convertase on Different Surfaces
2.12. Whole Blood Clotting on Different Surfaces
2.13. Statistical Analysis
3. Results and Discussion
4. Conclusions
- (a)
- The treatment led to a novel micro–nano surface topography, and further coating with silane made the surface superhemophobic.
- (b)
- Hemolysis studies show that there was no significant hemolysis due to the surface modifications compared to the reference materials. The fibrinogen adhesion from PRP shows that the superhemophobic surface adhered significantly lower fibrinogen compared to the other surfaces. Studies have shown that reduced fibrinogen adhesion prevents platelet adhesion and activation.
- (c)
- The Ti and modified surfaces showed significantly lower thrombus generation kinetics compared to medical grade steel. The modified superhemophobic surface did not activate higher complement, thus preventing any inflammatory reactions. However, the micro–nano surface showed higher complement activation.
- (d)
- The superhemophobic surface significantly prevented platelet/WBC adhesion compared to other surfaces. However, the micro–nano surface had similar WBC adhesion and lower platelet adhesion compared to Ti. The planar Ti surface had significantly higher platelet adhesion, activation, and platelet/WBC complex formation. However, the micro–nano surface showed localized platelet adhesion and aggregate formation, but prevented platelet/WBC complex formation due to its surface topography. On the contrary, the superhemophobic surface proved to be the most hemocompatible surface as it significantly prevented platelet and WBC adhesion.
- (e)
- The whole blood clotting kinetics showed that the superhemophobic surface had significantly lower whole blood clotting after 45 min of incubation compared to the other surfaces. Thus, the micro–nano surface coated with silane is a promising candidate for blood-contacting implant application.
5. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yaffee, D.; Williams, M.J. Cardiac Surgery and the Future. Am. Coll. Cardiol. 2015. [Google Scholar]
- Woolf, S.; Schoomaker, H. Life Expectancy and Mortality Rates in the United States, 1959–2017. JAMA 2019, 322, 1996–2016. [Google Scholar] [CrossRef] [PubMed]
- Kaur, M.; Singh, K. Review on titanium and titanium based alloys as biomaterials for orthopaedic applications. Mater. Sci. Eng. C 2019, 102, 844–862. [Google Scholar] [CrossRef] [PubMed]
- Manivasagam, V.K.; Sabino, R.M.; Kantam, P.; Popat, K.C. Surface modification strategies to improve titanium hemocompatibility: A comprehensive review. Mater. Adv. 2021, 2, 5824–5842. [Google Scholar] [CrossRef]
- Huang, N.; Yang, P.; Leng, Y.; Chen, J.; Sun, H.; Wang, J.; Wang, G.; Ding, P.; Xi, T.; Leng, Y. Hemocompatibility of titanium oxide films. Biomaterials 2003, 24, 2177–2187. [Google Scholar] [CrossRef]
- Manivasagam, V.K.; Popat, K.C. In Vitro Investigation of Hemocompatibility of Hydrothermally Treated Titanium and Titanium Alloy Surfaces. ACS Omega 2020, 5, 8108–8120. [Google Scholar] [CrossRef]
- Chiang, H.-J.; Chou, H.-H.; Ou, K.-L.; Sugiatno, E.; Ruslin, M.; Waris, R.; Huang, C.-F.; Liu, C.-M.; Peng, P.-W. Evaluation of Surface Characteristics and Hemocompatibility on the Oxygen Plasma-Modified Biomedical Titanium. Metals 2018, 8, 513. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Zhou, Y.; Wei, F.; Xiao, Y. Blood clot formed on rough titanium surface induces early cell recruitment. Clin. Oral. Implants Res. 2016, 27, 1031–1038. [Google Scholar] [CrossRef]
- Weber, M.; Steinle, H.; Golombek, S.; Hann, L.; Schlensak, C.; Wendel, H.; Avci-Adali, M. Blood-Contacting Biomaterials: In Vitro Evaluation of the Hemocompatibility. Front. Bioeng. Biotechnol. 2018, 6, 99. [Google Scholar] [CrossRef] [Green Version]
- Bhatt, D.; Hulot, J.; Moliterno, D.; Harrington, R. Antiplatelet and anticoagulation therapy for acute coronary syndromes. Circ. Res. 2014, 114, 1929–1943. [Google Scholar] [CrossRef] [Green Version]
- Shah, Z.; Masoomi, R.; Tadros, P. Managing Antiplatelet Therapy and Anticoagulants in Patients with Coronary Artery Disease and Atrial Fibrillation. J. Atr. Fibrillation 2015, 8, 1318. [Google Scholar] [PubMed]
- Pirozzi, E.J.; Wills, B.K. Antiplatelet Drug Toxicity. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Chen, T.P.; Wang, T.; Hsieh, M.; Liu, J.; Liu, C.; Wang, K.; Laio, W. Universal artificial intelligence platform for collaborative management of cataracts. BMJ Open 2019, 103, 1553–1560. [Google Scholar]
- Park, S.; Jang, I. Factors Affecting Medication Adherence in Patients with Mechanical Heart Valves Taking Warfarin: The Role of Knowledge on Warfarin, Medication Belief, Depression, and Self-Efficacy. Int. J. Environ. Res. Public Health 2021, 18, 5214. [Google Scholar] [CrossRef] [PubMed]
- Lieber, B.; Stancampiano, A.; Wakhloo, A. Alteration of hemodynamics in aneurysm models by stenting: Influence of stent porosity. Ann. Biomed. Eng. 1997, 25, 460–469. [Google Scholar] [CrossRef]
- Grunkemeier, J.; Tsai, W.; McFarland, C.; Horbett, T. The effect of adsorbed fibrinogen, fibronectin, von Willebrand factor and vitronectin on the procoagulant state of adherent platelets. Biomaterials 2000, 21, 2243–2252. [Google Scholar] [CrossRef]
- Horbett, T.A. Fibrinogen adsorption to biomaterials. J. Biomed. Mater. Res. A 2018, 106, 2777. [Google Scholar] [CrossRef]
- Jaffer, I.H.; Fredenburgh, J.; Hirsh, J.; Weitz, J.J. Fibrinogen adsorption to biomaterials. Thromb. Haemost. 2015, 13, S72–S81. [Google Scholar] [CrossRef]
- Labarrere, C.; Dabiri, A.; Kassab, G. Thrombogenic and Inflammatory Reactions to Biomaterials in Medical Devices. Front. Bioeng. Biotechnol. 2020, 8, 123. [Google Scholar] [CrossRef] [Green Version]
- Hameed, P.; Manivasagam, V.; Sankar, M.; Popat, K.; Manivasagam, G. Nanomaterials and Their Biomedical Applications, Springer Series in Biomaterials Science and Engineering; Springer Science and Business Media Deutschland GmbH: Berlin/Heidelberg, Germany, 2021; pp. 107–130. [Google Scholar]
- Vishnu, J.; Manivasagam, V.; Gopal, V.; Garcia, C.B.; Hameed, P.; Manivasagam, G.; Webster, T. Hydrothermal treatment of etched titanium: A potential surface nano-modification technique for enhanced biocompatibility. Nanomedicine 2019, 20, 102016. [Google Scholar] [CrossRef]
- Manivasagam, V.; Popat, K. Hydrothermally treated titanium surfaces for enhanced osteogenic differentiation of adipose derived stem cells. Mater. Sci. Eng. C 2021, 2021, 112315. [Google Scholar] [CrossRef]
- Nastyshyn, S.; Stetsyshyn, Y.; Raczkowska, J.; Nastishin, Y.; Melnyk, Y.; Panchenko, Y.; Budkowski, A. Temperature-Responsive Polymer Brush Coatings for Advanced Biomedical Applications. Polymers 2022, 14, 4245. [Google Scholar] [CrossRef] [PubMed]
- Manivasagam, V.K.; Sankar, M.; Garcia, C.B.; Vishnu, J.; Chatterjee, K.; Suwas, S.; Manivasagam, G.; Webster, T.J. Surface-modified WE43 magnesium alloys for reduced degradation and superior biocompatibility. Vitr. Model. 2022, 1, 273–288. [Google Scholar] [CrossRef]
- Sabino, R.; Mondini, G.; Kipper, M.; Martins, A.; Popat, K. Tanfloc/Heparin Polyelectrolyte Multilayers Improve Osteogenic Differentiation of Adipose-Derived Stem Cells on Titania Nanotube Surfaces. Carbohydr. Polym. 2021, 251, 117079. [Google Scholar] [CrossRef] [PubMed]
- Sabino, R.; Kauk, K.; Madruga, L.; Kipper, M.; Martins, A.; Popat, K.J. Enhanced hemocompatibility and antibacterial activity on titania nanotubes with tanfloc/heparin polyelectrolyte multilayers. Biomed. Mater. Res. A 2020, 108, 992–1005. [Google Scholar] [CrossRef]
- Movafaghi, S.; Wang, W.; Bark, D.; Dasi, L.; Popat, K.; Kota, A. Hemocompatibility of super-repellent surfaces: Current and future. Mater Horiz. 2019, 6, 1596. [Google Scholar] [CrossRef]
- Wu, X.; Liew, Y.; Mai, C.; Then, Y. Potential of Superhydrophobic Surface for Blood-Contacting Medical Devices. Int. J. Mol. Sci. 2021, 22, 3341. [Google Scholar] [CrossRef]
- Ngo, B.; Grunlan, M. Protein Resistant Polymeric Biomaterials. ACS Macro Lett. 2017, 6, 992–1000. [Google Scholar] [CrossRef] [Green Version]
- Fang, J.; Zhang, J.; Du, J.; Pan, Y.; Shi, J.; Peng, Y.; Chen, W.; Yuan, L.; Ye, S.; Wagner, W.; et al. Orthogonally Functionalizable Polyurethane with Subsequent Modification with Heparin and Endothelium-Inducing Peptide Aiming for Vascular Reconstruction. ACS Appl. Mater. Interfaces 2016, 8, 14442–14452. [Google Scholar] [CrossRef]
- Chenab, K.K.; Sohrabi, B.; Rahmanzadeh, A. Superhydrophobicity: Advanced biological and biomedical applications. Biomater. Sci. 2019, 7, 3110–3137. [Google Scholar] [CrossRef]
- Jokinen, V.; Kankuri, E.; Hoshian, S.; Franssila, S.; Ras, R. Superhydrophobic Blood-Repellent Surfaces. Adv. Mater. 2018, 30, 1705104. [Google Scholar] [CrossRef] [Green Version]
- Montgomerie, Z.; Popat, K. Improved hemocompatibility and reduced bacterial adhesion on superhydrophobic titania nanoflower surfaces. Mater. Sci. Eng. C 2021, 119, 111503. [Google Scholar] [CrossRef] [PubMed]
- Neto, A.; Levkin, P.; Mano, J. Patterned superhydrophobic surfaces to process and characterize biomaterials and 3D cell culture. Mater. Horiz. 2018, 5, 379–393. [Google Scholar] [CrossRef]
- Shi, T.; Liang, J.; Li, X.; Zhang, C.; Yang, H. Improving the Corrosion Resistance of Aluminum Alloy by Creating a Superhydrophobic Surface Structure through a Two-Step Process of Etching Followed by Polymer Modification. Polymers 2022, 14, 4509. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Ngo, C.-V.; Singh, S.; Yang, J.; Xin, W.; Yu, Z.; Guo, C. Bioinspired Hierarchical Surfaces Fabricated by Femtosecond Laser and Hydrothermal Method for Water Harvesting. Langmuir 2019, 35, 3562–3567. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Chi, Z.; Cao, L.; Weng, Z.; Wang, L.; Li, L.; Saeed, S.; Lian, Z.; Wang, Z. Fabrication of biomimetic superhydrophobic and anti-icing Ti6Al4V alloy surfaces by direct laser interference lithography and hydrothermal treatment. Appl. Surf. Sci. 2020, 534, 147576. [Google Scholar] [CrossRef]
- Manivasagam, V.K.; Perumal, G.; Arora, H.S.; Popat, K.C. Enhanced antibacterial properties on superhydrophobic micro-nano structured titanium surface. Biomed. Mater. Res. A 2022, 110, 1314–1328. [Google Scholar] [CrossRef] [PubMed]
- ASTM F756-17; Standard Practice for Assessment of Hemolytic Properties of Materials. ASTM International: West Conshohocken, PA, USA, 2017.
- Sabino, R.; Kauk, K.; Movafaghi, S.; Kota, A.; Popat, K. Interaction of blood plasma proteins with superhemophobic titania nanotube surfaces. Nanomedicine 2019, 21, 102046. [Google Scholar] [CrossRef]
- Cui, H.; Sinko, P. The role of crystallinity on differential attachment/proliferation of osteoblasts and fibroblasts on poly (caprolactone-co-glycolide) polymeric surfaces. Front. Mater. Sci. 2012, 6, 47–59. [Google Scholar] [CrossRef]
- Shirolkar, M.; Phase, D.; Sathe, V.; Rodrguez-Carvajal, J.; Choudhary, R.; Kulkarni, S.J. Relation between crystallinity and chemical nature of surface on wettability: A study on pulsed laser deposited TiO2 thin films. Appl. Phys. 2011, 109, 123512. [Google Scholar] [CrossRef]
- JSheppard, I.; McClung, W.; Feuerstein, I.J. Adherent platelet morphology on adsorbed fibrinogen: Effects of protein incubation time and albumin addition. Biomed. Mater. Res. 1994, 28, 1175–1186. [Google Scholar] [CrossRef]
- Scopelliti, P.; Borgonovo, A.; Indrieri, M.; Giorgetti, L.; Bongiorno, G.; Carbone, R.; Podestà, A.; Milani, P. The Effect of Surface Nanometre-Scale Morphology on Protein Adsorption. PLoS ONE 2010, 5, e11862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; Casey, B.; Galanakis, D.; Marmorat, C.; Skoog, S.; Vorvolakos, K.; Simon, M.; Rafailovich, M. The influence of surface chemistry on adsorbed fibrinogen conformation, orientation, fiber formation and platelet adhesion. Acta Biomater. 2017, 54, 164–174. [Google Scholar] [CrossRef] [PubMed]
- Cerletti, C.; Tamburrelli, C.; Izzi, B.; Gianfagna, F.; de Gaetano, G. Platelet-leukocyte interactions in thrombosis. Thromb. Res. 2012, 129, 263–266. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Bauer, J.; Siedlecki, C. Proteins, platelets, and blood coagulation at biomaterial interfaces. Colloids Surf. B Biointerfaces 2014, 124, 49–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elstad, M.; McIntyre, T.; Prescott, S.; Zimmerman, G. The interaction of leukocytes with platelets in blood coagulation. Curr. Opin. Hematol. 1995, 2, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Damodaran, V.; Leszczak, V.; Wold, K.; Lantvit, S.; Popat, K.; Reynolds, M. Antithrombogenic properties of a nitric oxide-releasing dextran derivative: Evaluation of platelet activation and whole blood clotting kinetics. RSC Adv. 2013, 3, 24406–24414. [Google Scholar] [CrossRef] [PubMed]
- Franco, A.; Fernandes, E.; Rodrigues, M.; Rodrigues, F.; Gomes, M.; Leonor, I.; Kaplan, D.; Reis, R. Antimicrobial coating of spider silk to prevent bacterial attachment on silk surgical sutures. Acta Biomater 2019, 99, 236–246. [Google Scholar] [CrossRef]
- Nemani, K.; Moodie, K.; Brennick, J.; Su, A.; Gimi, B. In vitro and in vivo evaluation of SU-8 biocompatibility. Mater. Sci. Eng. C 2013, 33, 4453–4459. [Google Scholar] [CrossRef] [Green Version]
- Vogler, J.E.; Nadeau, J. Contact activation of the plasma coagulation cascade. III. Biophysical aspects of thrombin-binding anticoagulants. J. Biomed. Mater. Res. 1998, 40, 92–103. [Google Scholar] [CrossRef]
- Gorbet, M.; Sefton, M. Biomaterial-associated thrombosis: Roles of coagulation factors, complement, platelets and leukocytes. Biomater. Silver Jubil. Compend. 2004, 25, 5681–5703. [Google Scholar]
- Ferraz, N.; Ott, M.K.; Hong, J. Time sequence of blood activation by nanoporous alumina: Studies on platelets and complement system. Microsc. Res. Tech. 2010, 73, 1101–1109. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manivasagam, V.K.; Popat, K.C. Improved Hemocompatibility on Superhemophobic Micro–Nano-Structured Titanium Surfaces. Bioengineering 2023, 10, 43. https://doi.org/10.3390/bioengineering10010043
Manivasagam VK, Popat KC. Improved Hemocompatibility on Superhemophobic Micro–Nano-Structured Titanium Surfaces. Bioengineering. 2023; 10(1):43. https://doi.org/10.3390/bioengineering10010043
Chicago/Turabian StyleManivasagam, Vignesh K., and Ketul C. Popat. 2023. "Improved Hemocompatibility on Superhemophobic Micro–Nano-Structured Titanium Surfaces" Bioengineering 10, no. 1: 43. https://doi.org/10.3390/bioengineering10010043
APA StyleManivasagam, V. K., & Popat, K. C. (2023). Improved Hemocompatibility on Superhemophobic Micro–Nano-Structured Titanium Surfaces. Bioengineering, 10(1), 43. https://doi.org/10.3390/bioengineering10010043