Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (64)

Search Parameters:
Keywords = adhesive thermos-mechanical property

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3962 KiB  
Article
PLA/PBS Biocomposites for 3D FDM Manufacturing: Effect of Hemp Shive Content and Process Parameters on Printing Quality and Performances
by Emilia Garofalo, Luciano Di Maio and Loredana Incarnato
Polymers 2025, 17(17), 2280; https://doi.org/10.3390/polym17172280 (registering DOI) - 23 Aug 2025
Abstract
This study investigates the processability—via Fused Deposition Modeling (FDM) 3D printing—and mechanical performance of biocomposites based on polylactic acid (PLA), polybutylene succinate (PBS), and their 50/50 wt% blend, each reinforced with hemp shive at 3 and 5 wt%. Blending PLA with PBS represents [...] Read more.
This study investigates the processability—via Fused Deposition Modeling (FDM) 3D printing—and mechanical performance of biocomposites based on polylactic acid (PLA), polybutylene succinate (PBS), and their 50/50 wt% blend, each reinforced with hemp shive at 3 and 5 wt%. Blending PLA with PBS represents a straightforward and encouraging strategy to enhance both the printability and mechanical properties of the individual resins, expanding the range of their potential applications. The addition of hemp shive—a by-product of hemp processing—not only enhances the biodegradability of the composites but also improves their thermo-mechanical performance, as well as aligning with circular economy principles. The rheological characterization, performed on all the systems, evidenced that the PLA/PBS blend possesses viscoelastic properties well suited for FDM, enabling smooth extrusion through the nozzle, good shape stability after deposition, and effective interlayer adhesion. Moreover, the constrain effect of hemp shives within the polymer matrix reduced the extrudate swell, a key factor affecting the dimensional accuracy of the printed parts. Optimal processing conditions were identified at a nozzle temperature of 190 °C and a printing speed of 70 mm/s, providing a favorable compromise between print quality, final performances and production efficiency. From a mechanical perspective, the PLA/PBS blend exhibited an 8.6-fold increase in elongation at break compared to neat PLA, and its corresponding composite showed a ductility nearly three times higher than the PLA-based counterpart’s. In conclusion, the findings of this study provide new insights into the interplay between material formulation, rheological behavior and printing conditions, supporting the development of sustainable, hemp-reinforced biocomposites for additive manufacturing applications. Full article
Show Figures

Figure 1

52 pages, 10078 KiB  
Article
PLA, PBS, and PBAT Biocomposites—Part A: Matrix–Filler Interactions with Agro-Industrial Waste Fillers (Brewer’s Spent Grain, Orange Peel) and Their Influence on Thermal, Mechanical, and Water Sorption Properties
by Jules Bellon, Feriel Bacoup, Stéphane Marais and Richard Gattin
Materials 2025, 18(16), 3867; https://doi.org/10.3390/ma18163867 - 18 Aug 2025
Viewed by 209
Abstract
Plastic pollution, largely driven by packaging waste, calls for sustainable alternatives. This study investigates biodegradable thermoplastic biocomposites based on PLA, PBS, and PBAT, incorporating 10 wt.% of agro-industrial filler-brewers’ spent grain (BSG) and orange peel (OP) without compatibilization. The biocomposites were produced by [...] Read more.
Plastic pollution, largely driven by packaging waste, calls for sustainable alternatives. This study investigates biodegradable thermoplastic biocomposites based on PLA, PBS, and PBAT, incorporating 10 wt.% of agro-industrial filler-brewers’ spent grain (BSG) and orange peel (OP) without compatibilization. The biocomposites were produced by melt extrusion followed by thermo-compression. A full factorial design was implemented to assess matrix–filler interactions and compare biocomposites to pure polymer fragments. OP particles, smaller and rougher than BSG, exhibited a higher specific surface area, influencing composite morphology and behavior. The OP slightly plasticized PLA, possibly due to volatile release during processing, whereas BSG increased stiffness in PBS and PBAT. Both fillers reduced mechanical strength, especially in PLA, due to limited interfacial adhesion, and significantly decreased PLA’s thermal stability. The addition of fillers also increased water sorption and modified the sorption kinetics of the three main modes (Langmuir-type, Henry’s law sorption, and water molecule clustering), as well as the values of the half-sorption diffusion coefficients (D1 and D2), with notable differences between the OP and BSG linked to their structure and composition. These findings provide a better understanding of structure–property relationships in biodegradable composites and highlight their potential for sustainable packaging and other industrial applications. Full article
Show Figures

Figure 1

29 pages, 2673 KiB  
Article
Process Parameters Optimization and Mechanical Properties of Additively Manufactured Ankle–Foot Orthoses Based on Polypropylene
by Sahar Swesi, Mohamed Yousfi, Nicolas Tardif and Abder Banoune
Polymers 2025, 17(14), 1921; https://doi.org/10.3390/polym17141921 - 11 Jul 2025
Viewed by 533
Abstract
Nowadays, Fused Filament Fabrication (FFF) 3D printing offers promising opportunities for the customized manufacturing of ankle–foot orthoses (AFOs) targeted towards rehabilitation purposes. Polypropylene (PP) represents an ideal candidate in orthotic applications due to its light weight and superior mechanical properties, offering an excellent [...] Read more.
Nowadays, Fused Filament Fabrication (FFF) 3D printing offers promising opportunities for the customized manufacturing of ankle–foot orthoses (AFOs) targeted towards rehabilitation purposes. Polypropylene (PP) represents an ideal candidate in orthotic applications due to its light weight and superior mechanical properties, offering an excellent balance between flexibility, chemical resistance, biocompatibility, and long-term durability. However, Additive Manufacturing (AM) of AFOs based on PP remains a major challenge due to its limited bed adhesion and high shrinkage, especially for making large parts such as AFOs. The primary innovation of the present study lies in the optimization of FFF 3D printing parameters for the fabrication of functional, patient-specific orthoses using PP, a material still underutilized in the AM of medical devices. Firstly, a thorough thermomechanical characterization was conducted, allowing the implementation of a (thermo-)elastic material model for the used PP filament. Thereafter, a Taguchi design of experiments (DOE) was established to study the influence of several printing parameters (extrusion temperature, printing speed, layer thickness, infill density, infill pattern, and part orientation) on the mechanical properties of 3D-printed specimens. Three-point bending tests were conducted to evaluate the strength and stiffness of the samples, while additional tensile tests were performed on the 3D-printed orthoses using a home-made innovative device to validate the optimal configurations. The results showed that the maximum flexural modulus of 3D-printed specimens was achieved when the printing speed was around 50 mm/s. The most significant parameter for mechanical performance and reduction in printing time was shown to be infill density, contributing 73.2% to maximum stress and 75.2% to Interlaminar Shear Strength (ILSS). Finally, the applicability of the finite element method (FEM) to simulate the FFF process-induced deflections, part distortion (warpage), and residual stresses in 3D-printed orthoses was investigated using a numerical simulation tool (Digimat-AM®). The combination of Taguchi DOE with Digimat-AM for polypropylene AFOs highlighted that the 90° orientation appeared to be the most suitable configuration, as it minimizes deformation and von Mises stress, ensuring improved quality and robustness of the printed orthoses. The findings from this study contribute by providing a reliable method for printing PP parts with improved mechanical performance, thereby opening new opportunities for its use in medical-grade additive manufacturing. Full article
(This article belongs to the Special Issue Latest Progress in the Additive Manufacturing of Polymeric Materials)
Show Figures

Figure 1

16 pages, 3436 KiB  
Article
Synthesis and Characterization of Polymethylhydrosiloxane-Modified Phenol–Formaldehyde Resin
by Luong Nhu Hai, Nguyen Van Thao, Pham The Long, Nguyen Xuan Anh, Le Tran Tiep, Hoang Quoc Nam, Nguyen Minh Viet, Tran The Dinh, Le Duy Binh, Ta Kim Thanh Hien and Cong Tien Dung
Chemistry 2025, 7(4), 112; https://doi.org/10.3390/chemistry7040112 - 7 Jul 2025
Viewed by 644
Abstract
Resol phenol–formaldehyde (PF) resin was modified with 2.5 and 5.0 wt% polymethylhydrosiloxane (PMHS). This study characterizes the modified resin and its subsequently fabricated glass fiber (GF)-reinforced composites (30–60 wt% GF). Formation of an organic–inorganic hybrid network, via reaction between Si-H groups of PMHS [...] Read more.
Resol phenol–formaldehyde (PF) resin was modified with 2.5 and 5.0 wt% polymethylhydrosiloxane (PMHS). This study characterizes the modified resin and its subsequently fabricated glass fiber (GF)-reinforced composites (30–60 wt% GF). Formation of an organic–inorganic hybrid network, via reaction between Si-H groups of PMHS and hydroxyl (-OH) groups of the resol resin, was confirmed by FTIR and 1H NMR. DSC and TGA/DTG revealed enhanced thermal stability for PMHS-modified resin: the decomposition temperature of Resol–PMHS 5.0% increased to 483 °C (neat resin: 438 °C), and char yield at 800 °C rose to 57% (neat resin: 38%). The 60 wt% GF-reinforced Resol–PMHS 5.0% composite exhibited tensile, flexural, and impact strengths of 145 ± 7 MPa, 160 ± 7 MPa, and 71 ± 5 kJ/m2, respectively, superior to the unmodified resin composite (136 ± 6 MPa, 112 ± 6 MPa, and 51 ± 5 kJ/m2). SEM observations indicated improved fiber–matrix interfacial adhesion and reduced delamination. These results demonstrate that PMHS modification effectively enhances the thermo-mechanical properties of the PF resin and its composites, highlighting potential for industrial applications. Full article
(This article belongs to the Section Supramolecular Chemistry)
Show Figures

Graphical abstract

24 pages, 6078 KiB  
Article
Impact of Thermal Variations on the Fatigue and Fracture of Bi-Material Interfaces (Polyimide–EMC, Polyimide–SiO2, and Silicon–EMC) Found in Microchips
by Pedro F. C. Videira, Renato A. Ferreira, Payam Maleki, Alireza Akhavan-Safar, Ricardo J. C. Carbas, Eduardo A. S. Marques, Bala Karunamurthy and Lucas F. M. da Silva
Polymers 2025, 17(4), 520; https://doi.org/10.3390/polym17040520 - 17 Feb 2025
Cited by 1 | Viewed by 1077
Abstract
As the trend towards the densification of integrated circuit (IC) devices continues, the complexity of interfaces involving dissimilar materials and thermo-mechanical interactions has increased. Highly integrated systems in packages now comprise numerous thin layers made from various materials. The interfaces between these different [...] Read more.
As the trend towards the densification of integrated circuit (IC) devices continues, the complexity of interfaces involving dissimilar materials and thermo-mechanical interactions has increased. Highly integrated systems in packages now comprise numerous thin layers made from various materials. The interfaces between these different materials represent a vulnerable point in ICs due to imperfect adhesion and stress concentrations caused by mismatches in thermo-mechanical properties such as Young’s modulus, coefficients of thermal expansion (CTE), and hygro-swelling-induced expansion. This study investigates the impact of thermal variations on the fracture behavior of three bi-material interfaces used in semiconductor packaging: epoxy molding compound–silicon (EMC–Si), silicon oxide–polyimide (SiO2–PI), and PI–EMC. Using double cantilever beam (DCB) tests, we analyzed these interfaces under mode I loading at three temperatures: −20 °C, 23 °C, and 100 °C, under both quasi-static and cyclic loading conditions. This provided a comprehensive analysis of the thermal effects across all temperature ranges in microelectronics. The results show that temperature significantly alters the failure mechanism. For SiO2–PI, the weakest point shifts from silicon at low temperatures to the interface at higher temperatures due to thermal stress redistribution. Additionally, the fracture energy of the EMC–Si interface was found to be highly temperature-dependent, with values ranging from 0.136 N/mm at low temperatures to 0.38 N/mm at high temperatures. SiO2–PI’s fracture energy at high temperature was 42% less than that of EMC–Si. The PI–EMC interface exhibited nearly double the crack growth rate compared to EMC–Si. The findings of this study provide valuable insights into the fracture behavior of bi-material interfaces, offering practical applications for improving the reliability and design of semiconductor devices, especially in chip packaging. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

15 pages, 3552 KiB  
Article
Multifunctional 3D-Printed Thermoplastic Polyurethane (TPU)/Multiwalled Carbon Nanotube (MWCNT) Nanocomposites for Thermal Management Applications
by Daniele Rigotti, Andrea Dorigato and Alessandro Pegoretti
Appl. Sci. 2024, 14(20), 9614; https://doi.org/10.3390/app14209614 - 21 Oct 2024
Cited by 3 | Viewed by 2729
Abstract
In this work, multiwalled carbon nanotubes (MWCNTs) were melt-compounded into a novel thermal energy storage system consisting of a microencapsulated paraffin, with a melting temperature of 6 °C (M6D), dispersed within a flexible thermoplastic polyurethane (TPU) matrix. The resulting materials were then processed [...] Read more.
In this work, multiwalled carbon nanotubes (MWCNTs) were melt-compounded into a novel thermal energy storage system consisting of a microencapsulated paraffin, with a melting temperature of 6 °C (M6D), dispersed within a flexible thermoplastic polyurethane (TPU) matrix. The resulting materials were then processed via Fused Filament Fabrication (FFF), and their thermo-mechanical properties were comprehensively evaluated. After an optimization of the processing parameters, good adhesion between the polymeric layers was obtained. Field-Emission Scanning Electron Microscopy (FESEM) images of the 3D-printed samples highlighted a uniform distribution of the microcapsules within the polymer matrix, without an evident MWCNT agglomeration. The thermal energy storage/release capability provided by the paraffin microcapsules, evaluated through Differential Scanning Calorimetry (DSC), was slightly lowered by the FFF process but remained at an acceptable level (i.e., >80% with respect to the neat M6D capsules). The novelty of this work lies in the successful integration of MWCNTs and PCMs into a TPU matrix, followed by 3D printing via FFF technology. This approach combines the high thermal conductivity of MWCNTs with the thermal energy storage capabilities of PCMs, creating a multifunctional nanocomposite material with unique thermal management properties. Full article
(This article belongs to the Section Materials Science and Engineering)
Show Figures

Figure 1

13 pages, 2704 KiB  
Article
Synthesis and Characterization of Rebondable Polyurethane Adhesives Relying on Thermo-Activated Transcarbamoylation
by Daniel Bautista-Anguís, Lisbeth Reiner, Florian Röper, Sebastian Maar, Markus Wolfahrt, Archim Wolfberger and Sandra Schlögl
Polymers 2024, 16(19), 2799; https://doi.org/10.3390/polym16192799 - 3 Oct 2024
Cited by 1 | Viewed by 1592
Abstract
Dynamic polymer networks combine the noteworthy (thermo)mechanical features of thermosets with the processability of thermoplastics. They rely on externally triggered bond exchange reactions, which induce topological rearrangements and, at a sufficiently high rate, a macroscopic reflow of the polymer network. Due to this [...] Read more.
Dynamic polymer networks combine the noteworthy (thermo)mechanical features of thermosets with the processability of thermoplastics. They rely on externally triggered bond exchange reactions, which induce topological rearrangements and, at a sufficiently high rate, a macroscopic reflow of the polymer network. Due to this controlled change in viscosity, dynamic polymers are repairable, malleable, and reprocessable. Herein, several dynamic polyurethane networks were synthetized as model compounds, which were able to undergo thermo-activated transcarbamoylation for the use in rebondable adhesives. Ethylenediamine-N,N,N′,N′-tetra-2-propanol (EDTP) was applied as a transcarbamoylation catalyst, which participates in the curing reaction across its four -OH groups and thus, is covalently attached within the polyurethane network. Both bond exchange rate and (thermo)mechanical properties of the dynamic networks were readily adjusted by the crosslink density and availability of -OH groups. In a last step, the most promising model compound was optimized to prepare an adhesive formulation more suitable for a real case application. Single-lap shear tests were carried out to evaluate the bond strength of this final formulation in adhesively bonded carbon fiber reinforced polymers (CFRP). Exploiting the dynamic nature of the adhesive layer, the debonded CFRP test specimens were rebonded at elevated temperature. The results clearly show that thermally triggered rebonding was feasible by recovering up to 79% of the original bond strength. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Graphical abstract

28 pages, 10150 KiB  
Article
Optimizing Epoxy Molding Compound Processing: A Multi-Sensor Approach to Enhance Material Characterization and Process Reliability
by Julian Vogelwaid, Martin Bayer, Michael Walz, Felix Hampel, Larysa Kutuzova, Günter Lorenz, Andreas Kandelbauer and Timo Jacob
Polymers 2024, 16(11), 1540; https://doi.org/10.3390/polym16111540 - 30 May 2024
Viewed by 3349
Abstract
The in-line control of curing during the molding process significantly improves product quality and ensures the reliability of packaging materials with the required thermo-mechanical and adhesion properties. The choice of the morphological and thermo-mechanical properties of the molded material, and the accuracy of [...] Read more.
The in-line control of curing during the molding process significantly improves product quality and ensures the reliability of packaging materials with the required thermo-mechanical and adhesion properties. The choice of the morphological and thermo-mechanical properties of the molded material, and the accuracy of their determination through carefully selected thermo-analytical methods, play a crucial role in the qualitative prediction of trends in packaging product properties as process parameters are varied. This work aimed to verify the quality of the models and their validation using a highly filled molding resin with an identical chemical composition but 10 wt% difference in silica particles (SPs). Morphological and mechanical material properties were determined by dielectric analysis (DEA), differential scanning calorimetry (DSC), warpage analysis and dynamic mechanical analysis (DMA). The effects of temperature and injection speed on the morphological properties were analyzed through the design of experiments (DoE) and illustrated by response surface plots. A comprehensive approach to monitor the evolution of ionic viscosity (IV), residual enthalpy (dHrest), glass transition temperature (Tg), and storage modulus (E) as a function of the transfer-mold process parameters and post-mold-cure (PMC) conditions of the material was established. The reliability of Tg estimation was tested using two methods: warpage analysis and DMA. The noticeable deterioration in the quality of the analytical signal for highly filled materials at high cure rates is discussed. Controlling the temperature by increasing the injection speed leads to the formation of a polymer network with a lower Tg and an increased storage modulus, indicating a lower density and a more heterogeneous structure due to the high heating rate and shear heating effect. Full article
Show Figures

Graphical abstract

16 pages, 4686 KiB  
Article
Fully Bio-Based Polymer Composites: Preparation, Characterization, and LCD 3D Printing
by Giovanna Colucci, Francesca Sacchi, Federica Bondioli and Massimo Messori
Polymers 2024, 16(9), 1272; https://doi.org/10.3390/polym16091272 - 2 May 2024
Cited by 5 | Viewed by 2722
Abstract
The present work aimed to prepare novel bio-based composites by adding fillers coming from agro-wastes to an acrylate epoxidized soybean oil (AESO) resin, using liquid crystal display (LCD) 3D printing. Different photocurable formulations were prepared by varying the reactive diluents, iso-bornyl methacrylate (IBOMA) [...] Read more.
The present work aimed to prepare novel bio-based composites by adding fillers coming from agro-wastes to an acrylate epoxidized soybean oil (AESO) resin, using liquid crystal display (LCD) 3D printing. Different photocurable formulations were prepared by varying the reactive diluents, iso-bornyl methacrylate (IBOMA) and tetrahydrofurfuryl acrylate (THFA). Then, two fillers derived from different industrial wastes, corn (GTF) and wine (WPL-CF) by-products, were added to the AESO-based formulations to develop polymer composites with improved properties. The printability by LCD of the photocurable formulations was widely studied. Bio-based objects with different geometries were realized, showing printing accuracy, layer adhesion, and accurate details. The thermo-mechanical and mechanical properties of the 3D-printed composites were tested by TGA, DMA, and tensile tests. The results revealed that the agro-wastes’ addition led to a remarkable increase in the elastic modulus, tensile strength, and glass transition temperature in the glassy state for the systems containing IBOMA and for flexible structures in the rubbery region for systems containing THFA. AESO-based polymers demonstrated tunable properties, varying from rigid to flexible, in the presence of different diluents and biofillers. This finding paves the way for the use of this kind of composite in applications, such as biomedical for the realization of prostheses. Full article
(This article belongs to the Special Issue Latest Advances in Photopolymerization)
Show Figures

Figure 1

17 pages, 6821 KiB  
Article
Size Effects of Au/Ni-Coated Polymer Particles on the Electrical Performance of Anisotropic Conductive Adhesive Films under Flexible Mechanical Conditions
by Yexing Fang, Taiyu Wang, Yue Gu, Mingkun Yang, Hong Li, Sujun Shi, Xiuchen Zhao and Yongjun Huo
Materials 2024, 17(7), 1658; https://doi.org/10.3390/ma17071658 - 4 Apr 2024
Cited by 2 | Viewed by 1936
Abstract
In soft electronics, anisotropic conductive adhesive films (ACFs) are the trending interconnecting approach due to their substantial softness and superior bondability to flexible substrates. However, low bonding pressure (≤1 MPa) and fine-pitch interconnections of ACFs become challenging while being extended in advanced device [...] Read more.
In soft electronics, anisotropic conductive adhesive films (ACFs) are the trending interconnecting approach due to their substantial softness and superior bondability to flexible substrates. However, low bonding pressure (≤1 MPa) and fine-pitch interconnections of ACFs become challenging while being extended in advanced device developments such as wafer-level packaging and three-dimensional multi-layer integrated circuit board assembly. To overcome these difficulties, we studied two types of ACFs with distinct conductive filler sizes (ACF-1: ~20 μm and ACF-2: ~5 μm). We demonstrated a low-pressure thermo-compression bonding technique and investigated the size effect of conductive particles on ACF’s mechanical properties in a customized testing device, which consists of flexible printing circuits and Flex on Flex assemblies. A consistency of low interconnection resistance (<1 Ω) after mechanical stress (cycling bending test up to 600 cycles) verifies the assembly’s outstanding electrical reliability and mechanical stability and thus validates the great effectiveness of the ACF bonding technique. Additionally, in numerical studies using the finite element method, we developed a generic model to disclose the size effect of Au/Ni-coated polymer fillers in ACF on device reliability under mechanical stress. For the first time, we confirmed that ACFs with smaller filler particles are more prone to coating fracture, leading to deteriorated electrical interconnections, and are more likely to peel off from substrate electrode pads resulting in electrical faults. This study provides guides for ACF design and manufacturing and would facilitate the advancement of soft wearable electronic devices. Full article
(This article belongs to the Special Issue Advanced Electronic Packaging Technology: From Hard to Soft)
Show Figures

Graphical abstract

14 pages, 8202 KiB  
Article
Impact of Sterilization on the Adhesion Properties of a Polyamide 11 Coating on Textured Metal Substrates
by Célia Badji, Ahmed Allal, Jean-Charles Dupin and Frédéric Léonardi
Coatings 2024, 14(4), 424; https://doi.org/10.3390/coatings14040424 - 31 Mar 2024
Viewed by 1551
Abstract
Polyamide materials are widely used for medical device coating. However, despite the fragile area at the interface, these devices must conserve their physical and mechanical performance after the sterilization process. In this work, the impact of steam sterilization, widely used in the medical [...] Read more.
Polyamide materials are widely used for medical device coating. However, despite the fragile area at the interface, these devices must conserve their physical and mechanical performance after the sterilization process. In this work, the impact of steam sterilization, widely used in the medical sector, on the adhesion properties of biocompatible and biosourced polyamide-11-coated copper substrates was assessed. The adhesion strength, a quantitative indicator of the coating performance, was assessed thanks to a laboratory-made bench test. The surface of metal substrates was microstructured with laser engraving to enhance the coating adhesion. The Ra roughness value was varied to verify if the depth of valleys induced with the femtosecond laser could favor the interfacial anchoring. Scanning electron microscopy analyses highlighted the physical surface evolution of the polymer analyzed at the interface, across the various texturing parameter values, Ra. Fourier transform infrared spectroscopy was used to monitor the bands specific to polyamide thermo-oxidative degradation. Elemental composition deduced from X-ray photoelectron spectroscopy carried out on the coating after mechanical debonding clearly revealed that the chemical stability of the copper substrates was affected rather than the polyamide coating. Also, we discussed the impact of the chosen sterilization parameters (steam and pressure) on the formation of copper-based species detected with this technique. Full article
Show Figures

Graphical abstract

14 pages, 4535 KiB  
Article
Effect of Heat Treatment under Different Atmospheres on the Bonding Properties and Mechanism of Ceramiziable Heat-Resistant Adhesive
by Qingke Wang, Jiadong Tao, Huawei Shan, Tangyin Cui, Jie Ding and Jianghang Wang
Polymers 2024, 16(4), 557; https://doi.org/10.3390/polym16040557 - 18 Feb 2024
Viewed by 1872
Abstract
In this study, a heat-resistant adhesive was prepared using molybdenum-phenolic (Mo-PF) resin as the matrix and TiB2 particle as the ceramizable filler for bonding Al2O3 ceramic substrates. Firstly, Fourier transform infrared (FTIR) was used to characterize the chemical structure [...] Read more.
In this study, a heat-resistant adhesive was prepared using molybdenum-phenolic (Mo-PF) resin as the matrix and TiB2 particle as the ceramizable filler for bonding Al2O3 ceramic substrates. Firstly, Fourier transform infrared (FTIR) was used to characterize the chemical structure of the Mo-PF. Subsequently, thermo gravimetric analysis (TGA) and shear strength testing were employed to investigate the effects of heat treatment in different atmospheres on the thermal stability and residual bonding properties of the adhesive. To further explore the bonding mechanism of the adhesive after heat treatment in different atmospheres, scanning electron microscopy (SEM), compressive strength testing, and X-ray diffraction (XRD) were utilized to analyze the microstructure, mechanical strength, and composition evolution of the adhesive at different temperatures. The bonding strength of Al2O3 joints showed a trend of initially decreasing and then increasing after different temperature heat treatment in air, with the shear strength reaching a maximum value of 25.68 MPa after treatment at 1200 °C. And the bonding strength of Al2O3 joints decreased slowly with the increase of temperature in nitrogen. In air, the ceramicization reaction at a high temperature enabled the mechanical strength of the adhesive to rise despite the continuous pyrolysis of the resin. However, the TiB2 filler in nitrogen did not react, and the properties of the adhesive showed a decreasing tendency with the pyrolysis of the resin. Full article
Show Figures

Figure 1

16 pages, 8947 KiB  
Article
Performance of Particleboard Made of Agroforestry Residues Bonded with Thermosetting Adhesive Derived from Waste Styrofoam
by Tati Karliati, Muhammad Adly Rahandi Lubis, Rudi Dungani, Rijanti Rahaju Maulani, Anne Hadiyane, Alfi Rumidatul, Petar Antov, Viktor Savov and Seng Hua Lee
Polymers 2024, 16(4), 543; https://doi.org/10.3390/polym16040543 - 17 Feb 2024
Cited by 6 | Viewed by 2155
Abstract
This paper investigated the upcycling process of thermoplastic waste polystyrene (WPS) into thermosetting particleboard adhesive using two cross-linkers, namely methylene diphenyl diisocyanate (MDI) and maleic anhydride (MA). The WPS was dissolved in an organic co-solvent. The weight ratio of WPS/co-solvent was 1:9, and [...] Read more.
This paper investigated the upcycling process of thermoplastic waste polystyrene (WPS) into thermosetting particleboard adhesive using two cross-linkers, namely methylene diphenyl diisocyanate (MDI) and maleic anhydride (MA). The WPS was dissolved in an organic co-solvent. The weight ratio of WPS/co-solvent was 1:9, and 10% of cross-linkers based on the WPS solids content were added subsequently at 60 °C under continuous stirring for 30 min. The adhesive properties, cohesion strength, and thermo-mechanical properties of WPS-based adhesives were examined to investigate the change of thermoplastic WPS to thermosetting adhesives. The bonding strength of WPS-based adhesives was evaluated in particleboard made of sengon (Falcataria moluccana (Miq.) Barneby & J.W. Grimes) wood and rice straw particles at different weight ratios according to the Japanese Industrial Standard (JIS) A 5908:2003. Rheology and Dynamic Mechanical Analysis revealed that modification with MDI and MA resulted in thermosetting properties in WPS-based adhesives by increasing the viscosity at a temperature above 72.7 °C and reaching the maximum storage modulus above 90.8 °C. WPS modified with MDI had a lower activation energy (Ea) value (83.4 kJ/mole) compared to the WPS modified with MA (150.8 kJ/mole), indicating the cross-linking with MDI was much faster compared with MA. Particleboard fabricated from 100% sengon wood particles bonded with WPS modified with MDI fulfilled the minimum requirement of JIS A 5908:2003 for interior applications. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

17 pages, 13721 KiB  
Article
Preparation and Characterization of Multilayer NiTi Coatings by a Thermal Plasma Process
by Sneha Samal, Jakub Zeman, Stanislav Habr, Oliva Pacherová, Jaromír Kopeček and Petr Šittner
Materials 2024, 17(3), 694; https://doi.org/10.3390/ma17030694 - 1 Feb 2024
Cited by 2 | Viewed by 1298
Abstract
The deposition of multilayer coating of NiTi is carried out by a thermal plasma spraying process on a stainless steel substrate. The deposition of melted NiTi particles creates an adhesion layer on the substrate with the subsequent formation of multilayer coating with a [...] Read more.
The deposition of multilayer coating of NiTi is carried out by a thermal plasma spraying process on a stainless steel substrate. The deposition of melted NiTi particles creates an adhesion layer on the substrate with the subsequent formation of multilayer coating with a certain thickness. Six layers of coating are created to achieve a certain thickness in terms of the sprayed sample. This paper aims to investigate multilayer NiTi coatings created through a thermal plasma process. The key variable feed rate was considered, as well as its effect on the microstructure characteristics. The shape memory effect associated with the coating properties was analyzed in detail. The variable feed rate was considered one of the most important parameters in the thermal plasma spraying process due to its ability to control the quality and compactness of the coating structure. The coatings were characterized by examining their microstructure, thermal, chemical, and microhardness. The indent marks were made/realized along the cross-section surface for the analysis of crack propagation resistance and wear properties. The coating’s surface did not display segmentation crack lines. Nevertheless, the cross-sectional surfaces showed evidence of crack lines. There were eutectic zones of the interlamellar structure observed in the structure of the coating. The plasma-sprayed samples from thermo-mechanical analysis of the hysteresis curve provide strong confirmation of the shape memory effect. Full article
(This article belongs to the Special Issue Recent Advances and Emerging Challenges in Functional Coatings)
Show Figures

Figure 1

18 pages, 5490 KiB  
Article
UV-Crosslinked Poly(N-isopropylacrylamide) Interpenetrated into Chitosan Structure with Enhancement of Mechanical Properties Implemented as Anti-Fouling Materials
by Isala Dueramae, Fumihiko Tanaka, Naoki Shinyashiki, Shin Yagihara and Rio Kita
Gels 2024, 10(1), 20; https://doi.org/10.3390/gels10010020 - 25 Dec 2023
Cited by 3 | Viewed by 2827
Abstract
High-performance properties of interpenetration polymer network (IPN) hydrogels, based on physically crosslinked chitosan (CS) and chemically crosslinked poly(N-isopropylacrylamide) (PNiPAM), were successfully developed. The IPN of CS/PNiPAM is proposed to overcome the limited mechanical properties of the single CS network. In this [...] Read more.
High-performance properties of interpenetration polymer network (IPN) hydrogels, based on physically crosslinked chitosan (CS) and chemically crosslinked poly(N-isopropylacrylamide) (PNiPAM), were successfully developed. The IPN of CS/PNiPAM is proposed to overcome the limited mechanical properties of the single CS network. In this study, the viscoelastic behaviors of prepared materials in both solution and gel states were extensively examined, considering the UV exposure time and crosslinker concentration as key factors. The effect of these factors on gel formation, hydrogel structures, thermal stabilities of networks, and HeLa cell adhesion were studied sequentially. The sol–gel transition was effectively demonstrated through the scaling law, which agrees well with Winter and Chambon’s theory. By subjecting the CS hydrogel to the process operation in an ethanol solution, its properties can be significantly enhanced with increased crosslinker concentration, including the shear modulus, crosslinking degree, gel strength, and thermal stability in its swollen state. The IPN samples exhibit a smooth and dense surface with irregular pores, allowing for much water absorption. The HeLa cells were adhered to and killed using the CS surface cationic charges and then released through hydrolysis by utilizing the hydrophilic/hydrophobic switchable property or thermo-reversible gelation of the PNiPAM network. The results demonstrated that IPN is a highly attractive candidate for anti-fouling materials. Full article
(This article belongs to the Special Issue Recent Advances in Crosslinked Gels)
Show Figures

Graphical abstract

Back to TopTop