Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (70)

Search Parameters:
Keywords = adhesive damping

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 14595 KiB  
Article
Synchronous Improvement of Mechanical and Room-Temperature Damping Performance in Light-Weight Polyurethane Composites by a Simple Carbon-Coating Strategy
by Qitan Zheng, Zhongzheng Zhu, Junyi Yao, Qinyu Sun, Qunfu Fan, Hezhou Liu, Qiuxia Dong and Hua Li
Polymers 2025, 17(15), 2115; https://doi.org/10.3390/polym17152115 - 31 Jul 2025
Viewed by 279
Abstract
In order to address vibration and noise challenges in modern industry while satisfying the lightweighting requirements for aerospace and transportation applications, the development of polymer elastomers integrating both lightweight and high-damping properties holds substantial significance. This study developed polyurethane (PU) with optimized damping [...] Read more.
In order to address vibration and noise challenges in modern industry while satisfying the lightweighting requirements for aerospace and transportation applications, the development of polymer elastomers integrating both lightweight and high-damping properties holds substantial significance. This study developed polyurethane (PU) with optimized damping and mechanical properties at room temperature through monomer composition optimization. Hollow glass microspheres (HGMs) were introduced into the PU matrix to increase stiffness and reduce density, though this resulted in decreased tensile strength (Rm) and loss factor (tanδ). To further improve mechanical and damping properties, we applied a carbon coating to the surface of the HGMs to optimize the interface between the HGMs and the PU matrix, and systematically investigated the energy dissipation and load-bearing behavior of PU composites. The effect of enhanced interface damping of HGM@C/PU resulted in broadening of the effective damping temperature range (tanδ ≥ 0.3) and higher maximum loss factor (tanδmax) compared to HGM/PU at equivalent filler loading. The tensile and dynamic properties significantly improved due to optimized interfacial adhesion. In PU composites reinforced with 10 wt% HGM and HGM@C, a 46.8% improvement in Rm and 11.0% improvement in tanδmax occurred after carbon coating. According to acoustic testing, average transmission loss of HGM/PU and HGM@C/PU with the same filler content showed a difference of 0.3–0.5 dB in 500–6300 Hz, confirming that the hollow structure of the HGMs was preserved during carbon coating. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Graphical abstract

15 pages, 7566 KiB  
Article
Fatigue Properties of Methacrylic Adhesive Plexus MA300
by Paweł Maćkowiak
Materials 2025, 18(9), 2127; https://doi.org/10.3390/ma18092127 - 6 May 2025
Viewed by 358
Abstract
This study investigates the fatigue durability of Plexus MA300 methacrylic adhesive, which is employed in structural joints of metals, plastics, and composites. Cast adhesive specimens were subjected to cyclic tensile loads at a frequency of 5 Hz with a stress ratio R = [...] Read more.
This study investigates the fatigue durability of Plexus MA300 methacrylic adhesive, which is employed in structural joints of metals, plastics, and composites. Cast adhesive specimens were subjected to cyclic tensile loads at a frequency of 5 Hz with a stress ratio R = 0.1. Six load levels were tested. Hysteresis loops were recorded during testing and analyzed in detail. Significant differences in fatigue fracture characteristics were observed depending on load level. Specimens subjected to high loads exhibited a characteristic radial structure with a distinct crack initiation point, whereas specimens tested at lower loads showed more uniform, matte fracture surfaces. Hysteresis loop analysis revealed phenomena typical for polymers: creep and damping causing energy dissipation. Various fatigue approaches were compared: stress-based, strain-based, energy-based, and stiffness-based. The highest coefficient of determination (R²) was obtained for the model based on strain energy density, indicating its superior utility in predicting the fatigue life of the tested adhesive. The obtained results contribute to the understanding of the fatigue behavior of methacrylic adhesives and provide practical data for structural joint design involving this material class. Full article
Show Figures

Figure 1

17 pages, 4405 KiB  
Article
Performance Evaluation of Asphalt-Pavement Crack-Repair Materials
by Congying Liu, Hongchang Wang, Song Liu, Dagang Yang and Yue Xiong
Materials 2025, 18(7), 1611; https://doi.org/10.3390/ma18071611 - 2 Apr 2025
Cited by 1 | Viewed by 518
Abstract
Based on the requirements for asphalt pavement crack repair materials, five representative materials were selected for testing: type-A crack sealant, type-B crack sealant, 70# hot asphalt, SBS-modified asphalt, and ambient-temperature water-based crack filler. A series of material performance and pavement performance experiments were [...] Read more.
Based on the requirements for asphalt pavement crack repair materials, five representative materials were selected for testing: type-A crack sealant, type-B crack sealant, 70# hot asphalt, SBS-modified asphalt, and ambient-temperature water-based crack filler. A series of material performance and pavement performance experiments were conducted on these materials. Additionally, numerical models were developed based on actual asphalt pavement crack repair structural conditions. Under the ambient temperatures of 0 °C, 20 °C, and 50 °C, considering two types of loads, namely static load and dynamic load, the shear stress, tensile stress, and compressive stress of the crack-repair structure were analyzed in detail. The stress state of the repaired structure was specifically examined under the most unfavorable load conditions. These analyses were validated by comparing with laboratory-measured stress data, providing important references for the application of asphalt pavement repair materials. The conclusion of the research indicates that the B-type grouting adhesive, as a special material for crack repair, has obvious advantages in shear and tensile strength, and its overall performance is the best. It is suitable for expressways, first-class roads, and urban expressways. Asphalt materials for heating construction have obvious economic advantages compared with special materials and are suitable for low-grade asphalt pavement with relatively small pressure and small traffic volume on highways, branch roads, and secondary roads. Normal-temperature construction is suitable for temporary repair under adverse conditions such as cracks and dampness after rain. Full article
Show Figures

Figure 1

28 pages, 6106 KiB  
Article
A Vibration-Based Test Technique to Evaluate the High-Cycle Fatigue Life of Thermal Interface Layers Used in the Electronic Industry
by Alaa Fezai, Anuj Sharma, Wolfgang Müller-Hirsch and André Zimmermann
Appl. Mech. 2025, 6(2), 23; https://doi.org/10.3390/applmech6020023 - 28 Mar 2025
Viewed by 743
Abstract
A testing method is developed to evaluate the acceleration- and strain-based fatigue life of a thermal interface layer in the high-cycle fatigue regime. The methodology adopts vibration-based fatigue testing, where adhesively bonded beams are excited at their resonant frequency under variable amplitude loading [...] Read more.
A testing method is developed to evaluate the acceleration- and strain-based fatigue life of a thermal interface layer in the high-cycle fatigue regime. The methodology adopts vibration-based fatigue testing, where adhesively bonded beams are excited at their resonant frequency under variable amplitude loading using an electrodynamic shaker. Fatigue failure is monitored through shifts in modal frequency and modal damping. Key findings include the identification of a 4% frequency shift as the failure criterion, corresponding to macro-delamination. The thickness of the thermal interface material influences acceleration-based fatigue life, decreasing by a factor of 0.2 when reduced from 0.3 mm to 0.15 mm and increasing by 5.5 when increased to 0.5 mm. Surface quality has a significant impact on both acceleration-based and strain-based fatigue curves. Beams from chemically etched aluminum–magnesium alloy specimens exhibit a sevenfold increase in fatigue life compared to beams from untreated printed circuit boards. Strain-based fatigue life increases with temperature, with a 0.2 reduction at 40 °C and an eightfold increase at 100 °C relative to 23 °C. The first principal strain ε1,rms is validated as a reliable local damage parameter, effectively characterizing fatigue behavior across varying TIM thicknesses. Full article
(This article belongs to the Special Issue Thermal Mechanisms in Solids and Interfaces)
Show Figures

Figure 1

18 pages, 5086 KiB  
Article
Analyzing the Vibration Response of Adhesively Bonded Composite Cantilevers
by Jarosław Chełmecki, Paweł Szeptyński, Dorota Jasińska and Arkadiusz Kwiecień
Materials 2025, 18(1), 93; https://doi.org/10.3390/ma18010093 - 29 Dec 2024
Viewed by 734
Abstract
In this study, we investigated the vibration of adhesively bonded composite cantilevers consisting of two beech wood lamella and a bondline of flexible polyurethane. The beams had a constant total height, while the thickness of the adhesive layer varied. We analyzed both the [...] Read more.
In this study, we investigated the vibration of adhesively bonded composite cantilevers consisting of two beech wood lamella and a bondline of flexible polyurethane. The beams had a constant total height, while the thickness of the adhesive layer varied. We analyzed both the driven and free vibration of a single cantilever beam and a cantilever with an additional mass attached to its end. The eigenfrequencies were determined using Fourier analysis of a sweep load response, the response to an impact load excited using an impact hammer, and the response observed via the manual displacement of the beam’s tip. The system’s damping was estimated according to the recorded logarithmic decrement. Theoretical estimates of the fundamental natural frequency were obtained using the γ-method and employing a linear elastic theory of composite beams. A numerical modal analysis was carried out using the finite element method. Upon comparing the results of our experiments with the numerical estimates and theoretical predictions, a fair agreement was found. Full article
Show Figures

Figure 1

13 pages, 1948 KiB  
Article
Mechanical Behavior of Plasma-Treated Metal–Rubber Assemblies
by Lazhar Benyahia, Marisol Ji and Fabienne Poncin-Epaillard
Molecules 2024, 29(23), 5590; https://doi.org/10.3390/molecules29235590 - 26 Nov 2024
Viewed by 784
Abstract
Metal–elastomer assemblies, such as aluminum–NBR and stainless steel–FKM, widely used for sealing or damping functions in various fields, are currently prepared with highly toxic bonding agents. To substitute the use of these liquids, plasma technologies were applied. The chemical nature of the plasma [...] Read more.
Metal–elastomer assemblies, such as aluminum–NBR and stainless steel–FKM, widely used for sealing or damping functions in various fields, are currently prepared with highly toxic bonding agents. To substitute the use of these liquids, plasma technologies were applied. The chemical nature of the plasma polymerized adhesives is found to have no influence on the viscoelastic properties of the elastomer. Furthermore, cohesive assemblies were prepared with acetylene, acrylic acid or maleic anhydride as plasma polymerized layers. Their adhesive performances were evaluated thanks to a tack-like test. Their adhesion mechanisms, even if complex, are namely identified as the interdiffusion of elastomer chains within the plasma-based polymer film and the thermodynamic adhesion. Specifically, we propose that the adhesiveness of metal–rubber assemblies, correlated to the maximum stress at failure in the tack-like test, is proportional to an energy per unit volume. This new variable is determined as the ratio of the surface tension to the thinness of the plasma adhesive. Full article
(This article belongs to the Special Issue Exclusive Feature Papers in Physical Chemistry, 2nd Edition)
Show Figures

Graphical abstract

13 pages, 1246 KiB  
Systematic Review
Combined Radiotherapy and Hyperthermia: A Systematic Review of Immunological Synergies for Amplifying Radiation-Induced Abscopal Effects
by Loïc Van Dieren, Tom Quisenaerts, Mackenzie Licata, Arnaud Beddok, Alexandre G. Lellouch, Dirk Ysebaert, Vera Saldien, Marc Peeters and Ivana Gorbaslieva
Cancers 2024, 16(21), 3656; https://doi.org/10.3390/cancers16213656 - 30 Oct 2024
Cited by 3 | Viewed by 2396
Abstract
Introduction: The abscopal effect is a systemic immune response characterized by metastases regression at sites distant from the irradiated lesion. This systematic review aims to explore the immunological mechanisms of action underlying the abscopal effect and to investigate how hyperthermia (HT) can increase [...] Read more.
Introduction: The abscopal effect is a systemic immune response characterized by metastases regression at sites distant from the irradiated lesion. This systematic review aims to explore the immunological mechanisms of action underlying the abscopal effect and to investigate how hyperthermia (HT) can increase the chances of radiotherapy (RT) triggering systemic anti-tumor immune responses. Methods: This review is created in accordance with the PRISMA guidelines. Results and Conclusion: HT and RT have both complementary and synergistic immunological effects. Both methods trigger danger signal release, promoting cytokine and chemokine secretion, which increases T-cell infiltration and facilitates cell death. Both treatments upregulate extracellular tumor HSP70, which could amplify DAMP recognition by macrophages and DCs, leading to stronger tumor antigen presentation and CTL-mediated immune responses. Additionally, the combined increase in cell adhesion molecules (VCAM-1, ICAM-1, E-selectin, L-selectin) could enhance leukocyte adhesion to tumors, improving lymphocyte trafficking and boosting systemic anti-tumor effects. Lastly, HT causes vasodilation and improves blood flow, which might exacerbate those distant effects. We suggest the combination of local radiotherapy with fever-range whole-body hyperthermia to optimally enhance the chances of triggering the abscopal effect mediated by the immune system. Full article
(This article belongs to the Topic Anti-Tumor Immune Responses 2.0)
Show Figures

Figure 1

10 pages, 1916 KiB  
Article
Adhesion Strength Enhancement of Butyl Rubber and Aluminum Using Nanoscale Self-Assembled Monolayers of Various Silane Coupling Agents for Vibration Damping Plates
by So Rim Lee, Dang Xuan Nghia, Jin Young Oh and Tae Il Lee
Nanomaterials 2024, 14(18), 1480; https://doi.org/10.3390/nano14181480 - 11 Sep 2024
Cited by 1 | Viewed by 1827
Abstract
In this paper, we enhance the adhesion strength of butyl rubber-based vibrational damping plates using nanoscale self-assembled monolayers of various silane coupling agents. The silane coupling agents used to chemically modify the plate’s aluminum surface include 3-aminopropyltriethoxysilane (APTES), (3-glycidyloxypropyl) triethoxysilane (GPTES), 3-mercaptopropyltrimethoxysilane (MPTMS), [...] Read more.
In this paper, we enhance the adhesion strength of butyl rubber-based vibrational damping plates using nanoscale self-assembled monolayers of various silane coupling agents. The silane coupling agents used to chemically modify the plate’s aluminum surface include 3-aminopropyltriethoxysilane (APTES), (3-glycidyloxypropyl) triethoxysilane (GPTES), 3-mercaptopropyltrimethoxysilane (MPTMS), and 3-(triethoxysilyl)propyl isocyanate (ICPTES). The modified surfaces were analyzed using Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS), and the enhancement in adhesion strength between the rubber and aluminum was estimated through T-Peel tests. As a result, MPTMS showed the highest enhancement in adhesion strength, of approximately 220% compared to the untreated sample, while GPTES, ICPTES, and APTES resulted in adhesion strength enhancements of approximately 200%, 150%, and 130%, respectively. Full article
Show Figures

Figure 1

14 pages, 6327 KiB  
Article
Evaluation of Vibration Damping Enhancement in Laminated Aluminum Sheets for Automotive Application
by Jong-Hwa Hong, Hyeonil Park, Se-Jong Kim and Daeyong Kim
Materials 2024, 17(17), 4421; https://doi.org/10.3390/ma17174421 - 8 Sep 2024
Cited by 1 | Viewed by 1156
Abstract
In this research, the vibration damping characteristics of the laminated aluminum sheets (LAS) were evaluated in a sheet specimen and an automotive dash panel and compared with those of the monolithic aluminum sheet (MAS). The LAS was fabricated with two 5xxx series aluminum [...] Read more.
In this research, the vibration damping characteristics of the laminated aluminum sheets (LAS) were evaluated in a sheet specimen and an automotive dash panel and compared with those of the monolithic aluminum sheet (MAS). The LAS was fabricated with two 5xxx series aluminum alloy (AA) sheets (AA5052-O) with a thickness of 0.7 mm by inserting an acryl-based adhesive in between. The automotive dash panels were manufactured by multi-step stamping processes for the LAS and the MAS with a similar thickness. The shaker vibration test in a sheet specimen and the impact hammer test in an automotive dash panel were conducted to measure the frequency response function (FRF) of LAS, compared with those of MAS. The results show that the frequency response function made by the LAS has less noise and fluctuation than that of the MAS in a sheet specimen and an automotive dash panel. The damping ratios in a sheet specimen and an automotive dash panel made by the LAS have higher values than those of the MAS. This proves that the LAS has better vibration damping characteristics and a larger damping effect than the MAS in a sheet specimen and an automotive dash panel. Full article
Show Figures

Figure 1

15 pages, 2724 KiB  
Article
Fracture Analysis of Highly Flexible Adhesives: Cohesive Zone Modelling across a Wide Spectrum of Temperatures and Strain Rates
by Tomas Nunes, Maria J. P. Ribas, Alireza Akhavan-Safar, Ricardo J. C. Carbas, Eduardo A. S. Marques, Sabine Wenig and Lucas F. M. da Silva
Polymers 2024, 16(16), 2383; https://doi.org/10.3390/polym16162383 - 22 Aug 2024
Cited by 3 | Viewed by 1634
Abstract
This study focuses on the prediction of the fracture mechanics behaviour of a highly flexible adhesive (with a tensile elongation of 90%), since this type of adhesive is becoming widely used in automotive structures due to their high elongation at break and damping [...] Read more.
This study focuses on the prediction of the fracture mechanics behaviour of a highly flexible adhesive (with a tensile elongation of 90%), since this type of adhesive is becoming widely used in automotive structures due to their high elongation at break and damping capacity. Despite their extensive applications, the understanding of their fracture mechanics behaviour under varying loading rates and temperatures remains limited in the literature. In addition, current prediction models are also unable to accurately predict their behaviour due to the complex failure mechanism that such bonded joints have. This study aims to determine whether a simple triangular cohesive zone model (CZM), which predefines the crack path, can reproduce the load–displacement curves of adhesives under various temperatures and strain rates. To achieve this, a calibrated CZM is used, adapting the model for reference joints and then validating it with independent test results conducted in a wide range of loading and environmental conditions. The tests were performed at speeds between 0.2 and 6000 mm/min and at three different temperatures ranging from −30 °C to 60 °C. Mode I fracture toughness was measured using the DCB (double cantilever beam) specimens. Using a simple triangular CZM may not be optimal for predicting the mechanical response of highly flexible adhesives with complex failure mechanisms and multiple crack paths. However, by correctly adjusting the cohesive zone properties for a limited set of reference conditions, it is possible to accurately predict the mechanical response of these joints across various test speeds and temperatures, significantly reducing costs and effort. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

16 pages, 5979 KiB  
Article
Preparation and Characterization of Particleboard Made from Industrial-Type Wood Particles and Discarded Duck Feathers
by Nidal Del Valle Raydan, Bertrand Charrier, Grzegorz Kowaluk and Eduardo Robles
J. Compos. Sci. 2024, 8(7), 241; https://doi.org/10.3390/jcs8070241 - 25 Jun 2024
Cited by 2 | Viewed by 2386
Abstract
Global poultry waste production is substantial, with billions of poultry raised annually for meat and egg production, resulting in significant feather waste. Conventional poultry waste disposal methods are restricted due to environmental concerns. Meanwhile, wood-composite panel industries face raw material shortages, emphasizing the [...] Read more.
Global poultry waste production is substantial, with billions of poultry raised annually for meat and egg production, resulting in significant feather waste. Conventional poultry waste disposal methods are restricted due to environmental concerns. Meanwhile, wood-composite panel industries face raw material shortages, emphasizing the need for sustainable, renewable fiber sources. In this study, in the core layer of panels, wood particles were replaced with 5 wt% clean duck feathers without pretreatment to take advantage of feather attributes like hydrophobicity, thermal insulation, and sound damping as an alternative construction material. Three adhesives—urea-formaldehyde (UF), polymeric 4,4′-diphenylmethane diisocyanate (pMDI), and polyvinyl acetate (PVAc)—were examined for resin–feather compatibility. The control panels in this study were identical but wood was not replaced with feathers. The results revealed that wood–feather particleboard with pMDI and PVAc resins meets the requirements of the relevant standard for P2 boards (where applicable) concerning their modulus of rupture (MOR: 11 N·mm−2), modulus of elasticity (MOE: 1600 N·mm−2), internal bond (IB: 0.35 N·mm−2), and screw withdrawal resistance (SWR). However, those produced with UF resin did not meet the standards for IB and MOE. Furthermore, the physical properties showed similar water resistance and thickness swelling to control panels with pMDI. Notably, substituting 5 wt% wood with feathers improved thermal insulation by approximately 10% for UF and pMDI resins. Additionally, particleboard with feathers demonstrated improved sound absorption at high frequencies, ranging from 2500 to 500 Hz, particularly with pMDI resin, approaching Class B classification according to EN ISO 11654:1997. This study identifies the higher compatibility of pMDI over PVAc and UF adhesives for feather-based composite materials in construction applications. Full article
(This article belongs to the Special Issue From Waste to Advance Composite Materials)
Show Figures

Figure 1

23 pages, 4664 KiB  
Review
Progress in Theoretical Modelling of Macroscopic and Microscopic Dynamics of Bolted Joints in Complex Equipment
by Xiaohan Lu, Min Zhu, Shengao Wang, Shengnan Li, Zijian Xu and Yilong Liu
Lubricants 2024, 12(5), 182; https://doi.org/10.3390/lubricants12050182 - 17 May 2024
Cited by 2 | Viewed by 1348
Abstract
Bolt connection structure is a common form of connecting large and complex equipment. Its object contact surfaces under normal and tangential loads will appear in the form of slip and adhesion, which affects the service life of mechanical equipment. Bolted connection structures cause [...] Read more.
Bolt connection structure is a common form of connecting large and complex equipment. Its object contact surfaces under normal and tangential loads will appear in the form of slip and adhesion, which affects the service life of mechanical equipment. Bolted connection structures cause changes in stiffness and damping, which have great impacts on the dynamic characteristics. Experimental studies and numerical simulations have difficulty predicting the overall performance of bolts in a timely manner, hence cannot ensure the reliability and safety of complex equipment. In order to improve the overall performance of complex equipment, it is necessary to study the contact theory model of bolt connection structures. Based on the relationship between friction force and velocity in the classical friction model, the mathematical expressions of restoring force and tangential displacement in the kinetic theory model are deduced to predict the stiffness degradation of the bolted structure and to characterise the kinetic properties and laws of the bolted structure. From the perspective of theoretical calculation, it makes up for the situation in which it is difficult to measure the performance of bolts due to the existence of spanning scale and provides theoretical support for the reliability of connecting complex equipment. This paper summarises and analyses the contact theory model of bolt connection structures, ranging from macroscopic to microscopic; describes the static friction model, kinetic friction model, statistical summation contact model, fractal contact model; and analyses the influencing factors of the microscopic contact mechanism. The advantages and disadvantages of the kinetic theoretical models are described, the manifestation of friction and the relationship between tangential force–displacement are discussed, and the key research directions of the kinetic theoretical models of bolted structures in the future are elucidated. Full article
Show Figures

Figure 1

20 pages, 4527 KiB  
Article
Device for Measuring Contact Reaction Forces during Animal Adhesion Landing/Takeoff from Leaf-like Compliant Substrates
by Zhouyi Wang, Yiping Feng, Bingcheng Wang, Jiwei Yuan, Baowen Zhang, Yi Song, Xuan Wu, Lei Li, Weipeng Li and Zhendong Dai
Biomimetics 2024, 9(3), 141; https://doi.org/10.3390/biomimetics9030141 - 26 Feb 2024
Cited by 1 | Viewed by 1889
Abstract
A precise measurement of animal behavior and reaction forces from their surroundings can help elucidate the fundamental principle of animal locomotion, such as landing and takeoff. Compared with stiff substrates, compliant substrates, like leaves, readily yield to loads, presenting grand challenges in measuring [...] Read more.
A precise measurement of animal behavior and reaction forces from their surroundings can help elucidate the fundamental principle of animal locomotion, such as landing and takeoff. Compared with stiff substrates, compliant substrates, like leaves, readily yield to loads, presenting grand challenges in measuring the reaction forces on the substrates involving compliance. To gain insight into the kinematic mechanisms and structural–functional evolution associated with arboreal animal locomotion, this study introduces an innovative device that facilitates the quantification of the reaction forces on compliant substrates, like leaves. By utilizing the stiffness–damping characteristics of servomotors and the adjustable length of a cantilever structure, the substrate compliance of the device can be accurately controlled. The substrate was further connected to a force sensor and an acceleration sensor. With the cooperation of these sensors, the measured interaction force between the animal and the compliant substrate prevented the effects of inertial force coupling. The device was calibrated under preset conditions, and its force measurement accuracy was validated, with the error between the actual measured and theoretical values being no greater than 10%. Force curves were measured, and frictional adhesion coefficients were calculated from comparative experiments on the landing/takeoff of adherent animals (tree frogs and geckos) on this device. Analysis revealed that the adhesion force limits were significantly lower than previously reported values (0.2~0.4 times those estimated in previous research). This apparatus provides mechanical evidence for elucidating structural–functional relationships exhibited by animals during locomotion and can serve as an experimental platform for optimizing the locomotion of bioinspired robots on compliant substrates. Full article
(This article belongs to the Special Issue Biological Adhesives: From Biology to Biomimetics 2.0)
Show Figures

Figure 1

35 pages, 4714 KiB  
Review
Unveiling the Effect of Particle Incorporation in PEO Coatings on the Corrosion and Wear Performance of Magnesium Implants
by Yasir Q. Almajidi, Eyhab Ali, Madiha Fouad Jameel, Luma Hussain Saleh, Saurabh Aggarwal, Sajad Ali Zearah, Abbas Firras Alamula, Ali Alsaalamy, Fariborz Sharifianjazi and Masoud Soroush Bathaei
Lubricants 2023, 11(12), 519; https://doi.org/10.3390/lubricants11120519 - 8 Dec 2023
Cited by 11 | Viewed by 3419
Abstract
Magnesium has been a focal point of significant exploration in the biomedical engineering domain for many years due to its exceptional attributes, encompassing impressive specific strength, low density, excellent damping abilities, biodegradability, and the sought-after quality of biocompatibility. The primary drawback associated with [...] Read more.
Magnesium has been a focal point of significant exploration in the biomedical engineering domain for many years due to its exceptional attributes, encompassing impressive specific strength, low density, excellent damping abilities, biodegradability, and the sought-after quality of biocompatibility. The primary drawback associated with magnesium-based implants is their susceptibility to corrosion and wear in physiological environments, which represents a significant limitation. Research findings have established that plasma electrolytic oxidation (PEO) induces substantial modifications in the surface characteristics and corrosion behavior of magnesium and its alloy counterparts. By subjecting the surface to high voltages, a porous ceramic coating is formed, resulting in not only altered surface properties and corrosion resistance, but also enhanced wear resistance. However, a drawback of the PEO process is that excessive pore formation and porosity within the shell could potentially undermine the coating’s corrosion and wear resistances. Altering the electrolyte conditions by introducing micro- and nano-particles can serve as a valuable approach to decrease coating porosity and enhance their ultimate characteristics. This paper evaluates the particle adhesion, composition, corrosion, and wear performances of particle-incorporated coatings applied to magnesium alloys through the PEO method. Full article
(This article belongs to the Special Issue Plasma Surface Treatments for Wear and Corrosion Protection)
Show Figures

Figure 1

17 pages, 10130 KiB  
Article
Temperature and Wear Analysis of Adhesively Bonded and Soldered Cutting Tools for Woodcutting
by Sascha Stribick and Rebecca Pahmeyer
J. Manuf. Mater. Process. 2023, 7(6), 223; https://doi.org/10.3390/jmmp7060223 - 6 Dec 2023
Viewed by 2001
Abstract
Cutting tools undergo constant development to meet the demands of higher cutting speeds, difficult-to-cut materials and ecological considerations. One way to improve cutting tools involves transitioning from soldering to adhesive bonding in the manufacturing process. However, there is limited research comparing adhesively bonded [...] Read more.
Cutting tools undergo constant development to meet the demands of higher cutting speeds, difficult-to-cut materials and ecological considerations. One way to improve cutting tools involves transitioning from soldering to adhesive bonding in the manufacturing process. However, there is limited research comparing adhesively bonded tools with soldered tools in woodcutting applications. This paper presents a comparison between adhesively bonded and soldered tools in the cutting of medium-density fiberboards over a cutting distance of 1000 m. The results indicate that adhesively bonded tools are well-suited for machining medium-density fiberboards. Additionally, the cutting-edge radii exhibit a slower increase and the tool temperatures are higher compared to soldered tools. Future research could optimize the damping effect through the precise design of the bonding area. Additionally, investigating a cooling concept for the machining process could help minimize ageing effects. Full article
(This article belongs to the Special Issue Advances in Metal Cutting and Cutting Tools)
Show Figures

Figure 1

Back to TopTop