Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (32)

Search Parameters:
Keywords = adatom diffusion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1871 KB  
Article
Low-Temperature RF Magnetron Sputtering of TiW Thin Films: Effects of the Bulk Plasma Characteristics on Film Growth
by Chiyun Bang, Chang Yeong Ji and Ju-Hong Cha
Appl. Sci. 2025, 15(22), 12300; https://doi.org/10.3390/app152212300 - 19 Nov 2025
Viewed by 798
Abstract
TiW thin films with superior surface properties were deposited at room temperature using RF magnetron sputtering under low-temperature process conditions. The correlation between bulk plasma characteristics and thin-film properties was investigated as a function of applied RF power (200–600 W) and process pressure [...] Read more.
TiW thin films with superior surface properties were deposited at room temperature using RF magnetron sputtering under low-temperature process conditions. The correlation between bulk plasma characteristics and thin-film properties was investigated as a function of applied RF power (200–600 W) and process pressure (1–10 mTorr). Plasma potential and ion density were measured using a Langmuir probe, while deposition rate, surface roughness, sheet resistance, and crystallinity were evaluated. Increasing the applied RF power simultaneously increased plasma potential and ion density, enhancing ion bombardment energy at both the target and substrate, which improved sputtering efficiency and deposition rate. Under low-temperature deposition, thermal stress induced by differences in thermal expansion between the film and substrate was minimal. However, limited surface diffusion of adatoms caused incomplete coalescence of nucleation islands, adversely affecting film crystallinity. Refractory metals such as tungsten exhibit strong dependence of residual stress and microstructure on deposition conditions, highlighting the importance of plasma and process parameters on TiW film properties. When RF power was increased, the enhancement in deposition rate outweighed the effect of increased ion energy, leading to tensile stress from void formation dominating over compressive stress induced by high-energy ions. This also contributed to increased grain size and reduced sheet resistance. In contrast, variations in process pressure had minor effects on plasma characteristics, resulting in limited changes in the deposited film properties. Full article
(This article belongs to the Special Issue Plasma Applications in Material Processing)
Show Figures

Figure 1

14 pages, 1321 KB  
Article
Theoretical Model for Ostwald Ripening of Nanoparticles with Size-Linear Capture Coefficients
by Vladimir G. Dubrovskii and Egor D. Leshchenko
Nanomaterials 2025, 15(22), 1719; https://doi.org/10.3390/nano15221719 - 13 Nov 2025
Cited by 1 | Viewed by 851
Abstract
The Ostwald ripening process in 3D and 2D systems has been studied in great detail over decades. In the application to surface nanoislands and nanodroplets, it is usually assumed that the capture coefficients of adatoms by supercritical nanoparticles of size s scale as [...] Read more.
The Ostwald ripening process in 3D and 2D systems has been studied in great detail over decades. In the application to surface nanoislands and nanodroplets, it is usually assumed that the capture coefficients of adatoms by supercritical nanoparticles of size s scale as sα, where the growth index α is smaller than unity. Here, we study theoretically the Ostwald ripening of 3D and 2D nanoparticles whose capture coefficients scale linearly with s. This case includes submonolayer surface islands that compete for the flux of highly diffusive adatoms upon termination of the material influx. We obtain analytical solutions for the size distributions using the Lifshitz–Slezov scaled variables. The distributions over size s and radius R are monotonically decreasing, and satisfy the normalization condition for different values of the Lifshitz–Slezov constant c. The obtained size distributions satisfy the Family–Vicsek scaling hypothesis, although the material influx is switched off. The model is validated by fitting the monotonically decreasing size distributions of Au nanoparticles that serve as catalysts for the vapor–liquid–solid growth of III-V nanowires on silicon substrates. Full article
(This article belongs to the Section Theory and Simulation of Nanostructures)
Show Figures

Figure 1

17 pages, 3861 KB  
Article
Substrate Temperature-Induced Crystalline Phase Evolution and Surface Morphology in Zirconium Thin Films Deposited by Pulsed Laser Ablation
by Berdimyrat Annamuradov, Zikrulloh Khuzhakulov, Mikhail Khenner, Jasminka Terzic, Danielle Gurgew and Ali Oguz Er
Coatings 2025, 15(10), 1198; https://doi.org/10.3390/coatings15101198 - 11 Oct 2025
Cited by 1 | Viewed by 926
Abstract
Zirconium (Zr) thin films were deposited on silicon (Si) substrates via pulsed laser deposition (PLD) using a 248 nm excimer laser. The effects of substrate temperature on film morphology and crystallinity were systematically investigated. X-ray diffraction (XRD) revealed that the Zr(100) plane exhibited [...] Read more.
Zirconium (Zr) thin films were deposited on silicon (Si) substrates via pulsed laser deposition (PLD) using a 248 nm excimer laser. The effects of substrate temperature on film morphology and crystallinity were systematically investigated. X-ray diffraction (XRD) revealed that the Zr(100) plane exhibited the strongest orientation at 400 °C while Zr (002) was maximum at 500 °C. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) analyses demonstrated an increase in surface roughness with temperature, with the smoothest surface observed at lower temperatures and significant island formation at 500 °C due to the transition to 3D growth. At 500 °C, interdiffusion effects led to the formation of zirconium silicide at the Zr/Si interface. To further interpret the experimental findings, computational modeling was employed to analyze the transition from 2D layer-by-layer growth to 3D island formation at elevated temperatures. Using a multi-parameter kinetics-free model based on free energy minimization, the critical film thickness for this transition was determined to be ~1–2 nm, aligning well with experimental observations. A separate kinetic model of island nucleation and growth predicts that this shift is driven by the kinetics of adatom surface diffusion. Additionally, the kinetic simulations revealed that, at 400 °C, adatom diffusivity optimally balances crystallization and surface energy minimization, yielding the highest film quality. At 500 °C, the rapid increase in diffusivity leads to the proliferation of 3D islands, consistent with the roughness trends observed in SEM and AFM data. These findings underscore the critical role of deposition parameters in tailoring Zr thin films for applications in advanced coatings and electronic devices. Full article
(This article belongs to the Collection Collection of Papers on Thin Film Deposition)
Show Figures

Figure 1

20 pages, 3005 KB  
Article
The Mutual Influence of Elemental S and Cs on the Ni(100) Surface at Room and Elevated Temperatures
by Aris Chris Papageorgopoulos, Dimitrios Vlachos and Mattheos Kamaratos
Surfaces 2025, 8(3), 68; https://doi.org/10.3390/surfaces8030068 - 12 Sep 2025
Viewed by 1002
Abstract
The behavior of S and Cs during the alternate adsorption of each adsorbate on the Ni(100) surface is studied at room and elevated temperatures by means of low-energy electron diffraction (LEED), Auger electron spectroscopy (AES), thermal desorption spectroscopy (TDS) and work function (WF) [...] Read more.
The behavior of S and Cs during the alternate adsorption of each adsorbate on the Ni(100) surface is studied at room and elevated temperatures by means of low-energy electron diffraction (LEED), Auger electron spectroscopy (AES), thermal desorption spectroscopy (TDS) and work function (WF) measurements. For Cs deposition on the S-covered Ni(100) surface, the presence of sulfur increases the binding energy and the maximum amount of adsorbed cesium, as happens with other alkalis too. The first Cs overlayer is disordered, while the second strongly interacts with S with a tendency toward a CsxSy surface compound formation. This interaction causes the gradual demetallization of the Cs overlayer with the increasing S coverage in the underlayer. When the CsxSy stoicheometry is complete, however, subsequent Cs deposition forms an independent rather metallic overlayer. When the sulfated covers the surface, S(0.5ML)/Ni(100) is preheated to 1100 K, the S-Ni bond strengthens and S-Cs interaction correspondingly weakens to a degree that the S underlayer retains a periodic structure on the Ni substrate. This behavior indicates that the preheated S/Ni(100) surface is passivated to a degree against Cs with reduced mobility of sulfur adatoms. Differently, when S is adsorbed on the Cs-covered Ni(100) surface at room temperature, sulfur adatoms diffuse underneath the Cs overlayer to interact with the nickel substrate and form the same structural phases as on a clean surface. During that process, the sticking coefficient of sulfur remains constant regardless of the amount of pre-deposited cesium. The presence of Cs, however, increases the amount of S that can be deposited on the Ni substrate, probably in favor of the CsxSy compound formation, which demetallizes the surface independent of the sequence of adsorption. Full article
Show Figures

Graphical abstract

18 pages, 2426 KB  
Article
Strain-Hardening and Strain-Softening Phenomena Observed in Thin Nitride/Carbonitride Ceramic Coatings During the Nanoindentation Experiments
by Uldis Kanders, Karlis Kanders, Ernests Jansons, Irina Boiko, Artis Kromanis, Janis Lungevics and Armands Leitans
Coatings 2025, 15(6), 674; https://doi.org/10.3390/coatings15060674 - 1 Jun 2025
Cited by 1 | Viewed by 1025
Abstract
This study investigates the nanomechanical and tribological behavior of multilayered nitride/carbonitride nanostructured superlattice type coatings (NTCs) composed of alternating TiAlSiNb-N and TiCr-CN sublayers, deposited via high-power ion-plasma magnetron sputtering (HiPIPMS) technique. Reinforced with refractory elements Cr and Nb, the NTC samples exhibit high [...] Read more.
This study investigates the nanomechanical and tribological behavior of multilayered nitride/carbonitride nanostructured superlattice type coatings (NTCs) composed of alternating TiAlSiNb-N and TiCr-CN sublayers, deposited via high-power ion-plasma magnetron sputtering (HiPIPMS) technique. Reinforced with refractory elements Cr and Nb, the NTC samples exhibit high nanohardness (39–59 GPa), low friction, and excellent wear resistance. A novel analytical approach was introduced to extract stress–strain field (SSF) gradients and divergences from nanoindentation data, revealing alternating strain-hardening and strain-softening cycles beneath the incrementally loaded indenter. The discovered oscillatory behavior, consistent across all samples under the investigation, suggests a general deformation mechanism in thin films under incremental loading. Fourier analysis of the SSF gradient oscillatory pattern revealed a variety of characteristic dominant wavelengths within the length-scale interval (0.84–8.10) nm, indicating multi-scale nanomechanical responses. Additionally, the NTC samples display an anisotropic coating morphology exhibited as unidirectional undulating surface roughness waves, potentially attributed to atomic shadowing, strain-induced instabilities, and limited adatom diffusion. These findings deepen our understanding of nanoscale deformation in advanced PVD coatings and underscore the utility of SSF analysis for probing thin-film mechanics. Full article
(This article belongs to the Section Ceramic Coatings and Engineering Technology)
Show Figures

Figure 1

20 pages, 8233 KB  
Article
Transformation of TiN to TiNO Films via In-Situ Temperature-Dependent Oxygen Diffusion Process and Their Electrochemical Behavior
by Sheilah Cherono, Ikenna Chris-Okoro, Mengxin Liu, R. Soyoung Kim, Swapnil Nalawade, Wisdom Akande, Mihai Maria-Diana, Johannes Mahl, Christopher Hale, Junko Yano, Shyam Aravamudhan, Ethan Crumlin, Valentin Craciun and Dhananjay Kumar
Metals 2025, 15(5), 497; https://doi.org/10.3390/met15050497 - 29 Apr 2025
Cited by 4 | Viewed by 2227
Abstract
Titanium oxynitride (TiNO) thin films represent a multifaceted material system applicable in diverse fields, including energy storage, solar cells, sensors, protective coatings, and electrocatalysis. This study reports the synthesis of TiNO thin films grown at different substrate temperatures using pulsed laser deposition. A [...] Read more.
Titanium oxynitride (TiNO) thin films represent a multifaceted material system applicable in diverse fields, including energy storage, solar cells, sensors, protective coatings, and electrocatalysis. This study reports the synthesis of TiNO thin films grown at different substrate temperatures using pulsed laser deposition. A comprehensive structural investigation was conducted by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Non-Rutherford backscattering spectrometry (N-RBS), and X-ray absorption spectroscopy (XAS), which facilitated a detailed analysis that determined the phase, composition, and crystallinity of the films. Structural control was achieved via temperature-dependent oxygen in-diffusion, nitrogen out-diffusion, and the nucleation growth process related to adatom mobility. The XPS analysis indicates that the TiNO films consist of heterogeneous mixtures of TiN, TiNO, and TiO2 phases with temperature-dependent relative abundances. The correlation between the structure and electrochemical behavior of the thin films was examined. The TiNO films with relatively higher N/O ratio, meaning less oxidized, were more electrochemically active than the films with lower N/O ratio, i.e., more oxidized films. Films with higher oxidation levels demonstrated enhanced crystallinity and greater stability under electrochemical polarization. These findings demonstrate the importance of substrate temperature control in tailoring the properties of TiNO film, which is a fundamental part of designing and optimizing an efficient electrode material. Full article
Show Figures

Figure 1

11 pages, 1523 KB  
Article
Diffusion-Induced Ordered Nanowire Growth: Mask Patterning Insights
by Kamila R. Bikmeeva and Alexey D. Bolshakov
Nanomaterials 2024, 14(21), 1743; https://doi.org/10.3390/nano14211743 - 30 Oct 2024
Cited by 1 | Viewed by 1139
Abstract
Innovative methods for substrate patterning provide intriguing possibilities for the development of devices based on ordered arrays of semiconductor nanowires. Control over the nanostructures’ morphology in situ can be obtained via extensive theoretical studies of their formation. In this paper, we carry out [...] Read more.
Innovative methods for substrate patterning provide intriguing possibilities for the development of devices based on ordered arrays of semiconductor nanowires. Control over the nanostructures’ morphology in situ can be obtained via extensive theoretical studies of their formation. In this paper, we carry out an investigation of the ordered nanowires’ formation kinetics depending on the growth mask geometry. Diffusion equations for the growth species on both substrate and nanowire sidewalls depending on the spacing arrangement of the nanostructures and deposition rate are considered. The value of the pitch corresponding to the maximum diffusion flux from the substrate is obtained. The latter is assumed to be the optimum in terms of the nanowire elongation rate. Further study of the adatom kinetics demonstrates that the temporal dependence of a nanowire’s length is strongly affected by the ratio of the adatom’s diffusion length on the substrate and sidewalls, providing insights into the proper choice of a growth wafer. The developed model allows for customization of the growth protocols and estimation of the important diffusion parameters of the growth species. Full article
(This article belongs to the Section Theory and Simulation of Nanostructures)
Show Figures

Figure 1

13 pages, 5553 KB  
Article
High-Quality Single Crystalline Sc0.37Al0.63N Thin Films Enabled by Precise Tuning of III/N Atomic Flux Ratio during Molecular Beam Epitaxy
by Yuhao Yin, Rong Liu, Haiyang Zhao, Shizhao Fan, Jianming Zhang, Shun Li, Qian Sun and Hui Yang
Nanomaterials 2024, 14(17), 1459; https://doi.org/10.3390/nano14171459 - 8 Sep 2024
Cited by 2 | Viewed by 2310
Abstract
We attained wurtzite ScxAl1−xN (0.16 ≤ x ≤ 0.37) thin films by varying the Sc and Al fluxes at a fixed active nitrogen flux during plasma-assisted molecular beam epitaxy. Atomic fluxes of Sc and Al sources via measured [...] Read more.
We attained wurtzite ScxAl1−xN (0.16 ≤ x ≤ 0.37) thin films by varying the Sc and Al fluxes at a fixed active nitrogen flux during plasma-assisted molecular beam epitaxy. Atomic fluxes of Sc and Al sources via measured Sc percentage in as-grown ScxAl1−xN thin films were derived as the feedback for precise determination of the ScxAl1−xN growth diagram. We identified an optimal III/N atomic flux ratio of 0.78 for smooth Sc0.18Al0.82N thin films. Further increasing the III/N ratio led to phase separation under N-rich conditions, validated by the observation of high-Sc-content hillocks with energy-dispersive X-ray spectroscopy mapping. At the fixed III/N ratio of 0.78, we found that phase separation with high-Al-content hillocks occurs for x > 0.37, which is substantially lower than the thermodynamically dictated threshold Sc content of ~0.55 in wurtzite ScxAl1−xN. We postulate that these wurtzite-phase purity degradation scenarios are correlated with adatom diffusion and the competitive incorporation process of Sc and Al. Therefore, the ScxAl1−xN growth window is severely restricted by the adatom kinetics. We obtained single crystalline Sc0.37Al0.63N thin films with X-ray diffraction (002)/(102) ω rocking curve full-width at half-maximums of 2156 arcsec and 209 arcsec and surface roughness of 1.70 nm. Piezoelectric force microscopy probing of the Sc0.37Al0.63N epilayer validates unambiguous polarization flipping by 180°. Full article
(This article belongs to the Special Issue Epitaxial Growth of III-Nitride Hetero- and Nanostructures)
Show Figures

Figure 1

13 pages, 9191 KB  
Article
Theoretical Investigation of a Novel Two-Dimensional Non-MXene Mo3C2 as a Prospective Anode Material for Li- and Na-Ion Batteries
by Bo Xue, Qingfeng Zeng, Shuyin Yu and Kehe Su
Materials 2024, 17(15), 3819; https://doi.org/10.3390/ma17153819 - 2 Aug 2024
Cited by 1 | Viewed by 1533
Abstract
A new two-dimensional (2D) non-MXene transition metal carbide, Mo3C2, was found using the USPEX code. Comprehensive first-principles calculations show that the Mo3C2 monolayer exhibits thermal, dynamic, and mechanical stability, which can ensure excellent durability in practical [...] Read more.
A new two-dimensional (2D) non-MXene transition metal carbide, Mo3C2, was found using the USPEX code. Comprehensive first-principles calculations show that the Mo3C2 monolayer exhibits thermal, dynamic, and mechanical stability, which can ensure excellent durability in practical applications. The optimized structures of Lix@(3×3)-Mo3C2 (x = 1–36) and Nax@(3×3)-Mo3C2 (x = 1–32) were identified as prospective anode materials. The metallic Mo3C2 sheet exhibits low diffusion barriers of 0.190 eV for Li and 0.118 eV for Na and low average open circuit voltages of 0.31–0.55 V for Li and 0.18–0.48 V for Na. When adsorbing two layers of adatoms, the theoretical energy capacities are 344 and 306 mA h g−1 for Li and Na, respectively, which are comparable to that of commercial graphite. Moreover, the Mo3C2 substrate can maintain structural integrity during the lithiation or sodiation process at high temperature. Considering these features, our proposed Mo3C2 slab is a potential candidate as an anode material for future Li- and Na-ion batteries. Full article
(This article belongs to the Special Issue Novel Materials for Electrochemical Energy Storage Systems)
Show Figures

Figure 1

14 pages, 4742 KB  
Article
Roughness Factors of Electrodeposited Nanostructured Copper Foams
by Eduard E. Levin, Dmitriy A. Morozov, Vsevolod V. Frolov, Natalia A. Arkharova, Dmitry N. Khmelenin, Evgeny V. Antipov and Victoria A. Nikitina
Nanomaterials 2023, 13(23), 3011; https://doi.org/10.3390/nano13233011 - 23 Nov 2023
Cited by 7 | Viewed by 2371
Abstract
Copper-based electrocatalytic materials play a critical role in various electrocatalytic processes, including the electroreduction of carbon dioxide and nitrate. Three-dimensional nanostructured electrodes are particularly advantageous for electrocatalytic applications due to their large surface area, which facilitates charge transfer and mass transport. However, the [...] Read more.
Copper-based electrocatalytic materials play a critical role in various electrocatalytic processes, including the electroreduction of carbon dioxide and nitrate. Three-dimensional nanostructured electrodes are particularly advantageous for electrocatalytic applications due to their large surface area, which facilitates charge transfer and mass transport. However, the real surface area (RSA) of electrocatalysts is a crucial parameter that is often overlooked in experimental studies of high-surface-area copper electrodes. In this study, we investigate the roughness factors of electrodeposited copper foams with varying thicknesses and morphologies, obtained using the hydrogen bubble dynamic template technique. Underpotential deposition (UPD) of metal adatoms is one of the most reliable methods for estimating the RSA of highly dispersed catalysts. We aim to illustrate the applicability of UPD of lead for the determination of the RSA of copper deposits with hierarchical porosity. To find the appropriate experimental conditions that allow for efficient minimization of the limitations related to the slow diffusion of lead ions in the pores of the material and background currents of the reduction of traces of oxygen, we explore the effect of lead ion concentration, stirring rate, scan rate, monolayer deposition time and solution pH on the accuracy of RSA estimates. Under the optimized measurement conditions, Pb UPD allowed to estimate roughness factors as high as 400 for 100 µm thick foams, which translates into a specific surface area of ~6 m2·g−1. The proposed measurement protocol may be further applied to estimate the RSA of copper deposits with similar or higher roughness. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Figure 1

12 pages, 2663 KB  
Article
Can Nanowires Coalesce?
by Vladimir G. Dubrovskii
Nanomaterials 2023, 13(20), 2768; https://doi.org/10.3390/nano13202768 - 16 Oct 2023
Viewed by 1832
Abstract
Coalescence of nanowires and other three-dimensional structures into continuous film is desirable for growing low-dislocation-density III-nitride and III-V materials on lattice-mismatched substrates; this is also interesting from a fundamental viewpoint. Here, we develop a growth model for vertical nanowires which, under rather general [...] Read more.
Coalescence of nanowires and other three-dimensional structures into continuous film is desirable for growing low-dislocation-density III-nitride and III-V materials on lattice-mismatched substrates; this is also interesting from a fundamental viewpoint. Here, we develop a growth model for vertical nanowires which, under rather general assumptions on the solid-like coalescence process within the Kolmogorov crystallization theory, results in a morphological diagram for the asymptotic coverage of a substrate surface. The coverage is presented as a function of two variables: the material collection efficiency on the top nanowire facet a and the normalized surface diffusion flux of adatoms from the NW sidewalls b. The full coalescence of nanowires is possible only when a=1, regardless of b. At a>1, which often holds for vapor–liquid–solid growth with a catalyst droplet, nanowires can only partly merge but never coalesce into continuous film. In vapor phase epitaxy techniques, the NWs can partly merge but never fully coalesce, while in the directional molecular beam epitaxy the NWs can fully coalesce for small enough contact angles of their droplets corresponding to a=1. The growth kinetics of nanowires and evolution of the coverage in the pre-coalescence stage is also considered. These results can be used for predicting and controlling the degree of surface coverage by nanowires and three-dimensional islands by tuning the surface density, droplet size, adatoms diffusivity, and geometry of the initial structures in the vapor–liquid–solid, selective area, or self-induced growth by different epitaxy techniques. Full article
(This article belongs to the Special Issue New Advances in Nanowires and Quantum Dots)
Show Figures

Figure 1

25 pages, 3694 KB  
Review
Advancements in Plasma-Enhanced Chemical Vapor Deposition for Producing Vertical Graphene Nanowalls
by Enric Bertran-Serra, Shahadev Rodriguez-Miguel, Zhuo Li, Yang Ma, Ghulam Farid, Stefanos Chaitoglou, Roger Amade, Rogelio Ospina and José-Luis Andújar
Nanomaterials 2023, 13(18), 2533; https://doi.org/10.3390/nano13182533 - 11 Sep 2023
Cited by 29 | Viewed by 5619
Abstract
In recent years, vertical graphene nanowalls (VGNWs) have gained significant attention due to their exceptional properties, including their high specific surface area, excellent electrical conductivity, scalability, and compatibility with transition metal compounds. These attributes position VGNWs as a compelling choice for various applications, [...] Read more.
In recent years, vertical graphene nanowalls (VGNWs) have gained significant attention due to their exceptional properties, including their high specific surface area, excellent electrical conductivity, scalability, and compatibility with transition metal compounds. These attributes position VGNWs as a compelling choice for various applications, such as energy storage, catalysis, and sensing, driving interest in their integration into next-generation commercial graphene-based devices. Among the diverse graphene synthesis methods, plasma-enhanced chemical vapor deposition (PECVD) stands out for its ability to create large-scale graphene films and VGNWs on diverse substrates. However, despite progress in optimizing the growth conditions to achieve micrometer-sized graphene nanowalls, a comprehensive understanding of the underlying physicochemical mechanisms that govern nanostructure formation remains elusive. Specifically, a deeper exploration of nanometric-level phenomena like nucleation, carbon precursor adsorption, and adatom surface diffusion is crucial for gaining precise control over the growth process. Hydrogen’s dual role as a co-catalyst and etchant in VGNW growth requires further investigation. This review aims to fill the knowledge gaps by investigating VGNW nucleation and growth using PECVD, with a focus on the impact of the temperature on the growth ratio and nucleation density across a broad temperature range. By providing insights into the PECVD process, this review aims to optimize the growth conditions for tailoring VGNW properties, facilitating applications in the fields of energy storage, catalysis, and sensing. Full article
Show Figures

Figure 1

9 pages, 1902 KB  
Communication
Adsorption and Surface Diffusion of Atomic Ru on TiN and SiO2: A First-Principles Study
by Changhyun Ahn, Ju Hyeon Jung, Jae Jung Kim, Dong-Chan Lee and Bonggeun Shong
Coatings 2023, 13(6), 1020; https://doi.org/10.3390/coatings13061020 - 31 May 2023
Cited by 5 | Viewed by 5909
Abstract
Ruthenium (Ru) has been suggested as one of the promising materials for nanoscale interconnects to substitute copper (Cu) that is currently used in the semiconductor industry. Through density functional theory (DFT) calculations, we present the rationales for varying deposition behavior of Ru on [...] Read more.
Ruthenium (Ru) has been suggested as one of the promising materials for nanoscale interconnects to substitute copper (Cu) that is currently used in the semiconductor industry. Through density functional theory (DFT) calculations, we present the rationales for varying deposition behavior of Ru on different types of substrates. For the SiO2 and TiN substrates, with and without adsorbed hydrogen, our calculation results reveal the adsorption sites and their adsorption energy, the surface diffusion paths and their activation energy, and the surface diffusion coefficients. We confirm that the adsorption of Ru is more stable on TiN than on SiO2 substrates, and that the surface diffusion of Ru adatom is faster on TiN than on SiO2 surface. Full article
(This article belongs to the Special Issue Advanced Films and Coatings Based on Atomic Layer Deposition)
Show Figures

Figure 1

11 pages, 3011 KB  
Article
Shape and Composition Evolution in an Alloy Core–Shell Nanowire Heterostructure Induced by Adatom Diffusion
by Delong Han, Wenlei Tang, Naizhang Sun, Han Ye, Hongyu Chai and Mingchao Wang
Nanomaterials 2023, 13(11), 1732; https://doi.org/10.3390/nano13111732 - 25 May 2023
Cited by 3 | Viewed by 1831
Abstract
A core–shell nanowire heterostructure is an important building block for nanowire-based optoelectronic devices. In this paper, the shape and composition evolution induced by adatom diffusion is investigated by constructing a growth model for alloy core–shell nanowire heterostructures, taking diffusion, adsorption, desorption and incorporation [...] Read more.
A core–shell nanowire heterostructure is an important building block for nanowire-based optoelectronic devices. In this paper, the shape and composition evolution induced by adatom diffusion is investigated by constructing a growth model for alloy core–shell nanowire heterostructures, taking diffusion, adsorption, desorption and incorporation of adatoms into consideration. With moving boundaries accounting for sidewall growth, the transient diffusion equations are numerically solved by the finite element method. The adatom diffusions introduce the position-dependent and time-dependent adatom concentrations of components A and B. The newly grown alloy nanowire shell depends on the incorporation rates, resulting in both shape and composition evolution during growth. The results show that the morphology of nanowire shell strongly depends on the flux impingement angle. With the increase in this impingement angle, the position of the largest shell thickness on sidewall moves down to the bottom of nanowire and meanwhile, the contact angle between shell and substrate increases to an obtuse angle. Coupled with the shell shapes, the composition profiles are shown as non-uniform along both the nanowire and the shell growth directions, which can be attributed to the adatom diffusion of components A and B. The impacts of parameters on the shape and composition evolution are systematically investigated, including diffusion length, adatom lifetime and corresponding ratios between components. This kinetic model is expected to interpret the contribution of adatom diffusion in growing alloy group-IV and group III-V core–shell nanowire heterostructures. Full article
(This article belongs to the Section Theory and Simulation of Nanostructures)
Show Figures

Figure 1

23 pages, 3828 KB  
Article
Modeling Catalyst-Free Growth of III-V Nanowires: Empirical and Rigorous Approaches
by Vladimir G. Dubrovskii
Nanomaterials 2023, 13(7), 1253; https://doi.org/10.3390/nano13071253 - 1 Apr 2023
Cited by 5 | Viewed by 1758
Abstract
Catalyst-free growth of III-V and III-nitride nanowires (NWs) by the self-induced nucleation mechanism or selective area growth (SAG) on different substrates, including Si, show great promise for monolithic integration of III-V optoelectronics with Si electronic platform. The morphological design of NW ensembles requires [...] Read more.
Catalyst-free growth of III-V and III-nitride nanowires (NWs) by the self-induced nucleation mechanism or selective area growth (SAG) on different substrates, including Si, show great promise for monolithic integration of III-V optoelectronics with Si electronic platform. The morphological design of NW ensembles requires advanced growth modeling, which is much less developed for catalyst-free NWs compared to vapor–liquid–solid (VLS) NWs of the same materials. Herein, we present an empirical approach for modeling simultaneous axial and radial growths of untapered catalyst-free III-V NWs and compare it to the rigorous approach based on the stationary diffusion equations for different populations of group III adatoms. We study in detail the step flow occurring simultaneously on the NW sidewalls and top and derive the general laws governing the evolution of NW length and radius versus the growth parameters. The rigorous approach is reduced to the empirical equations in particular cases. A good correlation of the model with the data on the growth kinetics of SAG GaAs NWs and self-induced GaN NWs obtained by different epitaxy techniques is demonstrated. Overall, the developed theory provides a basis for the growth modeling of catalyst-free NWs and can be further extended to more complex NW morphologies. Full article
(This article belongs to the Special Issue Preparation and Application of Nanowires: 2nd Edition)
Show Figures

Figure 1

Back to TopTop