Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (242)

Search Parameters:
Keywords = adaptive traffic management system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1329 KiB  
Article
Lane-Changing Risk Prediction on Urban Expressways: A Mixed Bayesian Approach for Sustainable Traffic Management
by Quantao Yang, Peikun Li, Fei Yang and Wenbo Lu
Sustainability 2025, 17(15), 7061; https://doi.org/10.3390/su17157061 - 4 Aug 2025
Abstract
This study addresses critical safety challenges in sustainable urban mobility by developing a probabilistic framework for lane-change risk prediction on congested expressways. Utilizing unmanned aerial vehicle (UAV)-captured trajectory data from 784 validated lane-change events, we construct a Bayesian network model integrated with an [...] Read more.
This study addresses critical safety challenges in sustainable urban mobility by developing a probabilistic framework for lane-change risk prediction on congested expressways. Utilizing unmanned aerial vehicle (UAV)-captured trajectory data from 784 validated lane-change events, we construct a Bayesian network model integrated with an I-CH scoring-enhanced MMHC algorithm. This approach quantifies risk probabilities while accounting for driver decision dynamics and input data uncertainties—key gaps in conventional methods like time-to-collision metrics. Validation via the Asia network paradigm demonstrates 80.5% reliability in forecasting high-risk maneuvers. Crucially, we identify two sustainability-oriented operational thresholds: (1) optimal lane-change success occurs when trailing-vehicle speeds in target lanes are maintained at 1.0–3.0 m/s (following-gap < 4.0 m) or 3.0–6.0 m/s (gap ≥ 4.0 m), and (2) insertion-angle change rates exceeding 3.0°/unit-time significantly elevate transition probability. These evidence-based parameters enable traffic management systems to proactively mitigate collision risks by 13.26% while optimizing flow continuity. By converting behavioral insights into adaptive control strategies, this research advances resilient transportation infrastructure and low-carbon mobility through congestion reduction. Full article
Show Figures

Figure 1

16 pages, 2174 KiB  
Article
TwinFedPot: Honeypot Intelligence Distillation into Digital Twin for Persistent Smart Traffic Security
by Yesin Sahraoui, Abdessalam Mohammed Hadjkouider, Chaker Abdelaziz Kerrache and Carlos T. Calafate
Sensors 2025, 25(15), 4725; https://doi.org/10.3390/s25154725 - 31 Jul 2025
Viewed by 255
Abstract
The integration of digital twins (DTs) with intelligent traffic systems (ITSs) holds strong potential for improving real-time management in smart cities. However, securing digital twins remains a significant challenge due to the dynamic and adversarial nature of cyber–physical environments. In this work, we [...] Read more.
The integration of digital twins (DTs) with intelligent traffic systems (ITSs) holds strong potential for improving real-time management in smart cities. However, securing digital twins remains a significant challenge due to the dynamic and adversarial nature of cyber–physical environments. In this work, we propose TwinFedPot, an innovative digital twin-based security architecture that combines honeypot-driven data collection with Zero-Shot Learning (ZSL) for robust and adaptive cyber threat detection without requiring prior sampling. The framework leverages Inverse Federated Distillation (IFD) to train the DT server, where edge-deployed honeypots generate semantic predictions of anomalous behavior and upload soft logits instead of raw data. Unlike conventional federated approaches, TwinFedPot reverses the typical knowledge flow by distilling collective intelligence from the honeypots into a central teacher model hosted on the DT. This inversion allows the system to learn generalized attack patterns using only limited data, while preserving privacy and enhancing robustness. Experimental results demonstrate significant improvements in accuracy and F1-score, establishing TwinFedPot as a scalable and effective defense solution for smart traffic infrastructures. Full article
Show Figures

Figure 1

18 pages, 500 KiB  
Article
Hybrid Model-Based Traffic Network Control Using Population Games
by Sindy Paola Amaya, Pablo Andrés Ñañez, David Alejandro Martínez Vásquez, Juan Manuel Calderón Chávez and Armando Mateus Rojas
Appl. Syst. Innov. 2025, 8(4), 102; https://doi.org/10.3390/asi8040102 - 25 Jul 2025
Viewed by 240
Abstract
Modern traffic management requires sophisticated approaches to address the complexities of urban road networks, which continue to grow in complexity due to increasing urbanization and vehicle usage. Traditional methods often fall short in mitigating congestion and optimizing traffic flow, inducing the exploration of [...] Read more.
Modern traffic management requires sophisticated approaches to address the complexities of urban road networks, which continue to grow in complexity due to increasing urbanization and vehicle usage. Traditional methods often fall short in mitigating congestion and optimizing traffic flow, inducing the exploration of innovative traffic control strategies based on advanced theoretical frameworks. In this sense, we explore different game theory-based control strategies in an eight-intersection traffic network modeled by means of hybrid systems and graph theory, using a software simulator that combines the multi-modal traffic simulation software VISSIM and MATLAB to integrate traffic network parameters and population game criteria. Across five distinct network scenarios with varying saturation conditions, we explore a fixed-time scheme of signaling by means of fictitious play dynamics and adaptive schemes, using dynamics such as Smith, replicator, Logit and Brown–Von Neumann–Nash (BNN). Results show better performance for Smith and replicator dynamics in terms of traffic parameters both for fixed and variable signaling times, with an interesting outcome of fictitious play over BNN and Logit. Full article
Show Figures

Figure 1

18 pages, 1138 KiB  
Article
Intelligent Priority-Aware Spectrum Access in 5G Vehicular IoT: A Reinforcement Learning Approach
by Adeel Iqbal, Tahir Khurshaid and Yazdan Ahmad Qadri
Sensors 2025, 25(15), 4554; https://doi.org/10.3390/s25154554 - 23 Jul 2025
Viewed by 268
Abstract
Efficient and intelligent spectrum access is crucial for meeting the diverse Quality of Service (QoS) demands of Vehicular Internet of Things (V-IoT) systems in next-generation cellular networks. This work proposes a novel reinforcement learning (RL)-based priority-aware spectrum management (RL-PASM) framework, a centralized self-learning [...] Read more.
Efficient and intelligent spectrum access is crucial for meeting the diverse Quality of Service (QoS) demands of Vehicular Internet of Things (V-IoT) systems in next-generation cellular networks. This work proposes a novel reinforcement learning (RL)-based priority-aware spectrum management (RL-PASM) framework, a centralized self-learning priority-aware spectrum management framework operating through Roadside Units (RSUs). RL-PASM dynamically allocates spectrum resources across three traffic classes: high-priority (HP), low-priority (LP), and best-effort (BE), utilizing reinforcement learning (RL). This work compares four RL algorithms: Q-Learning, Double Q-Learning, Deep Q-Network (DQN), and Actor-Critic (AC) methods. The environment is modeled as a discrete-time Markov Decision Process (MDP), and a context-sensitive reward function guides fairness-preserving decisions for access, preemption, coexistence, and hand-off. Extensive simulations conducted under realistic vehicular load conditions evaluate the performance across key metrics, including throughput, delay, energy efficiency, fairness, blocking, and interruption probability. Unlike prior approaches, RL-PASM introduces a unified multi-objective reward formulation and centralized RSU-based control to support adaptive priority-aware access for dynamic vehicular environments. Simulation results confirm that RL-PASM balances throughput, latency, fairness, and energy efficiency, demonstrating its suitability for scalable and resource-constrained deployments. The results also demonstrate that DQN achieves the highest average throughput, followed by vanilla QL. DQL and AC maintain fairness at high levels and low average interruption probability. QL demonstrates the lowest average delay and the highest energy efficiency, making it a suitable candidate for edge-constrained vehicular deployments. Selecting the appropriate RL method, RL-PASM offers a robust and adaptable solution for scalable, intelligent, and priority-aware spectrum access in vehicular communication infrastructures. Full article
(This article belongs to the Special Issue Emerging Trends in Next-Generation mmWave Cognitive Radio Networks)
Show Figures

Figure 1

31 pages, 1059 KiB  
Article
Adaptive Traffic Light Management for Mobility and Accessibility in Smart Cities
by Malik Almaliki, Amna Bamaqa, Mahmoud Badawy, Tamer Ahmed Farrag, Hossam Magdy Balaha and Mostafa A. Elhosseini
Sustainability 2025, 17(14), 6462; https://doi.org/10.3390/su17146462 - 15 Jul 2025
Viewed by 589
Abstract
Urban road traffic congestion poses significant challenges to sustainable mobility in smart cities. Traditional traffic light systems, reliant on static or semi-fixed timers, fail to adapt to dynamic traffic conditions, exacerbating congestion and limiting inclusivity. To address these limitations, this paper proposes H-ATLM [...] Read more.
Urban road traffic congestion poses significant challenges to sustainable mobility in smart cities. Traditional traffic light systems, reliant on static or semi-fixed timers, fail to adapt to dynamic traffic conditions, exacerbating congestion and limiting inclusivity. To address these limitations, this paper proposes H-ATLM (a hybrid adaptive traffic lights management), a system utilizing the deep deterministic policy gradient (DDPG) reinforcement learning algorithm to optimize traffic light timings dynamically based on real-time data. The system integrates advanced sensing technologies, such as cameras and inductive loops, to monitor traffic conditions and adaptively adjust signal phases. Experimental results demonstrate significant improvements, including reductions in congestion (up to 50%), increases in throughput (up to 149%), and decreases in clearance times (up to 84%). These findings open the door for integrating accessibility-focused features such as adaptive signaling for accessible vehicles, dedicated lanes for paratransit services, and prioritized traffic flows for inclusive mobility. Full article
Show Figures

Figure 1

24 pages, 8216 KiB  
Article
Application of Dueling Double Deep Q-Network for Dynamic Traffic Signal Optimization: A Case Study in Danang City, Vietnam
by Tho Cao Phan, Viet Dinh Le and Teron Nguyen
Mach. Learn. Knowl. Extr. 2025, 7(3), 65; https://doi.org/10.3390/make7030065 - 14 Jul 2025
Viewed by 518
Abstract
This study investigates the application of the Dueling Double Deep Q-Network (3DQN) algorithm to optimize traffic signal control at a major urban intersection in Danang City, Vietnam. The objective is to enhance signal timing efficiency in response to mixed traffic flow and real-world [...] Read more.
This study investigates the application of the Dueling Double Deep Q-Network (3DQN) algorithm to optimize traffic signal control at a major urban intersection in Danang City, Vietnam. The objective is to enhance signal timing efficiency in response to mixed traffic flow and real-world traffic dynamics. A simulation environment was developed using the Simulation of Urban Mobility (SUMO) software version 1.11, incorporating both a fixed-time signal controller and two 3DQN models trained with 1 million (1M-Step) and 5 million (5M-Step) iterations. The models were evaluated using randomized traffic demand scenarios ranging from 50% to 150% of baseline traffic volumes. The results demonstrate that the 3DQN models outperform the fixed-time controller, significantly reducing vehicle delays, with the 5M-Step model achieving average waiting times of under five minutes. To further assess the model’s responsiveness to real-time conditions, traffic flow data were collected using YOLOv8 for object detection and SORT for vehicle tracking from live camera feeds, and integrated into the SUMO-3DQN simulation. The findings highlight the robustness and adaptability of the 3DQN approach, particularly under peak traffic conditions, underscoring its potential for deployment in intelligent urban traffic management systems. Full article
Show Figures

Graphical abstract

18 pages, 736 KiB  
Article
Collaborative Split Learning-Based Dynamic Bandwidth Allocation for 6G-Grade TDM-PON Systems
by Alaelddin F. Y. Mohammed, Yazan M. Allawi, Eman M. Moneer and Lamia O. Widaa
Sensors 2025, 25(14), 4300; https://doi.org/10.3390/s25144300 - 10 Jul 2025
Viewed by 294
Abstract
Dynamic Bandwidth Allocation (DBA) techniques enable Time Division Multiplexing Passive Optical Network (TDM-PON) systems to efficiently manage upstream bandwidth by allowing the centralized Optical Line Terminal (OLT) to coordinate resource allocation among distributed Optical Network Units (ONUs). Conventional DBA techniques struggle to adapt [...] Read more.
Dynamic Bandwidth Allocation (DBA) techniques enable Time Division Multiplexing Passive Optical Network (TDM-PON) systems to efficiently manage upstream bandwidth by allowing the centralized Optical Line Terminal (OLT) to coordinate resource allocation among distributed Optical Network Units (ONUs). Conventional DBA techniques struggle to adapt to dynamic traffic conditions, resulting in suboptimal performance under varying load scenarios. This work suggests a Collaborative Split Learning-Based DBA (CSL-DBA) framework that utilizes the recently emerging Split Learning (SL) technique between the OLT and ONUs for the objective of optimizing predictive traffic adaptation and reducing communication overhead. Instead of requiring centralized learning at the OLT, the proposed approach decentralizes the process by enabling ONUs to perform local traffic analysis and transmit only model updates to the OLT. This cooperative strategy guarantees rapid responsiveness to fluctuating traffic conditions. We show by extensive simulations spanning several traffic scenarios, including low, fluctuating, and high traffic load conditions, that our proposed CSL-DBA achieves at least 99% traffic prediction accuracy, with minimal inference latency and scalable learning performance, and it reduces communication overhead by approximately 60% compared to traditional federated learning approaches, making it a strong candidate for next-generation 6G-grade TDM-PON systems. Full article
(This article belongs to the Special Issue Recent Advances in Optical Wireless Communications)
Show Figures

Figure 1

28 pages, 4089 KiB  
Article
Highway Travel-Time Forecasting with Greenshields Model-Based Cascaded Fuzzy Logic Systems
by Miin-Jong Hao and Yu-Xuan Zheng
Appl. Sci. 2025, 15(14), 7729; https://doi.org/10.3390/app15147729 - 10 Jul 2025
Viewed by 290
Abstract
Intelligent Transportation Systems (ITSs) play a vital role in improving urban and regional mobility by reducing traffic congestion and enhancing trip planning. A key element of ITS is travel-time prediction, which supports informed decisions for both travelers and traffic management. While non-parametric models [...] Read more.
Intelligent Transportation Systems (ITSs) play a vital role in improving urban and regional mobility by reducing traffic congestion and enhancing trip planning. A key element of ITS is travel-time prediction, which supports informed decisions for both travelers and traffic management. While non-parametric models offer flexibility, they often require large datasets and significant computation. Parametric models, though easier to fit and interpret, are less adaptable. Fuzzy logic models, by contrast, provide robustness and scalability, adjusting to new data and changing conditions. This paper proposes a cascaded fuzzy logic system for highway travel-time prediction, using the Greenshields model as its reasoning foundation. The system consists of multiple fuzzy subsystems, each representing a highway segment. These subsystems transform traffic flow and density inputs into speed predictions through fuzzification, Greenshields-based rules, and defuzzification. The approach enables localized and segment-specific predictions, enhancing route planning and congestion avoidance. The system’s accuracy is evaluated by comparing its predictions with those of a regression model using real traffic data from the Sun Yat-Sen Highway in Taiwan. Simulation results confirm that the proposed model achieves reliable, adaptable travel-time forecasts, including for long-distance trips. Full article
Show Figures

Figure 1

25 pages, 2747 KiB  
Article
Comparative Evaluation of Fuzzy Logic and Q-Learning for Adaptive Urban Traffic Signal Control
by Ioana-Miruna Vlasceanu, Vasilica-Cerasela-Doinita Ceapa, Ioan Stefan Sacala, Constantin Florin Caruntu, Andreea-Ioana Udrea, Nicolae Constantin and Mircea Segarceanu
Electronics 2025, 14(14), 2759; https://doi.org/10.3390/electronics14142759 - 9 Jul 2025
Viewed by 262
Abstract
In recent years, the number of vehicles in cities has visibly increased, leading to continuous modifications in general mobility. Pollution levels and congestion cases are reaching higher numbers as well, pointing to a need for better optimization solutions. Several existing control systems still [...] Read more.
In recent years, the number of vehicles in cities has visibly increased, leading to continuous modifications in general mobility. Pollution levels and congestion cases are reaching higher numbers as well, pointing to a need for better optimization solutions. Several existing control systems still rely on fixed timings for traffic lights, lacking an adaptive approach that can adjust the timers depending on real-time conditions. This study aims to provide a design for such a tool, by implementing two different approaches: Fuzzy Logic Optimization and an Adaptive Traffic Management strategy. The first controller involves Fuzzy Logic based on rule-based that adjust green and red-light timings depending on the number of vehicles at an intersection. The second model provides traffic adjustments based on external equipment such as road sensors and cameras, offering dynamic solutions tailored to current traffic conditions. Both methods are tested in a simulated environment using SUMO (Simulation of Urban Mobility). They were evaluated according to key efficiency indicators, namely average waiting time, lost time per cycle, number of stops per intersection, and overall traffic fluidity. Results demonstrate that Q-learning maintains consistent waiting times between 2.57 and 3.71 s across all traffic densities while achieving Traffic Flow Index values above 85%, significantly outperforming Fuzzy Logic, which shows greater variability and lower efficiency under high-density conditions. Full article
Show Figures

Figure 1

24 pages, 3223 KiB  
Article
Visitor Number Prediction for Daegwallyeong Forest Trail Using Machine Learning
by Sungmin Ryu, Seong-Hoon Jung, Geun-Hyeon Kim and Sugwang Lee
Sustainability 2025, 17(13), 6061; https://doi.org/10.3390/su17136061 - 2 Jul 2025
Viewed by 410
Abstract
Predicting forest trail visitation is essential for sustainable management and policy development, including infrastructure planning, safety operations, and conservation. However, due to numerous informal access points and complex external influences, accurately monitoring visitor numbers remains challenging. This study applied random forest, gradient boosting, [...] Read more.
Predicting forest trail visitation is essential for sustainable management and policy development, including infrastructure planning, safety operations, and conservation. However, due to numerous informal access points and complex external influences, accurately monitoring visitor numbers remains challenging. This study applied random forest, gradient boosting, and LightGBM models with Bayesian optimization to predict daily visitor counts across six sections of the National Daegwallyeong Forest Trail, incorporating variables such as weather conditions, social media activity, COVID-19 case counts, tollgate traffic volume, and local festivals. SHAP analysis revealed that tollgate traffic volume and weekends consistently increased visitation across all sections. The impact of temperature varied by section: higher temperatures increased visitation in Kukmin Forest, whereas lower temperatures were associated with higher visitation at Seonjaryeong Peak. COVID-19 cases demonstrated negative effects across all sections. By integrating diverse variables and conducting section-level analysis, this study identified detailed visitation patterns and provided a practical basis for adaptive, section- and season-specific management strategies. These findings support flexible measures such as seasonal staffing, congestion mitigation, and real-time response systems and contribute to the advancement of data-driven regional tourism management frameworks in the context of evolving nature-based tourism demand. Full article
Show Figures

Figure 1

30 pages, 4491 KiB  
Article
IoT-Enabled Adaptive Traffic Management: A Multiagent Framework for Urban Mobility Optimisation
by Ibrahim Mutambik
Sensors 2025, 25(13), 4126; https://doi.org/10.3390/s25134126 - 2 Jul 2025
Cited by 2 | Viewed by 652
Abstract
This study evaluates the potential of IoT-enabled adaptive traffic management systems for mitigating urban congestion, enhancing mobility, and reducing environmental impacts in densely populated cities. Using London as a case study, the research develops a multiagent simulation framework to assess the effectiveness of [...] Read more.
This study evaluates the potential of IoT-enabled adaptive traffic management systems for mitigating urban congestion, enhancing mobility, and reducing environmental impacts in densely populated cities. Using London as a case study, the research develops a multiagent simulation framework to assess the effectiveness of advanced traffic management strategies—including adaptive signal control and dynamic rerouting—under varied traffic scenarios. Unlike conventional models that rely on static or reactive approaches, this framework integrates real-time data from IoT-enabled sensors with predictive analytics to enable proactive adjustments to traffic flows. Distinctively, the study couples this integration with a multiagent simulation environment that models the traffic actors—private vehicles, buses, cyclists, and emergency services—as autonomous, behaviourally dynamic agents responding to real-time conditions. This enables a more nuanced, realistic, and scalable evaluation of urban mobility strategies. The simulation results indicate substantial performance gains, including a 30% reduction in average travel times, a 50% decrease in congestion at major intersections, and a 28% decline in CO2 emissions. These findings underscore the transformative potential of sensor-driven adaptive systems for advancing sustainable urban mobility. The study addresses critical gaps in the existing literature by focusing on scalability, equity, and multimodal inclusivity, particularly through the prioritisation of high-occupancy and essential traffic. Furthermore, it highlights the pivotal role of IoT sensor networks in real-time traffic monitoring, control, and optimisation. By demonstrating a novel and practical application of sensor technologies to traffic systems, the proposed framework makes a significant and timely contribution to the field and offers actionable insights for smart city planning and transportation policy. Full article
(This article belongs to the Special Issue Vehicular Sensing for Improved Urban Mobility: 2nd Edition)
Show Figures

Figure 1

22 pages, 7580 KiB  
Article
Fuzzy-Based Multi-Modal Query-Forwarding in Mini-Datacenters
by Sami J. Habib and Paulvanna Nayaki Marimuthu
Computers 2025, 14(7), 261; https://doi.org/10.3390/computers14070261 - 1 Jul 2025
Viewed by 307
Abstract
The rapid growth of Internet of Things (IoT) enabled devices in industrial environments and the associated increase in data generation are paving the way for the development of localized, distributed datacenters. In this paper, we have proposed a novel mini-datacenter in the form [...] Read more.
The rapid growth of Internet of Things (IoT) enabled devices in industrial environments and the associated increase in data generation are paving the way for the development of localized, distributed datacenters. In this paper, we have proposed a novel mini-datacenter in the form of wireless sensor networks to efficiently handle query-based data collection from Industrial IoT (IIoT) devices. The mini-datacenter comprises a command center, gateways, and IoT sensors, designed to manage stochastic query-response traffic flow. We have developed a duplication/aggregation query flow model, tailored to emphasize reliable transmission. We have developed a dataflow management framework that employs a multi-modal query forwarding approach to forward queries from the command center to gateways under varying environments. The query forwarding includes coarse-grain and fine-grain strategies, where the coarse-grain strategy uses a direct data flow using a single gateway at the expense of reliability, while the fine-grain approach uses redundant gateways to enhance reliability. A fuzzy-logic-based intelligence system is integrated into the framework to dynamically select the appropriate granularity of the forwarding strategy based on the resource availability and network conditions, aided by a buffer watching algorithm that tracks real-time buffer status. We carried out several experiments with gateway nodes varying from 10 to 100 to evaluate the framework’s scalability and robustness in handling the query flow under complex environments. The experimental results demonstrate that the framework provides a flexible and adaptive solution that balances buffer usage while maintaining over 95% reliability in most queries. Full article
(This article belongs to the Section Internet of Things (IoT) and Industrial IoT)
Show Figures

Figure 1

21 pages, 1476 KiB  
Article
AI-Driven Handover Management and Load Balancing Optimization in Ultra-Dense 5G/6G Cellular Networks
by Chaima Chabira, Ibraheem Shayea, Gulsaya Nurzhaubayeva, Laura Aldasheva, Didar Yedilkhan and Saule Amanzholova
Technologies 2025, 13(7), 276; https://doi.org/10.3390/technologies13070276 - 1 Jul 2025
Cited by 1 | Viewed by 1176
Abstract
This paper presents a comprehensive review of handover management and load balancing optimization (LBO) in ultra-dense 5G and emerging 6G cellular networks. With the increasing deployment of small cells and the rapid growth of data traffic, these networks face significant challenges in ensuring [...] Read more.
This paper presents a comprehensive review of handover management and load balancing optimization (LBO) in ultra-dense 5G and emerging 6G cellular networks. With the increasing deployment of small cells and the rapid growth of data traffic, these networks face significant challenges in ensuring seamless mobility and efficient resource allocation. Traditional handover and load balancing techniques, primarily designed for 4G systems, are no longer sufficient to address the complexity of heterogeneous network environments that incorporate millimeter-wave communication, Internet of Things (IoT) devices, and unmanned aerial vehicles (UAVs). The review focuses on how recent advances in artificial intelligence (AI), particularly machine learning (ML) and deep learning (DL), are being applied to improve predictive handover decisions and enable real-time, adaptive load distribution. AI-driven solutions can significantly reduce handover failures, latency, and network congestion, while improving overall user experience and quality of service (QoS). This paper surveys state-of-the-art research on these techniques, categorizing them according to their application domains and evaluating their performance benefits and limitations. Furthermore, the paper discusses the integration of intelligent handover and load balancing methods in smart city scenarios, where ultra-dense networks must support diverse services with high reliability and low latency. Key research gaps are also identified, including the need for standardized datasets, energy-efficient AI models, and context-aware mobility strategies. Overall, this review aims to guide future research and development in designing robust, AI-assisted mobility and resource management frameworks for next-generation wireless systems. Full article
Show Figures

Figure 1

23 pages, 2630 KiB  
Article
Machine Learning Traffic Flow Prediction Models for Smart and Sustainable Traffic Management
by Rusul Abduljabbar, Hussein Dia and Sohani Liyanage
Infrastructures 2025, 10(7), 155; https://doi.org/10.3390/infrastructures10070155 - 24 Jun 2025
Cited by 1 | Viewed by 1043
Abstract
Sustainable traffic management relies on accurate traffic flow prediction to reduce congestion, fuel consumption, and emissions and minimise the external environmental impacts of traffic operations. This study contributes to this objective by developing and evaluating advanced machine learning models that leverage multisource data [...] Read more.
Sustainable traffic management relies on accurate traffic flow prediction to reduce congestion, fuel consumption, and emissions and minimise the external environmental impacts of traffic operations. This study contributes to this objective by developing and evaluating advanced machine learning models that leverage multisource data to predict traffic patterns more effectively, allowing for the deployment of proactive measures to prevent or reduce traffic congestion and idling times, leading to enhanced eco-friendly mobility. Specifically, this paper evaluates the impact of multisource sensor inputs and spatial detector interactions on machine learning-based traffic flow prediction. Using a dataset of 839,377 observations from 14 detector stations along Melbourne’s Eastern Freeway, Bidirectional Long Short-Term Memory (BiLSTM) models were developed to assess predictive accuracy under different input configurations. The results demonstrated that incorporating speed and occupancy inputs alongside traffic flow improves prediction accuracy by up to 16% across all detector stations. This study also investigated the role of spatial flow input interactions from upstream and downstream detectors in enhancing prediction performance. The findings confirm that including neighbouring detectors improves prediction accuracy, increasing performance from 96% to 98% for eastbound and westbound directions. These findings highlight the benefits of optimised sensor deployment, data integration, and advanced machine-learning techniques for smart and eco-friendly traffic systems. Additionally, this study provides a foundation for data-driven, adaptive traffic management strategies that contribute to sustainable road network planning, reducing vehicle idling, fuel consumption, and emissions while enhancing urban mobility and supporting sustainability goals. Furthermore, the proposed framework aligns with key United Nations Sustainable Development Goals (SDGs), particularly those promoting sustainable cities, resilient infrastructure, and climate-responsive planning. Full article
(This article belongs to the Special Issue Sustainable Road Design and Traffic Management)
Show Figures

Figure 1

15 pages, 6013 KiB  
Article
Urban Air Mobility Vertiport’s Capacity Simulation and Analysis
by Antoni Kopyt and Sebastian Dylicki
Aerospace 2025, 12(6), 560; https://doi.org/10.3390/aerospace12060560 - 19 Jun 2025
Viewed by 651
Abstract
This study shows a comprehensive simulation to assess and enhance the throughput capacity of unmanned air system vertiports, one of the most essential elements of urban air mobility ecosystems. The framework integrates dynamic grid-based spatial management, probabilistic mission duration algorithms, and EASA-compliant operational [...] Read more.
This study shows a comprehensive simulation to assess and enhance the throughput capacity of unmanned air system vertiports, one of the most essential elements of urban air mobility ecosystems. The framework integrates dynamic grid-based spatial management, probabilistic mission duration algorithms, and EASA-compliant operational protocols to address the infrastructural and logistical demands of high-density UAS operations. It was focused on two use cases—high-frequency food delivery utilizing small UASs and extended-range package logistics with larger UASs—and the model incorporates adaptive vertiport zoning strategies, segregating operations into dedicated sectors for battery charging, swapping, and cargo handling to enable parallel processing and mitigate congestion. The simulation evaluates critical variables such as vertiport dimensions, UAS fleet composition, and mission duration ranges while emphasizing scalability, safety, and compliance with evolving regulatory standards. By examining the interplay between infrastructure design, operational workflows, and resource allocation, the research provides a versatile tool for urban planners and policymakers to optimize vertiport layouts and traffic management protocols. Its modular architecture supports future extensions. This work underscores the necessity of adaptive, data-driven planning to harmonize vertiport functionality with the dynamic demands of urban air mobility, ensuring interoperability, safety, and long-term scalability. Full article
(This article belongs to the Special Issue Operational Requirements for Urban Air Traffic Management)
Show Figures

Figure 1

Back to TopTop