Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (477)

Search Parameters:
Keywords = adaptive management zone

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 7350 KiB  
Article
Mechanisms of Spatial Coupling Between Plantation Species Distribution and Historical Disturbance in the Complex Topography of Eastern Yunnan
by Xiyu Zhang, Chao Zhang and Lianjin Fu
Remote Sens. 2025, 17(17), 2925; https://doi.org/10.3390/rs17172925 - 22 Aug 2025
Abstract
Forest disturbance is a major driver shaping the structure and function of plantation ecosystems. Current research predominantly focuses on single forest types or landscape scales. However, species-level fine-scale assessments of disturbance dynamics are still scarce. In this study, we investigated Chinese fir ( [...] Read more.
Forest disturbance is a major driver shaping the structure and function of plantation ecosystems. Current research predominantly focuses on single forest types or landscape scales. However, species-level fine-scale assessments of disturbance dynamics are still scarce. In this study, we investigated Chinese fir (Cunninghamia lanceolata), Armand pine (Pinus armandii), and Yunnan pine (Pinus yunnanensis) plantations in the mountainous eastern Yunnan Plateau. We developed a Spatial Coupling Framework of Disturbance Legacy (SC-DL) to systematically elucidate the spatial associations between contemporary species distribution patterns and historical disturbance regimes. Using the Google Earth Engine (GEE) platform, we reconstructed pixel-level disturbance trajectories by integrating long-term Landsat time series (1993–2024) and applying the LandTrendr algorithm. By fusing multi-source remote sensing features (Sentinel-1/2) with terrain factors, employing RFE, and performing a multi-model comparison, we generated 10 m-resolution species distribution maps for 2024. Spatial overlay analysis quantified the cumulative proportion of the historically disturbed area and the spatial aggregation patterns of historical disturbances within current species ranges. Key results include the following: (1) The model predicting disturbance year achieved high accuracy (R2 = 0.95, RMSE = 2.02 years, MAE = 1.15 years). The total disturbed area from 1993 to 2024 was 872.7 km2, exhibiting three distinct phases. (2) The random forest (RF) model outperformed other classifiers, achieving an overall accuracy (OA) of 95.17% and a Kappa coefficient (K) of 0.93. Elevation was identified as the most discriminative feature. (3) Significant spatial differentiation in disturbance types emerged: anthropogenic disturbances (e.g., logging and reforestation/afforestation) dominated (63.1% of total disturbed area), primarily concentrated within Chinese fir zones (constituting 70.2% of disturbances within this species’ range). Natural disturbances accounted for 36.9% of the total, with fire dominating within the Yunnan pine range (79.3% of natural disturbances in this zone) and drought prevailing in the Armand pine range (71.3% of natural disturbances in this zone). (4) Cumulative disturbance characteristics differed markedly among species zones: Chinese fir zones exhibited the highest cumulative proportion of disturbed area (42.6%), with strong spatial aggregation. Yunnan pine zones followed (36.5%), exhibiting disturbances linearly distributed along dry–hot valleys. Armand pine zones showed the lowest proportion (20.9%), characterized by sparse disturbances within fragmented, high-altitude habitats. These spatial patterns reflect the combined controls of topographic adaptation, management intensity, and environmental stress. Our findings establish a scientific basis for identifying disturbance-prone areas and inform the development of differentiated precision management strategies for plantations. Full article
Show Figures

Figure 1

32 pages, 33100 KiB  
Article
Quantifying Spatiotemporal Evolution of Sandy Shorelines in Northern China Using DSAS: A Case Study from Dalian World Peace Park
by Panqing Lin, Xiangxu Wei, Yaxuan Zhang, Pengfei Lv, Ming Liu, Yi Yang and Xiangke Dong
Sustainability 2025, 17(17), 7591; https://doi.org/10.3390/su17177591 - 22 Aug 2025
Abstract
This study analyzed shoreline evolution (2000–2024) at Dalian World Peace Park’s sandy tourist beach using GEE, CoastSat, and DSAS. At the same time, combined with the grain size analysis of beach sediments before and after typhoons, the impact of extreme events on the [...] Read more.
This study analyzed shoreline evolution (2000–2024) at Dalian World Peace Park’s sandy tourist beach using GEE, CoastSat, and DSAS. At the same time, combined with the grain size analysis of beach sediments before and after typhoons, the impact of extreme events on the shoreline line changes was explored. The DSAS shows a spatial differentiation pattern of the southern shoreline retreat trend zone, the central shoreline dynamic balance trend zone and the northern shoreline advance trend zone. The 2008 reclamation project altered hydrodynamics, creating an artificial headland effect that triggered significant northern shoreline advancement (max 74.16 m) and southern retreat (27.14 m), demonstrating unforeseen long-term trade-offs of large-scale interventions. Subsequent cobble structures, acting as a nature-based solution, enhanced sediment retention and wave energy refraction, promoting dynamic equilibrium and shoreline resilience. However, the 2017 double typhoon caused instantaneous retreat with finer, poorly sorted sediment, highlighting persistent vulnerability to extreme events. This study underscores the critical need for adaptive management within a sustainable shoreline development framework. Full article
24 pages, 1779 KiB  
Article
Unraveling Elevation-Driven Variations in Forest Structure and Composition in Western Nepal
by Sagar Acharya, Rajeev Joshi, Tek Narayan Maraseni and Prakash Bhattarai
Diversity 2025, 17(8), 588; https://doi.org/10.3390/d17080588 - 20 Aug 2025
Viewed by 165
Abstract
Understanding how elevation influences forest structure and species composition is crucial for effective conservation in mountainous regions like Nepal, where ecosystems change dramatically over short distances. This study assessed forest dynamics along an elevational gradient (600–3200 m) in Nepal’s mid-hills, incorporating elevational zonation [...] Read more.
Understanding how elevation influences forest structure and species composition is crucial for effective conservation in mountainous regions like Nepal, where ecosystems change dramatically over short distances. This study assessed forest dynamics along an elevational gradient (600–3200 m) in Nepal’s mid-hills, incorporating elevational zonation (Tropical, Subtropical, Lower Temperate, and Upper Temperate) and aspect-driven variations. We established 27 square plots (20 × 20 m) at 100 m elevation intervals along a trekking route from Tallo Dungeshwor near the Karnali River to Mahabu Lek, recording all tree species with a diameter at breast height (DBH) ≥ 5 cm. Tree density across the elevational gradient ranged from 250 to 800 trees/ha. Basal area varied between 7.46 and 82.43 m2/ha, while mean tree height ranged from 6.89 to 16.62 m. Species diversity was assessed using the Shannon diversity index, and species dominance was evaluated through the Importance Value Index (IVI). Diversity peaked at mid-elevations, with Shorea robusta and Quercus semicarpifolia identified as dominant species. While minor variations occurred across topographic aspects, statistical analysis confirmed elevation as the dominant driver of forest structure and composition. Correlation analysis revealed a significant positive relationship between elevation and Simpson’s diversity index (r = 0.45, p < 0.05), indicating increased dominance diversity at higher elevations. These findings highlight the critical role of elevation and aspect in shaping forest ecosystems and offer valuable baseline data for climate-resilient management. We recommend conservation planning that is sensitive to topographic gradients, integrates long-term, climate-adaptive monitoring, and engages local communities to anticipate ecological shifts and address mounting anthropogenic pressures in vulnerable montane zones. Full article
(This article belongs to the Special Issue Canopy Ecology—Biodiversity, Functions, and Conservation)
Show Figures

Figure 1

27 pages, 6232 KiB  
Article
Insights from Earth Map: Unraveling Environmental Dynamics in the Euphrates–Tigris Basin
by Ayhan Ateşoğlu, Mustafa Hakkı Aydoğdu, Kasım Yenigün, Alfonso Sanchez-Paus Díaz, Giulio Marchi and Fidan Şevval Bulut
Sustainability 2025, 17(16), 7513; https://doi.org/10.3390/su17167513 - 20 Aug 2025
Viewed by 205
Abstract
The Euphrates–Tigris Basin is experiencing significant environmental transformations due to climate change, Land Use and Land Cover Change (LULCC), and anthropogenic pressures. This study employs Earth Map, an open-access remote sensing platform, to comprehensively assess climate trends, vegetation dynamics, water resource variability, and [...] Read more.
The Euphrates–Tigris Basin is experiencing significant environmental transformations due to climate change, Land Use and Land Cover Change (LULCC), and anthropogenic pressures. This study employs Earth Map, an open-access remote sensing platform, to comprehensively assess climate trends, vegetation dynamics, water resource variability, and land degradation across the basin. Key findings reveal a geographic shift toward aridity, with declining precipitation in high-altitude headwater regions and rising temperatures exacerbating water scarcity. While cropland expansion and localized improvements in land productivity were observed, large areas—particularly in hyperarid and steppe zones—show early signs of degradation, increasing the risk of dust source expansion. LULCC analysis highlights substantial wetland loss, irreversible urban growth, and agricultural encroachment into fragile ecosystems, with Iraq experiencing the most pronounced transformations. Climate projections under the SSP245 and SSP585 scenarios indicate intensified warming and aridity, threatening hydrological stability. This study underscores the urgent need for integrated water management, Land Degradation Neutrality (LDN), and climate-resilient policies to safeguard the basin’s ecological and socioeconomic resilience. Earth Map is a vital tool for monitoring environmental changes, offering rapid insights for policymakers and stakeholders in this data-scarce region. Future research should include higher-resolution datasets and localized socioeconomic data to improve adaptive strategies. Full article
(This article belongs to the Special Issue Drinking Water, Water Management and Environment)
Show Figures

Figure 1

15 pages, 7282 KiB  
Article
Spatiotemporal Patterns and Atmospheric Drivers of Anomalous Precipitation in the Taihu Basin, Eastern China
by Jingwen Hu, Jian Zhang, Abhishek, Wenpeng Zhao, Chuanqiao Zhou, Shuoyuan Liang, Biao Long, Ying Xu and Shuping Ma
Water 2025, 17(16), 2442; https://doi.org/10.3390/w17162442 - 18 Aug 2025
Viewed by 298
Abstract
This study investigates anomalous precipitation patterns in the Taihu Basin, located in the Yangtze River Delta of eastern China, using high-resolution daily data from 1960 to 2019. Leveraging a deep learning autoencoder and self-organizing map, three spatially distinct types are identified—north type (72%), [...] Read more.
This study investigates anomalous precipitation patterns in the Taihu Basin, located in the Yangtze River Delta of eastern China, using high-resolution daily data from 1960 to 2019. Leveraging a deep learning autoencoder and self-organizing map, three spatially distinct types are identified—north type (72%), south type (19.7%), and center type (8.3%). The north type exhibits a pronounced upward trend (+0.11 days/year, p < 0.05), indicating intensifying extreme rainfall under climate warming, while the south type displays a bimodal temporal structure, peaking in early summer and autumn. Composite analyses reveal that these patterns are closely associated with the westward extension of the Western North Pacific Subtropical High (WNPSH), meridional shifts of the East Asian Westerly Jet (EAJ), low-level moisture convergence, and SST–OLR anomalies. For instance, north-type events often coincide with strong anticyclonic anomalies and enhanced moisture transport from the Northwest Pacific and South China Sea, forming favorable convergence zones over the basin. For flood management in the Taihu Basin, the identified spatial patterns, particularly the bimodal south type, have clear implications. Their strong link to specific circulation features enables certain flood-prone scenarios to be anticipated 1–2 seasons in advance, supporting proactive measures such as reservoir scheduling. Overall, this classification framework deepens the understanding of atmospheric patterns associated with flood risk and provides practical guidance for storm design and adaptive flood risk management under a changing climate. Full article
Show Figures

Figure 1

21 pages, 4445 KiB  
Article
Mitigating Human–Nature Tensions Through Adaptive Zoning Informed by the Habitat Suitability of Flagship Species: Insights from the Longbao Reserve on the Qinghai–Tibet Plateau
by Yurun Ding, Hairui Duo, Zhi Zhang, Dongxiao Zhang, Tingting Wei, Deqing Cuo, Basang Cairen, Jingbao An, Baorong Huang and Yonghuan Ma
Land 2025, 14(8), 1662; https://doi.org/10.3390/land14081662 - 17 Aug 2025
Viewed by 278
Abstract
Zoning is vital for balancing biodiversity conservation and sustainable development in protected areas, yet traditional approaches often lead to ecological overprotection and social conflict. This study introduces an integrative modeling framework to optimize zoning strategies in the Longbao Reserve on the Qinghai–Tibet Plateau. [...] Read more.
Zoning is vital for balancing biodiversity conservation and sustainable development in protected areas, yet traditional approaches often lead to ecological overprotection and social conflict. This study introduces an integrative modeling framework to optimize zoning strategies in the Longbao Reserve on the Qinghai–Tibet Plateau. We employed MaxEnt and Random Forest algorithms to evaluate habitat suitability for two flagship species: the bar-headed goose (Anser indicus) and the black-necked crane (Grus nigricollis). Results showed that 7.9% of the reserve comprised highly suitable habitats, mainly in the southeast, characterized by wetlands, water proximity, and low human disturbance. Land use and June NDVI emerged as key predictors, contributing over 30% and 35% to model performance, respectively. Based on habitat suitability and current zoning mismatches, we propose a revised four-tier zoning scheme: Core Habitat Conservation (16.9%), Ecological Rehabilitation (7.2%), Ecological Management (53.5%), and Sustainable Utilization Zones (22.4%). This refined framework aligns conservation priorities with local development needs and offers a scalable approach to adaptive protected area management. Full article
Show Figures

Figure 1

21 pages, 4313 KiB  
Article
Optimization and Practice of Deep Carbonate Gas Reservoir Acidizing Technology in the Sinian System Formation of Sichuan Basin
by Song Li, Jian Yang, Weihua Chen, Zhouyang Wang, Hongming Fang, Yang Wang and Xiong Zhang
Processes 2025, 13(8), 2591; https://doi.org/10.3390/pr13082591 - 16 Aug 2025
Viewed by 252
Abstract
The gas reservoir of the Sinian Dengying Formation (Member 4) in Sichuan Basin exhibits extensive development of inter-clast dissolution pores and vugs within its carbonate reservoirs, characterized by low porosity (average 3.21%) and low permeability (average 2.19 mD). With the progressive development of [...] Read more.
The gas reservoir of the Sinian Dengying Formation (Member 4) in Sichuan Basin exhibits extensive development of inter-clast dissolution pores and vugs within its carbonate reservoirs, characterized by low porosity (average 3.21%) and low permeability (average 2.19 mD). With the progressive development of the Moxi (MX)structure, the existing stimulation techniques require further optimization based on the specific geological characteristics of these reservoirs. Through large-scale true tri-axial physical simulation experiments, this study systematically evaluated the performance of three principal acid systems in reservoir stimulation: (1) Self-generating acid systems, which enhance etching through the thermal decomposition of ester precursors to provide sustained reactive capabilities. (2) Gelled acid systems, characterized by high viscosity and effectiveness in reducing breakdown pressure (18~35% lower than conventional systems), are ideal for generating complex fracture networks. (3) Diverting acid systems, designed to improve fracture branching density by managing fluid flow heterogeneity. This study emphasizes hybrid acid combinations, particularly self-generating acid prepad coupled with gelled acid systems, to leverage their synergistic advantages. Field trials implementing these optimized systems revealed that conventional guar-based fracturing fluids demonstrated 40% higher breakdown pressures compared to acid systems, rendering hydraulic fracturing unsuitable for MX reservoirs. Comparative analysis confirmed gelled acid’s superiority over diverting acid in tensile strength reduction and fracture network complexity. Field implementations using reservoir-quality-adaptive strategies—gelled acid fracturing for main reservoir sections and integrated self-generating acid prepad + gelled acid systems for marginal zones—demonstrated the technical superiority of the hybrid system under MX reservoir conditions. This optimized protocol enhanced fracture length by 28% and stimulated reservoir volume by 36%, achieving a 36% single-well production increase. The technical framework provides an engineered solution for productivity enhancement in deep carbonate gas reservoirs within the G-M structural domain, with particular efficacy for reservoirs featuring dual low-porosity and low-permeability characteristics. Full article
Show Figures

Figure 1

30 pages, 18144 KiB  
Review
Travel, Sea Air and (Geo)Tourism in Coastal Southern England
by Thomas A. Hose
Tour. Hosp. 2025, 6(3), 155; https://doi.org/10.3390/tourhosp6030155 - 15 Aug 2025
Viewed by 372
Abstract
From the 17th century, European leisure travellers sought novel experiences, places and landscapes; they explored them within the context of contemporary, but temporally changing, social norms. Amongst travellers’ earliest motivations were reportage, curiosity and recuperation in managed landscapes. From the late 18th century, [...] Read more.
From the 17th century, European leisure travellers sought novel experiences, places and landscapes; they explored them within the context of contemporary, but temporally changing, social norms. Amongst travellers’ earliest motivations were reportage, curiosity and recuperation in managed landscapes. From the late 18th century, images in art galleries and then guidebooks directed leisure travellers into ‘wild’ places. Supporting and part-driving these developments were travel and antiquarian publications. That normalisation of ‘wild places’ exploration coincided with natural history’s popularisation. From the early 19th century, geosites were recognised, scientifically described, and popularised through a range of publications; this marked the beginning of geotourism. This can be contextualised within the rise in resort-based coastal tourism. These various themes are explored in relation to ‘Coastal Southern England’, an important tourism region from the early-18th century. By the Great War’s (1914–1918) close, its tourism patterns and nature, recognisable in present-day offerings, were established. Its development as a geotourism region can be conceptualised through the ‘travellers’ gaze’ and ‘adapted comfort zone’ models. Early geotourism literature and artistic representations, along with their creators’ biographies, could underpin modern geo-interpretation, of which some exemplars are given. General conclusions are drawn and future research suggested. Full article
Show Figures

Figure 1

20 pages, 5301 KiB  
Article
From Diversity to Homogenisation: Assessing Two Decades of Temperate Native Forest Replaced by Exotic Plantations in the Nahuelbuta Mountain Range
by Rebeca Martínez-Retureta, Rosa Reyes-Riveros, Iongel Duran-Llacer, Lien Rodríguez-López, Clara Margarita Tinoco-Navarro and Norberto J. Abreu
Land 2025, 14(8), 1648; https://doi.org/10.3390/land14081648 - 15 Aug 2025
Viewed by 359
Abstract
The Nahuelbuta Mountain Range in the south-central zone of Chile is a biodiversity hotspot that has undergone intense land use/cover transformation. This study analyses two decades of land use change (1999–2018) in the watersheds of the Lebu and Leiva rivers. The magnitude and [...] Read more.
The Nahuelbuta Mountain Range in the south-central zone of Chile is a biodiversity hotspot that has undergone intense land use/cover transformation. This study analyses two decades of land use change (1999–2018) in the watersheds of the Lebu and Leiva rivers. The magnitude and spatial configuration of these changes were assessed using detailed spatial information, transition matrices, and landscape metrics. The results show that between 1999 and 2018, temperate native forest decreased by 30.3% in Lebu and 22.8% in Leiva, being replaced mainly by exotic forest plantations, which increased by 20.2% and 13.5%, respectively. The spatiotemporal analysis revealed losses concentrated in the lowland and middle zones of both watersheds, with persistence of temperate native forest in higher elevations. Landscape metrics showed an increase in diversity (SIDI: Lebu 0.41–0.65; Leiva 0.29–0.57) and a decrease in aggregation (AI: 92–86%; 95–90%). At the class level, the temperate native forest presented greater fragmentation, with a reduction in size and proximity, an increase in density, and more irregular shapes. In contrast, exotic forest plantations increased in size and proximity, with a slight decrease in density and greater complexity of form, consolidating their expansion and spatial continuity in both watersheds. These findings emphasise the need to implement territorial planning and conservation strategies adapted to the Nahuelbuta context, through native forest management plans that promote ecological conservation, the recovery of degraded landscapes, and the strengthening of ecosystem services, thus contributing to the well-being of local communities and long-term environmental sustainability. Full article
(This article belongs to the Section Land – Observation and Monitoring)
Show Figures

Figure 1

26 pages, 5545 KiB  
Article
Time-Series MODIS-Based Remote Sensing and Explainable Machine Learning for Assessing Grassland Resilience in Arid Regions
by Ruihan Liu, Yang Yu, Ireneusz Malik, Malgorzata Wistuba, Zengkun Guo, Yuanbo Lu, Xiaoyun Ding, Jing He, Lingxiao Sun, Chunlan Li and Ruide Yu
Remote Sens. 2025, 17(16), 2749; https://doi.org/10.3390/rs17162749 - 8 Aug 2025
Viewed by 385
Abstract
Grassland ecosystems in arid regions increasingly experience resilience loss due to intensifying climatic variability. However, the limited interpretability of conventional machine learning models constrains our understanding of underlying ecological drivers. This study constructs an integrative framework that combines temporal autocorrelation (TAC) metrics with [...] Read more.
Grassland ecosystems in arid regions increasingly experience resilience loss due to intensifying climatic variability. However, the limited interpretability of conventional machine learning models constrains our understanding of underlying ecological drivers. This study constructs an integrative framework that combines temporal autocorrelation (TAC) metrics with explainable machine learning, employing Random Forest and SHAP (SHapley Additive exPlanations) analysis. Time series of satellite-derived vegetation indices from MODIS (2001–2023), particularly the kernel Normalized Difference Vegetation Index (KNDVI), support the generation of TAC and its trend-based derivative δTAC. The framework assesses ecosystem resilience across seven representative grassland types in Xinjiang, capturing diverse responses to climate variability and vegetation dynamics. Results reveal pronounced spatial heterogeneity: resilience declines in radiation-stressed arid zones, while hydrothermally stable regions maintain stronger recovery capacity. Key drivers include temperature variability and vegetation dynamics, with divergent effects among grassland types. Meadow and Typical Steppe exhibit higher resilience under stable hydrothermal regimes, whereas desert and alpine systems show greater sensitivity to warming and climatic fluctuations. This framework enhances diagnostic transparency and ecological insight, offering a spatially explicit, data-driven tool for resilience monitoring. The findings support the formulation of targeted adaptation strategies and sustainable grassland management in response to ongoing climate change. Full article
Show Figures

Graphical abstract

13 pages, 2843 KiB  
Article
Evaluating the Climate Resilience of Agricultural Livelihoods Through the Impact of Climate Change on Sediment Loss and Retention—A Step Towards Ecosystem-Based Adaptation in Savannakhet Province, Lao People’s Democratic Republic
by Indrajit Pal, Sreejita Banerjee, Oulavanh Sinsamphanh, Jeeten Kumar and Puvadol Doydee
Sustainability 2025, 17(15), 7162; https://doi.org/10.3390/su17157162 - 7 Aug 2025
Viewed by 361
Abstract
This study assesses the projected impacts of climate change on sediment retention and soil loss in Savannakhet Province, Lao PDR, through the application of the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) Sediment Delivery Ratio (SDR) model. Using climate projections under SSP2-4.5 [...] Read more.
This study assesses the projected impacts of climate change on sediment retention and soil loss in Savannakhet Province, Lao PDR, through the application of the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) Sediment Delivery Ratio (SDR) model. Using climate projections under SSP2-4.5 and SSP5-8.5 scenarios for the mid- and late-21st century (2050 and 2080), compared against a 2015 baseline, the analysis quantifies changes in sediment dynamics and ecosystem service provision. Results reveal a substantial increase in sediment retention, particularly in forested and flooded vegetation areas, under moderate and high-emission pathways. However, an overall rise in soil loss is observed across croplands and urbanized zones, driven by intensified high-risk areas, which requires conservative management. This study advocates for ecosystem-based adaptation (EbA) strategies—including afforestation, intercropping, and riparian restoration—to enhance watershed resilience. These nature-based solutions align with national adaptation goals and offer co-benefits for biodiversity, climate regulation, and rural livelihoods. Full article
(This article belongs to the Section Hazards and Sustainability)
Show Figures

Figure 1

20 pages, 1801 KiB  
Article
Territorially Stratified Modeling for Sustainable Management of Free-Roaming Cat Populations in Spain: A National Approach to Urban and Rural Environmental Planning
by Octavio P. Luzardo, Ruth Manzanares-Fernández, José Ramón Becerra-Carollo and María del Mar Travieso-Aja
Animals 2025, 15(15), 2278; https://doi.org/10.3390/ani15152278 - 4 Aug 2025
Viewed by 1399
Abstract
This study presents the scientific and methodological foundation of Spain’s first national framework for the ethical management of community cat populations: the Action Plan for the Management of Community Cat Colonies (PACF), launched in 2025 under the mandate of Law 7/2023. This pioneering [...] Read more.
This study presents the scientific and methodological foundation of Spain’s first national framework for the ethical management of community cat populations: the Action Plan for the Management of Community Cat Colonies (PACF), launched in 2025 under the mandate of Law 7/2023. This pioneering legislation introduces a standardized, nationwide obligation for trap–neuter–return (TNR)-based management of free-roaming cats, defined as animals living freely, territorially attached, and with limited socialization toward humans. The PACF aims to support municipalities in implementing this mandate through evidence-based strategies that integrate animal welfare, biodiversity protection, and public health objectives. Using standardized data submitted by 1128 municipalities (13.9% of Spain’s total), we estimated a baseline population of 1.81 million community cats distributed across 125,000 colonies. These data were stratified by municipal population size and applied to national census figures to generate a model-ready demographic structure. We then implemented a stochastic simulation using Vortex software to project long-term population dynamics over a 25-year horizon. The model integrated eight demographic–environmental scenarios defined by a combination of urban–rural classification and ecological reproductive potential based on photoperiod and winter temperature. Parameters included reproductive output, mortality, sterilization coverage, abandonment and adoption rates, stochastic catastrophic events, and territorial carrying capacity. Under current sterilization rates (~20%), our projections indicate that Spain’s community cat population could surpass 5 million individuals by 2050, saturating ecological and social thresholds within a decade. In contrast, a differentiated sterilization strategy aligned with territorial reproductive intensity (50% in most areas, 60–70% in high-pressure zones) achieves population stabilization by 2030 at approximately 1.5 million cats, followed by a gradual long-term decline. This scenario prioritizes feasibility while substantially reducing reproductive output, particularly in rural and high-intensity contexts. The PACF combines stratified demographic modeling with spatial sensitivity, offering a flexible framework adaptable to local conditions. It incorporates One Health principles and introduces tools for adaptive management, including digital monitoring platforms and standardized welfare protocols. While ecological impacts were not directly assessed, the proposed demographic stabilization is designed to mitigate population-driven risks to biodiversity and public health without relying on lethal control. By integrating legal mandates, stratified modeling, and realistic intervention goals, this study outlines a replicable and scalable framework for coordinated action across administrative levels. It exemplifies how national policy can be operationalized through data-driven, territorially sensitive planning tools. The findings support the strategic deployment of TNR-based programs across diverse municipal contexts, providing a model for other countries seeking to align animal welfare policy with ecological planning under a multi-level governance perspective. Full article
(This article belongs to the Section Animal System and Management)
Show Figures

Figure 1

23 pages, 311 KiB  
Article
Sustainable Tourism in Protected Areas: Comparative Governance and Lessons from Tara and Triglav National Parks
by Stefana Matović, Suzana Lović Obradović and Tamara Gajić
Sustainability 2025, 17(15), 7048; https://doi.org/10.3390/su17157048 - 3 Aug 2025
Viewed by 647
Abstract
This paper investigates how governance frameworks shape sustainable tourism outcomes in protected areas by comparing Tara National Park (Serbia) and Triglav National Park (Slovenia). Both parks, established in 1981 and classified under IUCN Category II, exhibit rich biodiversity and mountainous terrain but differ [...] Read more.
This paper investigates how governance frameworks shape sustainable tourism outcomes in protected areas by comparing Tara National Park (Serbia) and Triglav National Park (Slovenia). Both parks, established in 1981 and classified under IUCN Category II, exhibit rich biodiversity and mountainous terrain but differ markedly in governance structures, institutional integration, and local community engagement. Using a qualitative, indicator-based methodology, this research evaluates ecological, economic, and social dimensions of sustainability. The findings reveal that Triglav NP demonstrates higher levels of participatory governance, tourism integration, and educational outreach, while Tara NP maintains stricter ecological protection with less inclusive management. Triglav’s zoning model, community council, and economic alignment with regional development policies contribute to stronger sustainability outcomes. Conversely, Tara NP’s centralized governance and infrastructural gaps constrain its potential despite its significant conservation value. This study highlights the importance of adaptive, inclusive governance in achieving the Sustainable Development Goals (SDGs) within protected areas. It concludes that hybrid approaches, combining legal rigor with participatory flexibility, can foster resilience and sustainability in ecologically sensitive regions. Full article
27 pages, 2496 KiB  
Article
A Context-Aware Tourism Recommender System Using a Hybrid Method Combining Deep Learning and Ontology-Based Knowledge
by Marco Flórez, Eduardo Carrillo, Francisco Mendes and José Carreño
J. Theor. Appl. Electron. Commer. Res. 2025, 20(3), 194; https://doi.org/10.3390/jtaer20030194 - 2 Aug 2025
Viewed by 642
Abstract
The Santurbán paramo is a sensitive high-mountain ecosystem exposed to pressures from extractive and agricultural activities, as well as increasing tourism. In response, this study presents a context-aware recommendation system designed to support sustainable tourism through the integration of deep neural networks and [...] Read more.
The Santurbán paramo is a sensitive high-mountain ecosystem exposed to pressures from extractive and agricultural activities, as well as increasing tourism. In response, this study presents a context-aware recommendation system designed to support sustainable tourism through the integration of deep neural networks and ontology-based semantic modeling. The proposed system delivers personalized recommendations—such as activities, accommodations, and ecological routes—by processing user preferences, geolocation data, and contextual features, including cost and popularity. The architecture combines a trained TensorFlow Lite model with a domain ontology enriched with GeoSPARQL for geospatial reasoning. All inference operations are conducted locally on Android devices, supported by SQLite for offline data storage, which ensures functionality in connectivity-restricted environments and preserves user privacy. Additionally, the system employs geofencing to trigger real-time environmental notifications when users approach ecologically sensitive zones, promoting responsible behavior and biodiversity awareness. By incorporating structured semantic knowledge with adaptive machine learning, the system enables low-latency, personalized, and conservation-oriented recommendations. This approach contributes to the sustainable management of natural reserves by aligning individual tourism experiences with ecological protection objectives, particularly in remote areas like the Santurbán paramo. Full article
Show Figures

Figure 1

16 pages, 4272 KiB  
Article
Prediction Analysis of Integrative Quality Zones for Corydalis yanhusuo W. T. Wang Under Climate Change: A Rare Medicinal Plant Endemic to China
by Huiming Wang, Bin Huang, Lei Xu and Ting Chen
Biology 2025, 14(8), 972; https://doi.org/10.3390/biology14080972 - 1 Aug 2025
Viewed by 328
Abstract
Corydalis yanhusuo W. T. Wang, commonly known as Yanhusuo, is an important and rare medicinal plant resource in China. Its habitat integrity is facing severe challenges due to climate change and human activities. Establishing an integrative quality zoning system for this species is [...] Read more.
Corydalis yanhusuo W. T. Wang, commonly known as Yanhusuo, is an important and rare medicinal plant resource in China. Its habitat integrity is facing severe challenges due to climate change and human activities. Establishing an integrative quality zoning system for this species is of significant practical importance for resource conservation and adaptive management. This study integrates multiple data sources, including 121 valid distribution points, 37 environmental factors, future climate scenarios (SSP126 and SSP585 pathways for the 2050s and 2090s), and measured content of tetrahydropalmatine (THP) from 22 sampling sites. A predictive framework for habitat suitability and spatial distribution of effective components was constructed using a multi-model coupling approach (MaxEnt, ArcGIS spatial analysis, and co-kriging method). The results indicate that the MaxEnt model exhibits high prediction accuracy (AUC > 0.9), with the dominant environmental factors being the precipitation of the wettest quarter (404.8~654.5 mm) and the annual average temperature (11.8~17.4 °C). Under current climatic conditions, areas of high suitability are concentrated in parts of Central and Eastern China, including the Sichuan Basin, the middle–lower Yangtze plains, and coastal areas of Shandong and Liaoning. In future climate scenarios, the center of suitable areas is predicted to shift northwestward. The content of THP is significantly correlated with the mean diurnal temperature range, temperature seasonality, and the mean temperature of the wettest quarter (p < 0.01). A comprehensive assessment identifies the Yangtze River Delta region, Central China, and parts of the Loess Plateau as the optimal integrative quality zones. This research provides a scientific basis and decision-making support for the sustainable utilization of C. yanhusuo and other rare medicinal plants in China. Full article
Show Figures

Figure 1

Back to TopTop