For mine ventilation-on-demand (VOD) scenarios, conventional joint optimisation of airflow augmentation and energy saving in mine ventilation systems is often constrained in practical engineering applications by shrinkage of the feasible region, limited adjustable resistance margins, and strongly multi-modal objective functions. These factors tend
[...] Read more.
For mine ventilation-on-demand (VOD) scenarios, conventional joint optimisation of airflow augmentation and energy saving in mine ventilation systems is often constrained in practical engineering applications by shrinkage of the feasible region, limited adjustable resistance margins, and strongly multi-modal objective functions. These factors tend to result in low solution efficiency, pronounced sensitivity to initial values and insufficient solution robustness. In response to these challenges, a two-layer intelligent evolutionary optimisation framework, termed ES–Hybrid JADE with Competitive Niching, is developed in this study. In the outer layer, four classes of evolutionary algorithms—CMAES, DE, ES, and GA—are comparatively assessed over 50 repeated test runs, with a combined ranking based on convergence speed and solution quality adopted as the evaluation metric. ES, with a rank_mean of 2.0, is ultimately selected as the global hyper-parameter self-adaptive regulator. In the inner layer, four algorithms—COBYLA, JADE, PSO and TPE—are compared. The results indicate that JADE achieves the best overall performance in terms of terminal objective value, multi-dimensional performance trade-offs and robustness across random seeds. Furthermore, all four inner-layer algorithms attain feasible solutions with a success rate of 1.0 under the prescribed constraints, thereby ensuring that the entire optimisation process remains within the feasible domain. The proposed framework is applied to an exhaust-type dual-fan ventilation system in a coal mine in Shaanxi Province as an engineering case study. By integrating GA-based automatic ventilation network drawing (longest-path/connected-path) with roadway sensitivity analysis and maximum resistance increment assessment, two solution schemes—direct optimisation and composite optimisation—are constructed and compared. The results show that, within the airflow augmentation interval [0.40, 0.55], the two schemes are essentially equivalent in terms of the optimal augmentation effect, whereas the computation time of the composite optimisation scheme is reduced significantly from approximately 29 min to about 13 s, and a set of multi-modal elite solutions can be provided to support dispatch and decision-making. Under global constraints, a maximum achievable airflow increment of approximately 0.66 m
3·s
−1 is obtained for branch 10, and optimal dual-branch and triple-branch cooperative augmentation combinations, together with the corresponding power projections, are further derived. To the best of our knowledge, prior VOD airflow-augmentation studies have not combined feasibility-region contraction (via sensitivity- and resistance-margin gating) with a two-layer ES-tuned JADE optimiser equipped with Competitive Niching to output multiple feasible optima. This work provides new insight that the constrained airflow-augmentation problem is intrinsically multimodal, and that retaining multiple basins of attraction yields dispatch-ready elite solutions while achieving orders-of-magnitude runtime reduction through prediction-based constraints. The study demonstrates that the proposed two-layer intelligent evolutionary framework combines fast convergence with high solution stability under strict feasibility constraints, and can be employed as an engineering algorithmic core for energy-efficiency co-ordination in mine VOD control.
Full article