Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (75)

Search Parameters:
Keywords = acyl radical

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1175 KiB  
Article
Photochemically-Enabled Umpolung Conversion of 2-Acyloxybenzaldehydes into 2-Hydroxybenzofuranones
by Victoria E. Opryshko, Svetlana A. Krasnova, Andrey A. Mikhaylov, Yulia A. Bogdanova, Alexander Yu. Smirnov, Mikhail S. Baranov and Dmitrii S. Ivanov
Molecules 2025, 30(15), 3080; https://doi.org/10.3390/molecules30153080 - 23 Jul 2025
Viewed by 370
Abstract
2-Acyloxybenzaldehydes are converted into 2-hydroxybenzofuranones in good to excellent yields (60–99%). The reaction proceeds at room temperature in DMSO upon 365 nm LED irradiation under photocatalyst-free conditions. The present atom-economical synthetic approach represents the aldehyde group umpolung reactivity. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Graphical abstract

30 pages, 925 KiB  
Review
Review: Enhancing the Bioavailability and Stability of Anthocyanins for the Prevention and Treatment of Central Nervous System-Related Diseases
by Lan Zhang, Yan Wang, Yalong Cao, Fangxu Wang and Fang Li
Foods 2025, 14(14), 2420; https://doi.org/10.3390/foods14142420 - 9 Jul 2025
Viewed by 710
Abstract
Central nervous system diseases are highly complex in terms of etiology and pathogenesis, making their treatment and interventions for them a major focus and challenge in neuroscience research. Anthocyanins, natural water-soluble pigments widely present in plants, belong to the class of flavonoid compounds. [...] Read more.
Central nervous system diseases are highly complex in terms of etiology and pathogenesis, making their treatment and interventions for them a major focus and challenge in neuroscience research. Anthocyanins, natural water-soluble pigments widely present in plants, belong to the class of flavonoid compounds. As natural antioxidants, anthocyanins have attracted extensive attention due to their significant functions in scavenging free radicals, antioxidation, anti-inflammation, and anti-apoptosis. The application of anthocyanins in the field of central nervous system injury, particularly in neurodegenerative diseases, neurotoxicity induced by chemical drugs, stress-related nerve damage, and cerebrovascular diseases, has achieved remarkable research outcomes. However, anthocyanins often exhibit low chemical stability, a short half-life, and relatively low bioavailability, which limit their clinical application. Recent studies have found that the stability and bioavailability of anthocyanins can be significantly improved through nanoencapsulation, acylation, and copigmentation, as well as the preparation of nanogels, nanoemulsions, and liposomes. These advancements offer the potential for the development of anthocyanins as a new type of neuroprotective agent. Future research will focus on the innovative design of nano-delivery systems and structural modification based on artificial intelligence. Such research is expected to break through the bottleneck of anthocyanin application and enable it to become a core component of next-generation intelligent neuroprotective agents. Full article
Show Figures

Figure 1

17 pages, 3416 KiB  
Article
Influence of Enzymatic Acylation on the Stability and Antioxidant Properties of Cyanidin-3-O-Glucoside in Both Aqueous and Lipid Systems
by Ziwei Ye, Mingyun Liu, Jingmei Lyu, Han Rong and Lujing Gan
Molecules 2025, 30(9), 2015; https://doi.org/10.3390/molecules30092015 - 30 Apr 2025
Viewed by 573
Abstract
Cyanidin-3-O-glucoside (C3G) was used as a substrate for enzymatic acylation, and different compounds (methyl n-octanoate and methyl salicylate) were selected as acyl donors. Structural analysis (UV–Vis, FTIR, and HPLC) revealed the successful integration of methyl ester compounds into the structural [...] Read more.
Cyanidin-3-O-glucoside (C3G) was used as a substrate for enzymatic acylation, and different compounds (methyl n-octanoate and methyl salicylate) were selected as acyl donors. Structural analysis (UV–Vis, FTIR, and HPLC) revealed the successful integration of methyl ester compounds into the structural units of C3G. The thermostability and photostability of acylated C3Gs, particularly those with methyl salicylate as the acyl donor, exhibited significant improvements. The molecular geometries of the different anthocyanins were optimized using computational chemistry, and energy level calculations were performed by using Density Functional Theory (DFT) to identify the antioxidant active site. Then, the antioxidant properties of C3G and acylated C3Gs (O-C3G and S-C3G) were studied in both aqueous and lipid systems. In aqueous systems, acylated C3Gs exhibited higher antioxidant properties than C3G in DPPH radical scavenging and hydroxyl radical scavenging assays, with cyanidin-3-O-glucoside salicyl acyl product (S-C3G) demonstrating the highest activity. However, the antioxidant properties varied in lipid systems. In lipid systems, acylated C3Gs displayed better antioxidant properties than C3G in POV and TBARS assays, with cyanidin-3-O-glucoside n-octanoate acid acyl product (O-C3G) showing better antioxidant properties compared to that in aqueous systems. Full article
Show Figures

Graphical abstract

23 pages, 3147 KiB  
Review
Benzothiazolines Acting as Carbanion and Radical Transfer Reagents in Carbon–Carbon Bond Construction
by Xiaotang Chen and Bao-Chen Qian
Molecules 2025, 30(8), 1711; https://doi.org/10.3390/molecules30081711 - 11 Apr 2025
Viewed by 661
Abstract
Traditionally employed as hydrogenation reagents, benzothiazolines have emerged as versatile carbanion and radical transfer reagents, playing a vital role in the construction of various carbon–carbon bonds. The cutting-edge progress in photochemistry and radical chemistry have prompted the study of visible light-driven radical reactions, [...] Read more.
Traditionally employed as hydrogenation reagents, benzothiazolines have emerged as versatile carbanion and radical transfer reagents, playing a vital role in the construction of various carbon–carbon bonds. The cutting-edge progress in photochemistry and radical chemistry have prompted the study of visible light-driven radical reactions, bringing benzothiazolines into a vibrant focus. Their chemical processes have been uncovered to encompass a variety of activation mechanisms, with five distinct modes having been identified. This work reviews the innovative applications of benzothiazolines as donors of alkyl or acyl groups, achieving hydroalkylation or hydroacylation and alkyl or acyl substitution. By examining their diverse activation mechanisms, this review highlights the potential of benzothiazolines serving as alkyl and acyl groups for further research and development. Moreover, this review will offer exemplary applications and inspiration to synthetic chemists, contributing to the ongoing evolution of benzothiazolines utility in organic synthesis. Full article
Show Figures

Scheme 1

17 pages, 6810 KiB  
Article
Hericium erinaceus Protein Alleviates High-Fat Diet-Induced Hepatic Lipid Accumulation and Oxidative Stress In Vivo
by Hongzheng Lu, Siqi Yang, Wei Li, Baodong Zheng, Shaoxiao Zeng and Haoran Chen
Foods 2025, 14(3), 459; https://doi.org/10.3390/foods14030459 - 31 Jan 2025
Cited by 3 | Viewed by 1785
Abstract
Dietary interventions with food-derived natural products have emerged as a promising strategy to alleviate obesity. This study aims to investigate the anti-obesity effect of Hericium erinaceus protein (HEP) and its underlying mechanism. Our results demonstrated that HEP exhibited excellent radical scavenging activity in [...] Read more.
Dietary interventions with food-derived natural products have emerged as a promising strategy to alleviate obesity. This study aims to investigate the anti-obesity effect of Hericium erinaceus protein (HEP) and its underlying mechanism. Our results demonstrated that HEP exhibited excellent radical scavenging activity in vitro. In vivo, HEP intervention reduced pancreatic lipase activity in the intestine and enhanced fat excretion, thereby inhibiting the absorption of dietary fats. Meanwhile, HEP ameliorated the body weight and organ indexes, dyslipidemia, insulin resistance, hepatic steatosis, and liver oxidative stress injuries in obese mice. The results of real-time PCR (qRT-PCR) and Western blot analyses indicated that HEP upregulated the expression of peroxisome proliferator-activated receptor α (PPARα), subsequently upregulated the expression of liver fatty acid oxidation-related genes (lipoprotein lipase (LPL), carnitine palmitoyltransferase 1a (CPT-1a), and acyl-CoA oxidase 1 (ACOX1)) and downregulated the expression of lipogenesis-related genes (sterol regulatory element-binding protein-1c (SREBP-1c), stearoyl-coenzyme A desaturase 1 (SCD-1), and fatty acid synthase (FASN)), thereby ameliorating lipid metabolism disorders. Therefore, these findings demonstrated that HEP exerted protective effects on lipid metabolism disorders by activating the PPARα pathway, indicating its potential as a dietary supplement for the prevention and amelioration of obesity. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Figure 1

18 pages, 6679 KiB  
Article
Poly(sodium styrene sulfonate)-Grafted SiO2 Nanoparticle: Synthesis and Use as a Water-Insoluble Dispersant for Coal Water Slurry
by Guanghua Zhang, Ruijun Liu, Wanbin Zhang, Kangmin Zhang, Junfeng Zhu and Ce Zhang
Polymers 2025, 17(1), 21; https://doi.org/10.3390/polym17010021 - 25 Dec 2024
Viewed by 1011
Abstract
This study introduces a novel water-insoluble dispersant for coal water slurry (CWS), namely, a poly(sodium styrene sulfonate)-grafted SiO2 nanoparticle (SiO2-g-PSSNa). SiO2-g-PSSNa was synthesized by combining the surface acylation reaction with surface-initiated atom transfer [...] Read more.
This study introduces a novel water-insoluble dispersant for coal water slurry (CWS), namely, a poly(sodium styrene sulfonate)-grafted SiO2 nanoparticle (SiO2-g-PSSNa). SiO2-g-PSSNa was synthesized by combining the surface acylation reaction with surface-initiated atom transfer radical polymerization (SI-ATRP). Fourier transform infrared spectrometry (FTIR), X-ray photoelectron spectroscopy (XPS), energy dispersive spectrometer (EDS), nuclear magnetic resonance spectroscopy (NMR) and thermogravimetric analysis (TGA) verified that SiO2-g-PSSNa with the desired structure was successfully obtained. Afterwards, the performance of SiO2-g-PSSNa as a dispersant in CWS preparation was evaluated. The results indicated that the optimal dosage of SiO2-g-PSSNa was 0.3%. Compared to the famous commercial products, PSSNa and lignosulfonate (LS), SiO2-g-PSSNa exhibits improved viscosity reduction performance. When SiO2-g-PSSNa was used as the dispersant, the maximum coal loading of CWS was 64.2%, which was higher than LS (63.4%) and PSSNa (63.9%). All CWSs obtained in this study were pseudoplastic fluids and more consistent with the Herschel–Bulkley rheological model. The turbiscan stability index (TSI) of CWS prepared with SiO2-g-PSSNa was 0.05, which was significantly lower than CWSs obtained from PSSNa (0.30) and LS (0.36). Therefore, SiO2-g-PSSNa also exhibits excellent stability performance. This result was confirmed by rod penetration tests. The underlying mechanism was also clarified by various measurements, such as contact angle, zeta potential, EDS and low-field nuclear magnetic resonance spectra (low-field NMR). The results reveal that SiO2-g-PSSNa can adsorbed onto the coal surface. SiO2-g-PSSNa possesses a special branched structure, which bears a higher charge density as compared to linear ones with approximate chemical composition. As a result, coal particles adsorbed with SiO2-g-PSSNa exhibit more electronegativity. With the enhancement of the electrostatic repulsive between coal particles, the apparent viscosity was lowered and the static stability was improved. This study demonstrated that solubility in water is not an essential factor in engineering the dispersant. Densely charged groups are probably more important. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

17 pages, 2847 KiB  
Article
Bioactivities of Quinic Acids from Vitex rotundifolia Obtained by Supercritical Fluid Extraction
by Duc Dat Le, Young Su Jang, Vinhquang Truong, Soojung Yu, Thientam Dinh and Mina Lee
Antioxidants 2024, 13(10), 1235; https://doi.org/10.3390/antiox13101235 - 14 Oct 2024
Cited by 2 | Viewed by 1474
Abstract
Acyl-quinic acids (AQAs), present in various plants with many health benefits, are regarded as therapeutic agents in the prevention and treatment of chronic and cardiovascular diseases. The molecular network-guided identification of ten AQA compounds, two new (5 and 7) and eight [...] Read more.
Acyl-quinic acids (AQAs), present in various plants with many health benefits, are regarded as therapeutic agents in the prevention and treatment of chronic and cardiovascular diseases. The molecular network-guided identification of ten AQA compounds, two new (5 and 7) and eight known compounds, were isolated from V. rotundifolia L. f. by using a newly applied extraction method. Their structures were determined through spectroscopic means, reaction mixtures, and modified Mosher and PGME techniques. These compounds were assessed for their anti-inflammatory and antioxidant capabilities. Notably, compounds 1, 3, 4, 6, 8, and 9 exhibited notable DPPH radical scavenging activity. In LPS-induced HT-29 cells, compounds 27 significantly inhibited IL-8 production. Furthermore, compounds 35 and 7 markedly suppressed NO production, while compounds 110 effectively inhibited IL-6 production in LPS-induced RAW264.7 cells. Western blot analyses revealed that compounds 35, and 7 reduced iNOS and COX-2 expression, and compounds 25, 7, and 8 also diminished the expression levels of p38 MAPK phosphorylation. Docking studies demonstrated the active compounds’ binding affinity with the IL-8, iNOS, COX-2, and p38 MAPK proteins through interactions with essential amino acids within the binding pockets of complexes. The findings suggest that compounds 1, 3, 4, 6, 8, and 9, and compounds 35, and 7, hold promise as potential therapeutic agents for treating antioxidative and inflammatory diseases, respectively. Full article
(This article belongs to the Special Issue Plant Antioxidants, Inflammation, and Chronic Disease)
Show Figures

Figure 1

14 pages, 2039 KiB  
Article
Metabolomic Effects of Liraglutide Therapy on the Plasma Metabolomic Profile of Patients with Obesity
by Assim A. Alfadda, Anas M. Abdel Rahman, Hicham Benabdelkamel, Reem AlMalki, Bashayr Alsuwayni, Abdulaziz Alhossan, Madhawi M. Aldhwayan, Ghalia N. Abdeen, Alexander Dimitri Miras and Afshan Masood
Metabolites 2024, 14(9), 500; https://doi.org/10.3390/metabo14090500 - 17 Sep 2024
Cited by 1 | Viewed by 2157
Abstract
Background: Liraglutide, a long-acting glucagon-like peptide-1 receptor agonist (GLP1RA), is a well-established anti-diabetic drug, has also been approved for the treatment of obesity at a dose of 3 mg. There are a limited number of studies in the literature that have looked at [...] Read more.
Background: Liraglutide, a long-acting glucagon-like peptide-1 receptor agonist (GLP1RA), is a well-established anti-diabetic drug, has also been approved for the treatment of obesity at a dose of 3 mg. There are a limited number of studies in the literature that have looked at changes in metabolite levels before and after liraglutide treatment in patients with obesity. To this end, in the present study we aimed to explore the changes in the plasma metabolomic profile, using liquid chromatography-high resolution mass spectrometry (LC-HRMS) in patients with obesity. Methods: A single-center prospective study was undertaken to evaluate the effectiveness of 3 mg liraglutide therapy in twenty-three patients (M/F: 8/15) with obesity, mean BMI 40.81 ± 5.04 kg/m2, and mean age of 36 ± 10.9 years, in two groups: at baseline (pre-treatment) and after 12 weeks of treatment (post-treatment). An untargeted metabolomic profiling was conducted in plasma from the pre-treatment and post-treatment groups using LC-HRMS, along with bioinformatics analysis using ingenuity pathway analysis (IPA). Results: The metabolomics analysis revealed a significant (FDR p-value ≤ 0.05, FC 1.5) dysregulation of 161 endogenous metabolites (97 upregulated and 64 downregulated) with distinct separation between the two groups. Among the significantly dysregulated metabolites, the majority of them were identified as belonging to the class of oxidized lipids (oxylipins) that includes arachidonic acid and its derivatives, phosphorglycerophosphates, N-acylated amino acids, steroid hormones, and bile acids. The biomarker analysis conducted using MetaboAnalyst showed PGP (a21:0/PG/F1alpha), an oxidized lipid, as the first metabolite among the list of the top 15 biomarkers, followed by cysteine and estrone. The IPA analysis showed that the dysregulated metabolites impacted the pathway related to cell signaling, free radical scavenging, and molecular transport, and were focused around the dysregulation of NF-κB, ERK, MAPK, PKc, VEGF, insulin, and pro-inflammatory cytokine signaling pathways. Conclusions: The findings suggest that liraglutide treatment reduces inflammation and modulates lipid metabolism and oxidative stress. Our study contributes to a better understanding of the drug’s multifaceted impact on overall metabolism in patients with obesity. Full article
(This article belongs to the Special Issue Metabolomics in Human Diseases and Health)
Show Figures

Figure 1

27 pages, 7640 KiB  
Article
Analysis of Metabolic Profiles and Antioxidant Activity of Chinese Cordyceps, Ophiocordyceps sinensis, and Paecilomyces hepiali Based on Untargeted Metabolomics
by Min He, Chu-Yu Tang, Tao Wang, Meng-Jun Xiao, Yu-Ling Li and Xiu-Zhang Li
Biology 2024, 13(9), 683; https://doi.org/10.3390/biology13090683 - 31 Aug 2024
Cited by 4 | Viewed by 1608
Abstract
Chinese cordyceps (GL) is a traditional medicinal fungus, with Ophiocordyceps sinensis (O. sinensis, BL) and Paecilomyces hepiali (P. hepiali, JSB) being fungi isolated from wild Chinese cordyceps. These three species share similar chemical composition and pharmacological effects. Existing studies [...] Read more.
Chinese cordyceps (GL) is a traditional medicinal fungus, with Ophiocordyceps sinensis (O. sinensis, BL) and Paecilomyces hepiali (P. hepiali, JSB) being fungi isolated from wild Chinese cordyceps. These three species share similar chemical composition and pharmacological effects. Existing studies have primarily compared the metabolites of Chinese cordyceps and O. sinensis, overlooking the assessment of antioxidant capacity in Chinese cordyceps, P. hepiali, and O. sinensis. In this study, LC-MS/MS was employed to analyze metabolites in GL, JSB, and BL. Utilizing principal component analysis (PCA), supervised orthogonal partial least squares discriminant analysis (OPLS-DA), and hierarchical cluster analysis (HCA), it was observed that the majority of differential metabolites (DMs) primarily accumulated in organic acids and derivatives, lipids and lipid-like molecules, and organoheterocyclic compounds. Antioxidant activity analysis indicated that GL exhibited the higher 2,2-diphenyl-1-picrylhydrazyl radical scavenging ability (DPPH•, scavenging rate is 81.87 ± 0.97%), hydroxyl free radical scavenging capacity (•OH, scavenging rate is 98.10 ± 0.60%), and superoxide anion radical scavenging capacity (O2•−, scavenging rate is 69.74 ± 4.36%), while JSB demonstrated the higher FRAP total antioxidant capacity of 8.26 μmol Trolox/g (p < 0.05). Correlation analysis revealed a positive correlation between DMs (fatty acyls and amino acids) and DPPH•, FRAP, •OH, and O2•− (p < 0.05). Additionally, glycerophospholipid DMs were found to be positively correlated with FRAP (p < 0.05). Through KEGG pathway analysis, it was determined that the accumulation of DMs in pathways such as cutin, suberine and wax biosynthesis has a higher impact on influencing the antioxidant activity of the samples. These results shed light on the antioxidant capacity and metabolic characteristics of Chinese cordyceps and its substitutes and offer valuable insights into how different DMs impact the strength of antioxidant activity, aiding in the advancement and application of Chinese cordyceps and its substitutes. Full article
(This article belongs to the Section Plant Science)
Show Figures

Figure 1

16 pages, 2634 KiB  
Article
Derivatives of Pyrimidine Nucleosides Affect Artificial Membranes Enriched with Mycobacterial Lipids
by Olga S. Ostroumova, Svetlana S. Efimova, Polina D. Zlodeeva, Liudmila A. Alexandrova, Dmitry A. Makarov, Elena S. Matyugina, Vera A. Sokhraneva, Anastasia L. Khandazhinskaya and Sergey N. Kochetkov
Pharmaceutics 2024, 16(9), 1110; https://doi.org/10.3390/pharmaceutics16091110 - 23 Aug 2024
Cited by 1 | Viewed by 1182
Abstract
The mechanisms of action of pyrimidine nucleoside derivatives on model lipid membranes of various compositions were studied. A systematic analysis of the tested agents’ effects on the membrane physicochemical properties was performed. Differential scanning microcalorimetry data indicated that the ability of nucleoside derivatives [...] Read more.
The mechanisms of action of pyrimidine nucleoside derivatives on model lipid membranes of various compositions were studied. A systematic analysis of the tested agents’ effects on the membrane physicochemical properties was performed. Differential scanning microcalorimetry data indicated that the ability of nucleoside derivatives to disorder membrane lipids depended on the types of nucleoside bases and membrane-forming lipids. The 5′-norcarbocyclic uracil derivatives were found to be ineffective, while N4-alkylcytidines demonstrated the most pronounced effects, significantly decreasing the dipalmitoylphosphocholine melting temperature and cooperativity of phase transition. The elongation of hydrophobic acyl radicals potentiated the disordering action of N4-alkylcytidines, while an increase in hydrophilicity due to replacing deoxyribose with ribose inhibited this effect. The ability of compounds to form transmembrane pores was also tested. It was found that 5-alkyluridines produced single, ion-permeable pores in phosphatidylglycerol membranes, and that methoxy-mycolic acid and trehalose monooleate potentiated the pore-forming activity of alkyloxymethyldeoxyuridines. The results obtained open up perspectives for the development of innovative highly selective anti-tuberculosis agents, which may be characterized by a low risk of developing drug resistance due to the direct action on the membranes of the pathogen. Full article
(This article belongs to the Special Issue Bioactive Agents for the Treatment against Tuberculosis)
Show Figures

Graphical abstract

32 pages, 7058 KiB  
Review
Recent Developments in Photoinduced Decarboxylative Acylation of α-Keto Acids
by Shuaiqi Lu, Yilong Xiang, Jingfu Chen and Chao Shu
Molecules 2024, 29(16), 3904; https://doi.org/10.3390/molecules29163904 - 18 Aug 2024
Cited by 4 | Viewed by 2080
Abstract
Ketones are ubiquitous patterns found in various biological molecules and natural products. In recent years, a number of acylation methods have been developed based on the use of α-oxocarboxylic acids as acyl-transfer reagents, with particular emphasis on the photoinduced decarboxylative acylation of α [...] Read more.
Ketones are ubiquitous patterns found in various biological molecules and natural products. In recent years, a number of acylation methods have been developed based on the use of α-oxocarboxylic acids as acyl-transfer reagents, with particular emphasis on the photoinduced decarboxylative acylation of α-keto acids. This review focuses on the latest advancements in acylation methodologies through the decarboxylation of α-keto acids over the past several years, highlighting their product diversity, selectivity, and applicability. Where possible, the mechanistic rationale is presented, providing a positive outlook for the promising future of this field. Full article
(This article belongs to the Special Issue Recent Progress of Organic Photochemistry)
Show Figures

Graphical abstract

33 pages, 9649 KiB  
Review
Acyl-1,4-Dihydropyridines: Universal Acylation Reagents for Organic Synthesis
by Karthikeyan Manoharan and Bartosz Bieszczad
Molecules 2024, 29(16), 3844; https://doi.org/10.3390/molecules29163844 - 13 Aug 2024
Cited by 2 | Viewed by 2311
Abstract
Acyl-1,4-dihydropyridines have recently emerged as universal acylation reagents. These easy-to-make and bench-stable NADH biomimetics play the dual role of single-electron reductants and sources of acyl radicals. This review article discusses applications of acyl-1,4-dihydropyridines in organic synthesis since their introduction in 2019. Acyl-1,4-dihydropyridines, activated [...] Read more.
Acyl-1,4-dihydropyridines have recently emerged as universal acylation reagents. These easy-to-make and bench-stable NADH biomimetics play the dual role of single-electron reductants and sources of acyl radicals. This review article discusses applications of acyl-1,4-dihydropyridines in organic synthesis since their introduction in 2019. Acyl-1,4-dihydropyridines, activated by photochemical, thermal or electrochemical methods, have been successfully applied as radical sources in multiple diverse organic transformations such as acyl radical addition to olefins, alkynes, imines and other acceptors, as well as in the late-stage functionalisation of natural products and APIs. Release of acyl radicals and an electron can be performed under mild conditions—in green solvents, under air and sunlight, and without the use of photocatalysts, photosensitizers or external oxidants—which makes them ideal reagents for organic chemists. Full article
(This article belongs to the Special Issue Featured Reviews in Organic Chemistry 2024)
Show Figures

Figure 1

16 pages, 944 KiB  
Article
Characteristics of Biodiesel Produced from Crude Palm Oil through Non-Alcohol Synthesis Route Using Dimethyl Carbonate and Immobilized Eco-Enzyme Catalyst
by Reza Nageubri Balfas, Azhari Muhammad Syam, Muhammad Muhammad, Adi Setiawan and Herman Fithra
Energies 2024, 17(7), 1551; https://doi.org/10.3390/en17071551 - 24 Mar 2024
Cited by 2 | Viewed by 3313
Abstract
Biodiesel, an alternative to traditional diesel, is essential for the sustainability of long-term energy supplies and often synthesized through a non-alcoholic route called interesterification. The described synthesis method facilitates the modification of oil and fat by exchanging acyl radical groups between triglyceride and [...] Read more.
Biodiesel, an alternative to traditional diesel, is essential for the sustainability of long-term energy supplies and often synthesized through a non-alcoholic route called interesterification. The described synthesis method facilitates the modification of oil and fat by exchanging acyl radical groups between triglyceride and alcoholic acid (alcoholysis), fat (acidolysis), or ester (transesterification). Therefore, this research aimed to determine the effect of the reactant ratio between crude palm oil (CPO) and dimethyl carbonate (DMC), along with the use of an eco-enzyme catalyst, on biodiesel characteristics. The CPO:DMC ratio was 1:1.5, 1:2, 1:2.5, and 1:3, while the immobilized eco-enzyme catalyst was 2%, 3%, 4%, 5%, and 6% of CPO mass. The results showed that interesterification with a 1:3 reactant ratio using a 4%wt catalyst was the best procedure, producing biodiesel yield of 73.65%, density of 0.860 g/mL, viscosity of 4.63 mm2/s (cSt), flash point of 113 °C, calorific value of 34.454 MJ/kg, and cetane number of 70.6%. Full article
(This article belongs to the Special Issue Biodiesel and Biofuels Production)
Show Figures

Figure 1

19 pages, 1615 KiB  
Article
Visible Light-Mediated Monofluoromethylation/Acylation of Olefins by Dual Organo-Catalysis
by Jiuli Xia, Yunliang Guo, Zhiguang Lv, Jiaqiong Sun, Guangfan Zheng and Qian Zhang
Molecules 2024, 29(4), 790; https://doi.org/10.3390/molecules29040790 - 8 Feb 2024
Cited by 3 | Viewed by 2165
Abstract
Monofluoromethyl (CH2F) motifs exhibit unique bioactivities and are considered privileged units in drug discovery. The radical monofluoromethylative difunctionalization of alkenes stands out as an appealing approach to access CH2F-containing compounds. However, this strategy remains largely underdeveloped, particularly under metal-free [...] Read more.
Monofluoromethyl (CH2F) motifs exhibit unique bioactivities and are considered privileged units in drug discovery. The radical monofluoromethylative difunctionalization of alkenes stands out as an appealing approach to access CH2F-containing compounds. However, this strategy remains largely underdeveloped, particularly under metal-free conditions. In this study, we report on visible light-mediated three-component monofluoromethylation/acylation of styrene derivatives employing NHC and organic photocatalyst dual catalysis. A diverse array of α-aryl-β-monofluoromethyl ketones was successfully synthesized with excellent functional group tolerance and selectivity. The mild and metal-free CH2F radical generation strategy from NaSO2CFH2 holds potential for further applications in fluoroalkyl radical chemistry. Full article
(This article belongs to the Special Issue Green Catalysis in Organic Synthesis)
Show Figures

Graphical abstract

22 pages, 5931 KiB  
Article
Enhanced Enzymatic Synthesis of Puerarin Palmitate with Different Acyl Donors for Lipid Solubility Improvement
by Seungmee Lee, Hyeonmi Shin, Jihyun Bae, Taek Lee, Minji Kim, Heung Bae Jeon, Kang Hyun Lee, Hah Young Yoo and Chulhwan Park
Int. J. Mol. Sci. 2024, 25(2), 709; https://doi.org/10.3390/ijms25020709 - 5 Jan 2024
Cited by 8 | Viewed by 2387
Abstract
Puerarin is a flavonoid known as a natural antioxidant found in the root of Pueraria robata. Its antioxidant, anticancer, and anti-inflammatory effects have attracted attention as a potential functional ingredient in various bioindustries. However, puerarin has limited bioavailability owing to its low [...] Read more.
Puerarin is a flavonoid known as a natural antioxidant found in the root of Pueraria robata. Its antioxidant, anticancer, and anti-inflammatory effects have attracted attention as a potential functional ingredient in various bioindustries. However, puerarin has limited bioavailability owing to its low lipid solubility and stability. Acylation is proposed as a synthesis method to overcome this limitation. In this study, lipase-catalyzed acylation of puerarin and various acyl donors was performed, and the enzymatic synthetic condition was optimized. Under the condition (20 g/L of Novozym 435, palmitic anhydride, 1:15, 40 °C, tetrahydrofuran (THF)), the synthesis of puerarin ester achieved a significantly high conversion (98.97%) within a short time (3 h). The molecule of the synthesized puerarin palmitate was identified by various analyses such as liquid chromatography–mass spectrometry (LC–MS), Fourier-transform infrared spectroscopy (FT-IR), and carbon-13 nuclear magnetic resonance (13C NMR). The lipid solubility and the radical scavenging activity were also evaluated. Puerarin palmitate showed a slight decrease in antioxidant activity, but lipid solubility was significantly improved, improving bioavailability. The high conversion achieved for puerarin esters in this study will provide the foundation for industrial applications. Full article
Show Figures

Figure 1

Back to TopTop