Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (108)

Search Parameters:
Keywords = acyl carrier protein

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3503 KiB  
Article
Discovery of Hub Genes Involved in Seed Development and Lipid Biosynthesis in Sea Buckthorn (Hippophae rhamnoides L.) Using UID Transcriptome Sequencing
by Siyang Zhao, Chengjiang Ruan, Alexey A. Dmitriev and Hyun Uk Kim
Plants 2025, 14(15), 2436; https://doi.org/10.3390/plants14152436 - 6 Aug 2025
Abstract
Sea buckthorn is a vital woody oil species valued for its role in soil conservation and its bioactive seed oil, which is rich in unsaturated fatty acids and other compounds. However, low seed oil content and small seed size are the main bottlenecks [...] Read more.
Sea buckthorn is a vital woody oil species valued for its role in soil conservation and its bioactive seed oil, which is rich in unsaturated fatty acids and other compounds. However, low seed oil content and small seed size are the main bottlenecks restricting the development and utilization of sea buckthorn. In this study, we tested the seed oil content and seed size of 12 sea buckthorn cultivars and identified the key genes and transcription factors involved in seed development and lipid biosynthesis via the integration of UID RNA-seq (Unique Identifiers, UID), WGCNA (weighted gene co-expression network analysis) and qRT-PCR (quantitative real-time PCR) analysis. The results revealed five cultivars (CY02, CY11, CY201309, CY18, CY21) with significantly higher oil contents and five cultivars (CY10, CY201309, CY18, CY21, CY27) with significantly heavier seeds. A total of 10,873 genes were significantly differentially expressed between the S1 and S2 seed developmental stages of the 12 cultivars. WGCNA was used to identify five modules related to seed oil content and seed weight/size, and 417 candidate genes were screened from these modules. Among them, multiple hub genes and transcription factors were identified; for instance, ATP synthase, ATP synthase subunit D and Acyl carrier protein 1 were related to seed development; plastid–lipid-associated protein, acyltransferase-like protein, and glycerol-3-phosphate 2-O-acyltransferase 6 were involved in lipid biosynthesis; and transcription factors DOF1.2, BHLH137 and ERF4 were associated with seed enlargement and development. These findings provide crucial insights into the genetic regulation of seed traits in sea buckthorn, offering targets for future breeding efforts aimed at improving oil yield and quality. Full article
(This article belongs to the Special Issue Molecular Regulation of Seed Development and Germination)
Show Figures

Figure 1

15 pages, 6331 KiB  
Article
Integrative Analysis of Iso-Seq and RNA-Seq Identifies Key Genes Related to Fatty Acid Biosynthesis and High-Altitude Stress Adaptation in Paeonia delavayi
by Qiongji He, Wenjue Yuan, Rui Wang, Wengao Yang, Guiqing He, Jinglong Cao, Yan Li, Lei Ye, Zhaoguang Li and Zhijiang Hou
Genes 2025, 16(8), 919; https://doi.org/10.3390/genes16080919 (registering DOI) - 30 Jul 2025
Viewed by 167
Abstract
Background/Objectives: Paeonia delavayi, a high-altitude-adapted medicinal and oil-producing plant, exhibits broad elevational distribution. Understanding how environmental factors regulate its growth across altitudes is critical for optimizing cultivation and exploiting its economic potential. Methods: In this study, we conducted a comprehensive Iso-Seq [...] Read more.
Background/Objectives: Paeonia delavayi, a high-altitude-adapted medicinal and oil-producing plant, exhibits broad elevational distribution. Understanding how environmental factors regulate its growth across altitudes is critical for optimizing cultivation and exploiting its economic potential. Methods: In this study, we conducted a comprehensive Iso-Seq and RNA-seq analysis to elucidate the transcriptional profile across diverse altitudes and three seed developmental stages. Results: Using Pacbio full-length cDNA sequencing, we identified 39,267 full-length transcripts, with 80.03% (31,426) achieving successful annotation. RNA-seq analysis uncovered 11,423 and 9565 differentially expressed genes (DEGs) in response to different altitude and developmental stages, respectively. KEGG analysis indicated that pathways linked to fatty acid metabolism were notably enriched during developmental stages. In contrast, pathways associated with amino acid and protein metabolism were significantly enriched under different altitudes. Furthermore, we identified 34 DEGs related to fatty acid biosynthesis, including genes encoding pivotal enzymes like biotin carboxylase, carboxyl transferase subunit alpha, malonyl-CoA-acyl carrier protein transacylase, 3-oxoacyl-ACP reductase, 3-hydroxyacyl-ACP dehydratase, and stearoyl-ACP desaturase enoyl-ACP reductase. Additionally, ten DEGs were pinpointed as potentially involved in high-altitude stress response. Conclusions: These findings provide insights into the molecular mechanisms of fatty acid biosynthesis and adaptation to high-altitude stress in peony seeds, providing a theoretical foundation for future breeding programs aimed at enhancing seed quality. Full article
(This article belongs to the Section Genes & Environments)
Show Figures

Figure 1

13 pages, 2124 KiB  
Article
Immunohistological Examination of HEATR1 and SLC27A2 Expression in ccRCC Samples to Evaluate Their Potential as Prognostic Markers—A Preliminary Study
by Michał Kasperczak, Iga Kołodziejczak-Guglas, Karolina Pawłowska-Kasperczak, Maciej Wiznerowicz and Andrzej Antczak
Cancers 2025, 17(13), 2234; https://doi.org/10.3390/cancers17132234 - 3 Jul 2025
Viewed by 493
Abstract
Background/Objectives: Clear cell renal cell carcinoma (ccRCC) is a common kidney cancer with limited therapeutic options. This study investigated the expression of HEAT repeat-containing protein 1 (HEATR1) and solute carrier family 27 member 2 (SLC27A2) in ccRCC and their potential as prognostic [...] Read more.
Background/Objectives: Clear cell renal cell carcinoma (ccRCC) is a common kidney cancer with limited therapeutic options. This study investigated the expression of HEAT repeat-containing protein 1 (HEATR1) and solute carrier family 27 member 2 (SLC27A2) in ccRCC and their potential as prognostic markers and therapeutic targets. Methods: Analysis of a public proteomic dataset (CPTAC) and immunohistochemistry (IHC) validation in an independent cohort of 52 ccRCC patients was performed. HEATR1 and SLC27A2 expression were correlated with survival outcomes. Reactome pathway analysis was conducted to explore the functional roles of HEATR1 and SLC27A2. Results: The analysis showed that HEATR1 is upregulated and associated with poor prognosis, while SLC27A2 is downregulated and similarly linked to shorter progression-free survival. High HEATR1 expression and low SLC27A2 expression correlated with shorter progression-free survival (PFS) and overall survival (OS) in patients with high-grade ccRCC. Reactome analysis indicated HEATR1’s involvement in RNA metabolism and SLC27A2’s role in lipid metabolism, particularly peroxisomal lipid metabolism and fatty acyl-CoA biosynthesis. HEATR1 exhibited a dual localization in both the cytoplasm and nucleus, while SLC27A2 was primarily observed at the cell membrane and the nucleus. This different subcellular distribution suggests multifaceted roles for both proteins in ccRCC pathogenesis. Conclusions: HEATR1 and SLC27A2 are potential prognostic markers in ccRCC. Further research is needed to validate these findings in larger, more diverse cohorts and elucidate their roles in ccRCC progression. Full article
Show Figures

Figure 1

15 pages, 5903 KiB  
Article
Insights into the Stearoyl-Acyl Carrier Protein Desaturase (SAD) Family in Tigernut (Cyperus esculentus L.), an Oil-Bearing Tuber Plant
by Zhi Zou, Xiaowen Fu, Chunqiang Li, Xiaoping Yi, Jiaquan Huang and Yongguo Zhao
Plants 2025, 14(4), 584; https://doi.org/10.3390/plants14040584 - 14 Feb 2025
Cited by 3 | Viewed by 846
Abstract
Plant oils rich in oleic acid (OA) are attracting considerable attention for their high nutritional value and significant industrial potential. Stearoyl-acyl carrier protein desaturases (SADs) are a class of soluble desaturases that play a key role in OA accumulation in plants. In this [...] Read more.
Plant oils rich in oleic acid (OA) are attracting considerable attention for their high nutritional value and significant industrial potential. Stearoyl-acyl carrier protein desaturases (SADs) are a class of soluble desaturases that play a key role in OA accumulation in plants. In this study, the first genome-wide characterization of the SAD gene family was conducted in tigernut (Cyperus esculentus L. var. sativus Baeck., Cyperaceae), an oil-rich tuber plant typical for its high OA content. Six SAD genes identified from the tigernut genome are comparative to seven reported in two model plants Arabidopsis thaliana and Oryza sativa, but relatively more than four were found in most Cyperaceae species examined in this study. A comparison of 161 SAD genes from 29 representative plant species reveals the monogenic origin and lineage-specific family evolution in Poales. C. esculentus SAD genes (CeSADs) were shown to constitute two evolutionary groups (i.e., FAB2 and AAD) and four out of 12 orthogroups identified in this study, i.e., FAB2a, FAB2b, FAB2c, and AAD1. Whereas FAB2a and AAD1 are widely distributed, FAB2b and FAB2c are specific to Cyperaceae, which may arise from FAB2a via tandem and dispersed duplications, respectively. Though FAB2d and AAD2 are also broadly present in monocots, they are more likely to be lost in the Cyperaceae ancestor sometime after the split with its close family, Juncaceae. In tigernut, FAB2a appears to have undergone species-specific expansion via tandem duplication. Frequent structural variation and apparent expression divergence were also observed. Though FAB2a and AAD1 usually feature two and one intron, respectively, gain of certain introns was observed in CeSAD genes, all of which have three introns. Despite recent expansion of the FAB2 group, CeFAB2-1 has evolved into the dominant member that was highly and constitutively expressed in all tested organs. Moreover, CeFAB2-1, CeAAD1, as well as CeFAB2-5 have evolved to be predominantly expressed in tubers and thus contribute to high OA accumulation. These findings highlight lineage-specific evolution of the SAD family and putative roles of CeSAD genes in tuber oil accumulation, which facilitate further functional analysis and genetic improvement in tigernut and other species. Full article
(This article belongs to the Special Issue Advances in Oil Regulation in Seeds and Vegetative Tissues)
Show Figures

Figure 1

14 pages, 2420 KiB  
Article
Biosynthetic Gene Clusters and Liquid Chromatography Coupled to Mass Spectrometry Analysis of Aryl Polyene Pigments from Chryseobacterium sp. kr6 and Lysobacter sp. A03
by Maria Elisa Pailliè-Jiménez, Jamile Queiroz Pereira, Eliseu Rodrigues and Adriano Brandelli
Colorants 2025, 4(1), 1; https://doi.org/10.3390/colorants4010001 - 2 Jan 2025
Viewed by 1388
Abstract
Aryl polyene (APE) are bacterial pigments which show great biotechnological potential because of their biological activities. In this study, the presence of gene clusters associated with APE synthesis was investigated in the genome of Chryseobacterium sp. kr6 and Lysobacter sp. A03. The pigments [...] Read more.
Aryl polyene (APE) are bacterial pigments which show great biotechnological potential because of their biological activities. In this study, the presence of gene clusters associated with APE synthesis was investigated in the genome of Chryseobacterium sp. kr6 and Lysobacter sp. A03. The pigments extracted from strains kr6 and A03 were further characterized by liquid chromatography coupled to a high-resolution mass spectrometer (LC-DAD-MS). These bacteria harbor the relevant genes for APE biosynthesis; while kr6 may produce flexirubin pigments and have a 75% similarity with the flexirubin cluster from Flavobacterium johnsoniae UW101, Lysobacter sp. A03 showed a 50% similarity with the xanthomonadin I gene cluster from Xanthomonas oryzae pv. oryzae. A comparison with the gene clusters of APE-producing bacteria revealed that kr6 and A03 harbor genes for key proteins that participate in APE biosynthesis, such as acyl carrier proteins, acyl dehydratases and acyl reductases. The LC-DAD-MS analysis revealed that kr6 produces a possible mixture of flexirubins, whereas the yellow pigment from A03 is proposed to be a xanthomonadin-like pigment. Although the fine molecular structure of these pigments are not yet fully elucidated, strains kr6 and A03 present great potential for the production of natural bioactive pigments. Full article
Show Figures

Graphical abstract

18 pages, 4279 KiB  
Article
Chemical Composition, Free Radicals and Pathogenic Microbes in the Extract Derived from Dictyota dichotoma: In Silico and In Vitro Approaches
by Fouad Oumassi, Khalid Chebbac, Naouar Ben Ali, Soundouss Kaabi, Zineb Nejjar El Ansari, Amira Metouekel, Azeddin El Barnossi, Abdelfattah El Moussaoui, Mohamed Chebaibi, Loubna Bounab, Ibrahim Mssillou, Abdelaaty Abdelaziz Shahat, Brahim El Bouzdoudi and Mohammed L’bachir El Kbiach
Mar. Drugs 2024, 22(12), 565; https://doi.org/10.3390/md22120565 - 17 Dec 2024
Viewed by 1460
Abstract
Marine algae are renowned for their health benefits due to the presence of functional bioactive compounds. In this context, this study aims to valorize the extract of a seaweed, Dictyota dichotoma (D. dichotoma), through phytochemical characterization using liquid chromatography–mass spectrometry (HPLC-MS), [...] Read more.
Marine algae are renowned for their health benefits due to the presence of functional bioactive compounds. In this context, this study aims to valorize the extract of a seaweed, Dictyota dichotoma (D. dichotoma), through phytochemical characterization using liquid chromatography–mass spectrometry (HPLC-MS), as well as in vitro and in silico evaluation of its biological activities (antioxidant and antimicrobial). Phytochemical characterization revealed that the ethanolic extract of Dictyota dichotoma (DdEx) is rich in phenolic compounds, with a total of 22 phycocompounds identified. Antioxidant activity, measured by various methods, showed an IC50 of 120 µg/mL for the DPPH assay, an EC50 of 120.53 µg/mL for the FRAP assay, and a total antioxidant power of 685.26 µg AAE/mg according to the phosphomolybdate (TAC) method. Evaluation of antibacterial activity showed a zone of inhibition diameter ranging from 11.93 to 22.58 mm, with the largest zone observed for the Escherichia coli (E. coli) strain. For antifungal activity, inhibition zone diameters ranged from 22.38 to 23.52 mm, with the largest recorded for the Saccharomyces cerevisiae (S. cerevisiae) strain. The in silico study identified tetragalloyl-glucose, apigenin-7-O-glucoside, and pentagalloyl-glucose as the most active compounds against NADPH oxidase, with docking scores of −7.723, −7.424, and −6.402 kcal/mol, respectively. Regarding antibacterial activity, apigenin-7-O-glucoside, pelargonidin-3-O-glucoside, and secoisolariciresinol demonstrated high affinity for E. coli beta-ketoacyl-[acyl carrier protein] synthase, with docking scores of −7.276, −6.811, and −6.594 kcal/mol, respectively. These in vitro and in silico evaluations showed that D. dichotoma extract possesses antioxidant and antimicrobial properties, due to its richness in bioactive compounds identified by HPLC. Full article
(This article belongs to the Special Issue Therapeutic Potential of Marine Algae)
Show Figures

Figure 1

16 pages, 5097 KiB  
Article
Identification and Analysis of KAS II, FAT, SAD, and FAD Gene Families in Hippophae rhamnoides
by Alexander A. Arkhipov, Ekaterina M. Dvorianinova, Anastasia A. Turba, Roman O. Novakovskiy, Yury A. Zubarev, Pavel A. Predushchenko, Elizaveta A. Sigova, Daiana A. Zhernova, Elena V. Borkhert, Elena N. Pushkova, Chengjiang Ruan, Nataliya V. Melnikova and Alexey A. Dmitriev
Plants 2024, 13(24), 3486; https://doi.org/10.3390/plants13243486 - 13 Dec 2024
Cited by 1 | Viewed by 1198
Abstract
KAS II (β-ketoacyl-acyl carrier protein (ACP) synthases II), FAT (fatty acid thioesterases), SAD (stearoyl-ACP desaturase), and FAD (fatty acid desaturases) are the vital gene families involved in fatty acid (FA) synthesis in Hippophae rhamnoides L. However, information on the number and location of these [...] Read more.
KAS II (β-ketoacyl-acyl carrier protein (ACP) synthases II), FAT (fatty acid thioesterases), SAD (stearoyl-ACP desaturase), and FAD (fatty acid desaturases) are the vital gene families involved in fatty acid (FA) synthesis in Hippophae rhamnoides L. However, information on the number and location of these genes and which ones are key to the formation of FAs in fruit seeds and pulp was not complete. Our study aimed to solve this issue using the available genomic sequences and transcriptome data that we obtained. We compared the protein sequences of sea buckthorn with those of Arabidopsis thaliana and checked for the presence of conserved domains. As a result of structure and phylogenetic analyses, 4 KAS II, 8 FAT, 9 SAD, and 12 FAD genes were identified in the H. rhamnoides genome, which were classified into subfamilies: KAS II, FATA, FATB, FAD2, FAD3, FAD6, and FAD7/8. To analyze the expression of the identified genes, we sequenced the transcriptomes of sea buckthorn seeds and fruit pulp at four development stages, as well as leaves. The analysis revealed representatives of the FAT, SAD, and FAD families with high tissue-and stage-specific expression in seeds and pulp. These genes are likely to play a key role in the biosynthesis of sea buckthorn FAs. The obtained results may help to establish the precise biosynthesis mechanisms of FAs and will promote the breeding of new sea buckthorn varieties that have oil with a defined FA composition. Full article
Show Figures

Figure 1

22 pages, 3389 KiB  
Article
A Study of the Bioactive Compounds, Antioxidant Capabilities, Antibacterial Effectiveness, and Cytotoxic Effects on Breast Cancer Cell Lines Using an Ethanolic Extract from the Aerial Parts of the Indigenous Plant Anabasis aretioïdes Coss. & Moq.
by Salah Laaraj, Aziz Tikent, Mohamed Chebaibi, Khawla Bouaouda, Mohamed Bouhrim, Sherouk Hussein Sweilam, Rashed N. Herqash, Abdelaaty A. Shahat, Mohamed Addi and Kaoutar Elfazazi
Curr. Issues Mol. Biol. 2024, 46(11), 12375-12396; https://doi.org/10.3390/cimb46110735 - 1 Nov 2024
Cited by 3 | Viewed by 2057
Abstract
Anabasis aretioïdes contain numerous bioactive compounds that provide several advantages, including antioxidant, antibacterial, anticancer, neuroprotective, anti-inflammatory, and antidiabetic characteristics. This study aimed to make a hydroethanolic extract from the aerial part of the plant, analyze its biochemical compounds, and test its biological activities. [...] Read more.
Anabasis aretioïdes contain numerous bioactive compounds that provide several advantages, including antioxidant, antibacterial, anticancer, neuroprotective, anti-inflammatory, and antidiabetic characteristics. This study aimed to make a hydroethanolic extract from the aerial part of the plant, analyze its biochemical compounds, and test its biological activities. From HPLC-DAD analysis, cinnamic acid, sinapic acid, and vanillin bioactives were found to be the main compounds in the extract. The spectrometric tests revealed that the extract was rich in flavonoids (8.52 ± 0.32 mg RE/100 g DW), polyphenols (159.32 ± 0.63 mg GAE/100 g DW), and condensed tannins (8.73 ± 0.23 mg CE/100 g DW). The extract showed significant antioxidant activity. There were strong correlations between the amount of flavonoid or polyphenol and the antioxidant assays, including ABTS, DPPH, β-carotene, and TAC. The extract also showed highly effective results against Gram-positive bacteria Staphylococcus aureus and Enterococcus faecalis as well as against Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa, and showed promising cytotoxicity against breast cancer cell lines MCF-7 and MDA-MB-231. The in silico modeling of the bioactive compounds contained in the extract illustrated their interaction mode with the active sites of particular target proteins, and it showed that rutin had the strongest effect on stopping NADPH oxidase enzyme, with a glide score of −6.889 Kcal/mol. Sinapic acid inhibited E. coli beta-ketoacyl-[acyl carrier protein] synthase (−7.517 kcal/mol), and apigenin showed high binding affinity to S. aureus nucleoside di-phosphate kinase, with −8.656 kcal/mol. Succinic acid has the strongest anticancer effect for caspase-3, with a glide score of −8.102 kcal/mol. These bioactive components may be beneficial as antioxidant and antibacterial applications in medicine, foods, natural cosmetics, and breast cancer prevention in the future. As a result, the use of this indigenous plant must be considered to maximize its value and preservation. Full article
(This article belongs to the Special Issue Biochemical Composition and Activity of Medicinal Plants and Food)
Show Figures

Graphical abstract

15 pages, 1774 KiB  
Article
Prognostic Values of Ferroptosis-Related Proteins ACSL4, SLC7A11, and CHAC1 in Cholangiocarcinoma
by Supakan Amontailak, Attapol Titapun, Apinya Jusakul, Raynoo Thanan, Phongsaran Kimawaha, Wassana Jamnongkan, Malinee Thanee, Papitchaya Sirithawat and Anchalee Techasen
Biomedicines 2024, 12(9), 2091; https://doi.org/10.3390/biomedicines12092091 - 13 Sep 2024
Cited by 1 | Viewed by 1466
Abstract
Background: The epithelial malignant tumor known as cholangiocarcinoma (CCA) is most commonly found in Southeast Asia, particularly in northeastern Thailand. Previous research has indicated that the overexpression of acyl-CoA synthetase long-chain family member 4 (ACSL4), solute carrier family 7 member 11 (SLC7A11), and [...] Read more.
Background: The epithelial malignant tumor known as cholangiocarcinoma (CCA) is most commonly found in Southeast Asia, particularly in northeastern Thailand. Previous research has indicated that the overexpression of acyl-CoA synthetase long-chain family member 4 (ACSL4), solute carrier family 7 member 11 (SLC7A11), and ChaC glutathione-specific γ-glutamylcyclotransferase (CHAC1) as ferroptosis-related proteins is associated with poorer prognosis in several cancers. The role of these three proteins in CCA is still unclear. The present study aimed to investigate the expression levels of ACSL4, SLC7A11, and CHAC1, all potential ferroptosis biomarkers, in CCA. Methods: The ACSL4, SLC7A11, and CHAC1 protein expression levels in 137 CCA tissues were examined using immunohistochemistry, while 61 CCA serum samples were evaluated using indirect ELISA. The associations between the expression levels of ACSL4, SLC7A11, and CHAC1 and patient clinicopathological data were evaluated to determine the clinical significance of these proteins. Results: The expression levels of ACSL4, SLC7A11, and CHAC1 were assessed in CCA tissues. A significant association was observed between high ACSL4 levels and extrahepatic CCA, tumor growth type, and elevated alanine transferase (ALT). There was also a positive association between elevated SLC7A11 levels and tumor growth type. Additionally, the upregulation of CHAC1 was significantly associated with a shorter survival time in patients. High levels of ACSL4 and SLC7A11 in CCA sera were both significantly associated with advanced tumor stages and abnormal liver function test results, indicating that they could be used as a reliable prognostic biomarker panel in patients with CCA. Conclusions: The results of the present study demonstrated that the upregulation of ACSL4, SLC7A11, and CHAC1 could be used as a valuable biomarker panel for predicting prognosis parameters in CCA. Furthermore, ACSL4 and SLC7A11 could potentially serve as complementary markers for improving the accuracy of prognosis prediction when CCA sera is used. These less invasive biomarkers could facilitate effective treatment planning. Full article
(This article belongs to the Section Gene and Cell Therapy)
Show Figures

Figure 1

24 pages, 3418 KiB  
Article
Effect of the Structural Modification of Plant Proteins as Microencapsulating Agents of Bioactive Compounds from Annatto Seeds (Bixa orellana L.)
by Julián Quintero Quiroz, Víctor Velazquez, Juan D. Torres, Gelmy Ciro Gomez, Efren Delgado and John Rojas
Foods 2024, 13(15), 2345; https://doi.org/10.3390/foods13152345 - 25 Jul 2024
Cited by 2 | Viewed by 1308
Abstract
This project studied the use of lentil protein (LP) and quinoa protein (QP) in their native and modified states as carrier material in the encapsulation process by the ionic gelation technique of annatto seed extract. Soy protein (SP) was used as a model [...] Read more.
This project studied the use of lentil protein (LP) and quinoa protein (QP) in their native and modified states as carrier material in the encapsulation process by the ionic gelation technique of annatto seed extract. Soy protein (SP) was used as a model of carrier material and encapsulated bioactive compounds, respectively. The plant proteins were modified by enzymatic hydrolysis, N acylation, and N-cationization to improve their encapsulating properties. Additionally, the secondary structure, differential scanning calorimetry (DSC), solubility as a function of pH, isoelectric point (pI), molecular weight (MW), the content of free thiol groups (SH), the absorption capacity of water (WHC) and fat (FAC), emulsifier activity (EAI), emulsifier stability (ESI), and gelation temperature (Tg) were assessed on proteins in native and modified states. The results obtained demonstrated that in a native state, LP (80.52% and 63.82%) showed higher encapsulation efficiency than QP (73.63% and 45.77%), both for the hydrophilic dye and for the annatto extract. Structural modifications on proteins improve some functional properties, such as solubility, WHC, FAC, EAI, and ESI. However, enzymatic hydrolysis on the proteins decreased the gels’ formation, the annatto extract’s encapsulated efficiency, and the hydrophilic dye by the ionic gelation method. On the other hand, the modifications of N-acylation and N-cationization increased but did not generate statistically significant differences (p-value > 0.05) in the encapsulation efficiency of both the annatto extract and the hydrophilic dye compared to those obtained with native proteins. This research contributes to understanding how plant proteins (LP and QP) can be modified to enhance their encapsulating and solubility properties. The better encapsulation of bioactive compounds (like annatto extract) can improve product self-life, potentially benefiting the development of functional ingredients for the food industry. Full article
(This article belongs to the Section Plant Foods)
Show Figures

Figure 1

19 pages, 6685 KiB  
Article
Hepatic Oxidative Stress and Cell Death Influenced by Dietary Lipid Levels in a Fresh Teleost
by Lingjie He, Yupeng Zhang, Quanquan Cao, Hongying Shan, Jiali Zong, Lin Feng, Weidan Jiang, Pei Wu, Juan Zhao, Haifeng Liu and Jun Jiang
Antioxidants 2024, 13(7), 808; https://doi.org/10.3390/antiox13070808 - 4 Jul 2024
Cited by 6 | Viewed by 1946
Abstract
Ferroptosis is a form of regulated cell death characterized by iron-dependent lipid peroxidation, affecting physiological and pathological processes. Fatty liver disease associated with metabolic dysfunction is a common pathological condition in aquaculture. However, the exact role and mechanism of ferroptosis in its pathogenesis [...] Read more.
Ferroptosis is a form of regulated cell death characterized by iron-dependent lipid peroxidation, affecting physiological and pathological processes. Fatty liver disease associated with metabolic dysfunction is a common pathological condition in aquaculture. However, the exact role and mechanism of ferroptosis in its pathogenesis and progression remains unclear. In this study, an experiment was conducted using different dietary lipid levels in the feeding of largemouth bass (Micropterus salmoides) for 11 weeks. The results revealed that the growth performance and whole-body protein content significantly increased with the elevation of dietary lipid levels up to 12%. The activities of antioxidant enzymes as well as the content of GSH (glutathione) in the liver initially increased but later declined as the lipid levels increased; the contents of MDA (malondialdehyde) and GSSG (oxidized glutathione) demonstrated an opposite trend. Moreover, elevating lipid levels in the diet significantly increased liver Fe2+ content, as well as the expressions of TF (Transferrin), TFR (Transferrin receptor), ACSL4 (acyl-CoA synthetase long-chain family member 4), LPCAT3 (lysophosphatidylcholine acyltransferase 3), and LOX12 (Lipoxygenase-12), while decreasing the expressions of GPX4 (glutathione peroxidase 4) and SLC7A11 (Solute carrier family 7 member 11). In conclusion, the optimal lipid level is 12.2%, determined by WG-based linear regression. Excess lipid-level diets can up-regulate the ACSL4/LPCAT3/LOX12 axis, induce hepatic oxidative stress and cell death through a ferroptotic-like program, and decrease growth performance. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Figure 1

16 pages, 6322 KiB  
Article
X-ray Single-Crystal Analysis, Pharmaco-Toxicological Profile and Enoyl-ACP Reductase-Inhibiting Activity of Leading Sulfonyl Hydrazone Derivatives
by Yoanna Teneva, Rumyana Simeonova, Orlin Besarboliev, Hristina Sbirkova-Dimitrova and Violina T. Angelova
Crystals 2024, 14(6), 560; https://doi.org/10.3390/cryst14060560 - 17 Jun 2024
Cited by 1 | Viewed by 1373
Abstract
Taking into consideration the growing resistance towards currently available antimycobacterials, there is still an unmet need for the development of new chemotherapeutic agents to combat the infectious agents. This study presents X-ray single-crystal analysis to verify the structure of leading sulfonyl hydrazone 3b [...] Read more.
Taking into consideration the growing resistance towards currently available antimycobacterials, there is still an unmet need for the development of new chemotherapeutic agents to combat the infectious agents. This study presents X-ray single-crystal analysis to verify the structure of leading sulfonyl hydrazone 3b, which has proven its potent antimycobacterial activity against Mycobacterium tuberculosis H37Rv with an MIC value of 0.0716 μM, respectively, low cytotoxicity, and very high selectivity indexes (SI = 2216), and which has been fully characterized by Nuclear Magnetic Resonance (NMR) and High-Resolution Mass Spectrometry (HRMS) methods. Furthermore, this study assessed the ex vivo antioxidant activity, acute and subacute toxicity, and in vitro inhibition capacity against enoyl-ACP reductase of hydrazones 3a and 3b, as 3a was identified as the second leading compound in our previous research. Compared to isoniazid, compounds 3a and 3b demonstrated lower acute toxicity for intraperitoneal administration, with LD50 values of 866 and 1224.7 mg/kg, respectively. Subacute toxicity tests, involving the repeated administration of a single dose of the test samples per day, revealed no significant deviations in hematological and biochemical parameters or pathomorphological tissues. The compounds exhibited potent antioxidant capabilities, reducing malondialdehyde (MDA) levels and increasing reduced glutathione (GSH). Enzyme inhibition assays of the sulfonyl hydrazones 3a and 3b with IC50 values of 18.2 µM and 10.7 µM, respectively, revealed that enoyl acyl carrier protein reductase (InhA) could be considered as their target enzyme to exhibit their antitubercular activities. In conclusion, the investigated sulfonyl hydrazones display promising drug-like properties and warrant further investigation. Full article
(This article belongs to the Section Organic Crystalline Materials)
Show Figures

Figure 1

22 pages, 7540 KiB  
Article
Integrated Metabolomic and Transcriptomic Analysis Reveals the Underlying Antibacterial Mechanisms of the Phytonutrient Quercetin-Induced Fatty Acids Alteration in Staphylococcus aureus ATCC 27217
by Haihua Yuan, Hang Xun, Jie Wang, Jin Wang, Xi Yao and Feng Tang
Molecules 2024, 29(10), 2266; https://doi.org/10.3390/molecules29102266 - 11 May 2024
Cited by 4 | Viewed by 1867
Abstract
The utilization of natural products in food preservation represents a promising strategy for the dual benefits of controlling foodborne pathogens and enhancing the nutritional properties of foods. Among the phytonutrients, flavonoids have been shown to exert antibacterial effects by disrupting bacterial cell membrane [...] Read more.
The utilization of natural products in food preservation represents a promising strategy for the dual benefits of controlling foodborne pathogens and enhancing the nutritional properties of foods. Among the phytonutrients, flavonoids have been shown to exert antibacterial effects by disrupting bacterial cell membrane functionality; however, the underlying molecular mechanisms remain elusive. In this study, we investigated the effect of quercetin on the cell membrane permeability of Staphylococcus aureus ATCC 27217. A combined metabolomic and transcriptomic approach was adopted to examine the regulatory mechanism of quercetin with respect to the fatty acid composition and associated genes. Kinetic analysis and molecular docking simulations were conducted to assess quercetin’s inhibition of β-ketoacyl-acyl carrier protein reductase (FabG), a potential target in the bacterial fatty acid biosynthesis pathway. Metabolomic and transcriptomic results showed that quercetin increased the ratio of unsaturated to saturated fatty acids and the levels of membrane phospholipids. The bacteria reacted to quercetin-induced stress by attempting to enhance fatty acid biosynthesis; however, quercetin directly inhibited FabG activity, thereby disrupting bacterial fatty acid biosynthesis. These findings provide new insights into the mechanism of quercetin’s effects on bacterial cell membranes and suggest potential applications for quercetin in bacterial inhibition. Full article
Show Figures

Figure 1

17 pages, 7192 KiB  
Article
Characterization of the Fatty Acyl-CoA Reductase (FAR) Gene Family and Its Response to Abiotic Stress in Rice (Oryza sativa L.)
by Danni Zhou, Mingyu Ding, Shuting Wen, Quanxiang Tian, Xiaoqin Zhang, Yunxia Fang and Dawei Xue
Plants 2024, 13(7), 1010; https://doi.org/10.3390/plants13071010 - 1 Apr 2024
Cited by 3 | Viewed by 2300
Abstract
Fatty acyl-CoA reductase (FAR) is an important NADPH-dependent enzyme that can produce primary alcohol from fatty acyl-CoA or fatty acyl-carrier proteins as substrates. It plays a pivotal role in plant growth, development, and stress resistance. Herein, we performed genome-wide identification and expression analysis [...] Read more.
Fatty acyl-CoA reductase (FAR) is an important NADPH-dependent enzyme that can produce primary alcohol from fatty acyl-CoA or fatty acyl-carrier proteins as substrates. It plays a pivotal role in plant growth, development, and stress resistance. Herein, we performed genome-wide identification and expression analysis of FAR members in rice using bioinformatics methods. A total of eight OsFAR genes were identified, and the OsFARs were comprehensively analyzed in terms of phylogenetic relationships, duplication events, protein motifs, etc. The cis-elements of the OsFARs were predicted to respond to growth and development, light, hormones, and abiotic stresses. Gene ontology annotation analysis revealed that OsFAR proteins participate in biological processes as fatty acyl-CoA reductase during lipid metabolism. Numerous microRNA target sites were present in OsFARs mRNAs. The expression analysis showed that OsFARs were expressed at different levels during different developmental periods and in various tissues. Furthermore, the expression levels of OsFARs were altered under abiotic stresses, suggesting that FARs may be involved in abiotic stress tolerance in rice. The findings presented here serve as a solid basis for further exploring the functions of OsFARs. Full article
(This article belongs to the Special Issue Rice Genetics and Molecular Design Breeding)
Show Figures

Figure 1

19 pages, 3918 KiB  
Article
Identification, Evolutionary Dynamics, and Gene Expression Patterns of the ACP Gene Family in Responding to Salt Stress in Brassica Genus
by Fang Qian, Dan Zuo, Tuo Zeng, Lei Gu, Hongcheng Wang, Xuye Du, Bin Zhu and Jing Ou
Plants 2024, 13(7), 950; https://doi.org/10.3390/plants13070950 - 25 Mar 2024
Cited by 2 | Viewed by 1846
Abstract
Acyl carrier proteins (ACPs) have been reported to play a crucial role in responding to biotic and abiotic stresses, regulating growth and development. However, the biological function of the ACP gene family in the Brassica genus has been limited until now. In this [...] Read more.
Acyl carrier proteins (ACPs) have been reported to play a crucial role in responding to biotic and abiotic stresses, regulating growth and development. However, the biological function of the ACP gene family in the Brassica genus has been limited until now. In this study, we conducted a comprehensive analysis and identified a total of 120 ACP genes across six species in the Brassica genus. Among these, there were 27, 26, and 30 ACP genes in the allotetraploid B. napus, B. juncea, and B. carinata, respectively, and 14, 13, and 10 ACP genes in the diploid B. rapa, B. oleracea, and B. nigra, respectively. These ACP genes were further classified into six subclades, each containing conserved motifs and domains. Interestingly, the majority of ACP genes exhibited high conservation among the six species, suggesting that the genome evolution and polyploidization processes had relatively minor effects on the ACP gene family. The duplication modes of the six Brassica species were diverse, and the expansion of most ACPs in Brassica occurred primarily through dispersed duplication (DSD) events. Furthermore, most of the ACP genes were under purifying selection during the process of evolution. Subcellular localization experiments demonstrated that ACP genes in Brassica species are localized in chloroplasts and mitochondria. Cis-acting element analysis revealed that most of the ACP genes were associated with various abiotic stresses. Additionally, RNA-seq data revealed differential expression levels of BnaACP genes across various tissues in B. napus, with particularly high expression in seeds and buds. qRT-PCR analysis further indicated that BnaACP genes play a significant role in salt stress tolerance. These findings provide a comprehensive understanding of ACP genes in Brassica plants and will facilitate further functional analysis of these genes. Full article
(This article belongs to the Special Issue Applications of Biotechnology and Omics Tools in Brassicaceae Plants)
Show Figures

Figure 1

Back to TopTop