Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = actuated orthoses

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3083 KB  
Review
A Review: Developments in Hardware Systems of Active Ankle Orthoses
by Praveen Nuwantha Gunaratne and Hiroki Tamura
Sensors 2024, 24(24), 8153; https://doi.org/10.3390/s24248153 - 20 Dec 2024
Cited by 3 | Viewed by 2501
Abstract
Active ankle orthoses which have been designed over the past few years by diverse sources were critically reviewed in this paper. It begins by providing an overview of the anatomy of the ankle joint complex, establishing a basis for understanding the subsequent discussion [...] Read more.
Active ankle orthoses which have been designed over the past few years by diverse sources were critically reviewed in this paper. It begins by providing an overview of the anatomy of the ankle joint complex, establishing a basis for understanding the subsequent discussion on the research challenges and design difficulties associated with developing active ankle orthosis devices. The review systematically examined the mechanisms, actuation methods, and control strategies utilized in these orthosis devices. This covers various control strategies, including Electromyography (EMG)-based, adaptive, and modular control systems, emphasizing their importance in achieving precise and user-intended movements. By integrating insights from recent studies and technological innovations, this paper provides a holistic view of the progress in active ankle orthoses. The paper concludes with design recommendations aimed at overcoming existing limitations and promoting further development of advanced active ankle orthosis devices for future research. Full article
Show Figures

Figure 1

21 pages, 2692 KB  
Article
On the Design of a Simulation-Assisted Human-Centered Quasi-Stiffness-Based Actuator for Ankle Orthosis
by Thomas Mokadim, Franck Geffard and Bruno Watier
Electronics 2024, 13(21), 4164; https://doi.org/10.3390/electronics13214164 - 23 Oct 2024
Cited by 3 | Viewed by 2147
Abstract
Most exoskeletons designed to assist users in load-bearing tasks face a mechanical dilemma in their conception. Designers may find a compromise between stiff active actuators-based architectures which are powerful but bulky and compliant actuator-based designs which are much less assistive but less constraining [...] Read more.
Most exoskeletons designed to assist users in load-bearing tasks face a mechanical dilemma in their conception. Designers may find a compromise between stiff active actuators-based architectures which are powerful but bulky and compliant actuator-based designs which are much less assistive but less constraining for users. This article presents a new open-source simulation-based design tool and a human-centered method that lets orthosis designers explore different device configurations and evaluate some performance criteria. This framework was applied in three different young-adult subjects. The effects of design personalization on user morphology and gait were studied. First, an ankle–foot orthosis designed to support a 20 kg backpack was defined according to the user’s height, weight, and walking speed. Then, a simulation of the subjects fitted with their customized design walking at a self-selected speed on flat ground carrying this additional load was performed. First, the results showed that the designed method inspired by natural joint stiffness behavior provided viable personalized mechanisms. Second, significant reductions in peak joint torque and mean joint activity were observed when comparing muscle-generated torques while the subject was wearing the 20 kg backpack with ankle–foot orthoses on both legs or without. Finally, it shows the value of an open-access tool for exploring the coupling of passive and active actuators to generate lighter and more compliant designs. Full article
Show Figures

Figure 1

15 pages, 6516 KB  
Article
Evaluation of the Working Mechanism of a Newly Developed Powered Ankle–Foot Orthosis
by Laure Everaert, Roy Sevit, Tijl Dewit, Koen Janssens, Jolien Vanloocke, Anja Van Campenhout, Luc Labey, Luiza Muraru and Kaat Desloovere
Sensors 2024, 24(20), 6562; https://doi.org/10.3390/s24206562 - 11 Oct 2024
Cited by 1 | Viewed by 2785
Abstract
Ankle–foot orthoses (AFOs) are commonly prescribed to children with cerebral palsy (CP). The conventional AFO successfully controls the first and second ankle rocker, but it fails to correct the third ankle rocker, which negatively effects push-off power. The current study evaluated a new [...] Read more.
Ankle–foot orthoses (AFOs) are commonly prescribed to children with cerebral palsy (CP). The conventional AFO successfully controls the first and second ankle rocker, but it fails to correct the third ankle rocker, which negatively effects push-off power. The current study evaluated a new powered AFO (PAFO) design, developed to address the shortcomings of the conventional AFO. Eight children with spastic CP (12.4 ± 3.4 years; GMFCS I-III; 4/4-♂/♀; 3/5-bi/unilateral) were included. Sagittal kinematic and kinetic data were collected from 20 steps during barefoot walking, with conventional AFOs and PAFOs. In the PAFO-condition, an actuation unit was attached to a hinged AFO and through push–pull cables to a backpack that was carried by the child and provided patient-specific assistance-as-needed. SnPM-analysis indicated gait cycle sections that differed significantly between conditions. For the total group, differences between the three conditions were found in ankle kinematics (49.6–66.1%, p = 0.006; 88.0–100%, p = 0.011) and angular velocity (0.0–6.0%, p = 0.001; 45.1–51.1%, p = 0.006; 62.2–73.0%, p = 0.001; 81.2–93.0%, p = 0.001). Individual SnPM-analysis revealed a greater number of significant gait cycle sections for kinematics and kinetics of the ankle, knee, and hip. These individual results were heterogeneous and specific per gait pattern. In conclusion, the new PAFO improved the ankle range-of-motion, angular velocity, and power during push-off in comparison to the conventional AFO. Full article
(This article belongs to the Special Issue Challenges and Future Trends of Wearable Robotics2nd Edition)
Show Figures

Figure 1

17 pages, 2893 KB  
Article
DE-AFO: A Robotic Ankle Foot Orthosis for Children with Cerebral Palsy Powered by Dielectric Elastomer Artificial Muscle
by Vahid Mohammadi, Mohammad Tajdani, Mobina Masaei, Sahel Mohammadi Ghalehney, Samuel C. K. Lee and Ahad Behboodi
Sensors 2024, 24(12), 3787; https://doi.org/10.3390/s24123787 - 11 Jun 2024
Cited by 12 | Viewed by 7339
Abstract
Conventional passive ankle foot orthoses (AFOs) have not seen substantial advances or functional improvements for decades, failing to meet the demands of many stakeholders, especially the pediatric population with neurological disorders. Our objective is to develop the first comfortable and unobtrusive powered AFO [...] Read more.
Conventional passive ankle foot orthoses (AFOs) have not seen substantial advances or functional improvements for decades, failing to meet the demands of many stakeholders, especially the pediatric population with neurological disorders. Our objective is to develop the first comfortable and unobtrusive powered AFO for children with cerebral palsy (CP), the DE-AFO. CP is the most diagnosed neuromotor disorder in the pediatric population. The standard of care for ankle control dysfunction associated with CP, however, is an unmechanized, bulky, and uncomfortable L-shaped conventional AFO. These passive orthoses constrain the ankle’s motion and often cause muscle disuse atrophy, skin damage, and adverse neural adaptations. While powered orthoses could enhance natural ankle motion, their reliance on bulky, noisy, and rigid actuators like DC motors limits their acceptability. Our innovation, the DE-AFO, emerged from insights gathered during customer discovery interviews with 185 stakeholders within the AFO ecosystem as part of the NSF I-Corps program. The DE-AFO is a biomimetic robot that employs artificial muscles made from an electro-active polymer called dielectric elastomers (DEs) to assist ankle movements in the sagittal planes. It incorporates a gait phase detection controller to synchronize the artificial muscles with natural gait cycles, mimicking the function of natural ankle muscles. This device is the first of its kind to utilize lightweight, compact, soft, and silent artificial muscles that contract longitudinally, addressing traditional actuated AFOs’ limitations by enhancing the orthosis’s natural feel, comfort, and acceptability. In this paper, we outline our design approach and describe the three main components of the DE-AFO: the artificial muscle technology, the finite state machine (the gait phase detection system), and its mechanical structure. To verify the feasibility of our design, we theoretically calculated if DE-AFO can provide the necessary ankle moment assistance for children with CP—aligning with moments observed in typically developing children. To this end, we calculated the ankle moment deficit in a child with CP when compared with the normative moment of seven typically developing children. Our results demonstrated that the DE-AFO can provide meaningful ankle moment assistance, providing up to 69% and 100% of the required assistive force during the pre-swing phase and swing period of gait, respectively. Full article
(This article belongs to the Special Issue Sensing Technologies in Medical Robot)
Show Figures

Figure 1

16 pages, 5249 KB  
Article
How to Easily Make Self-Sensing Pneumatic Inverse Artificial Muscles
by Valentina Potnik, Gabriele Frediani and Federico Carpi
Biomimetics 2024, 9(3), 177; https://doi.org/10.3390/biomimetics9030177 - 15 Mar 2024
Cited by 2 | Viewed by 3131
Abstract
Wearable mechatronics for powered orthoses, exoskeletons and prostheses require improved soft actuation systems acting as ‘artificial muscles’ that are capable of large strains, high stresses, fast response and self-sensing and that show electrically safe operation, low specific weight and large compliance. Among the [...] Read more.
Wearable mechatronics for powered orthoses, exoskeletons and prostheses require improved soft actuation systems acting as ‘artificial muscles’ that are capable of large strains, high stresses, fast response and self-sensing and that show electrically safe operation, low specific weight and large compliance. Among the diversity of soft actuation technologies under investigation, pneumatic devices have been the focus, during the last couple of decades, of renewed interest as an intrinsically soft artificial muscle technology, due to technological advances stimulated by applications in soft robotics. As of today, quite a few solutions are available to endow a pneumatic soft device with linear actuation and self-sensing ability, while also easily achieving these features with off-the-shelf materials and low-cost fabrication processes. Here, we describe a simple process to make self-sensing pneumatic actuators, which may be used as ‘inverse artificial muscles’, as, upon pressurisation, they elongate instead of contracting. They are made of an elastomeric tube surrounded by a plastic coil, which constrains radial expansions. As a novelty relative to the state of the art, the self-sensing ability was obtained with a piezoresistive stretch sensor shaped as a conductive elastomeric body along the tube’s central axis. Moreover, we detail, also by means of video clips, a step-by-step manufacturing process, which uses off-the-shelf materials and simple procedures, so as to facilitate reproducibility. Full article
(This article belongs to the Special Issue Bio-Inspired and Biomimetic Intelligence in Robotics)
Show Figures

Graphical abstract

23 pages, 7021 KB  
Review
Advances in Additive Manufacturing of Polymer-Fused Deposition Modeling on Textiles: From 3D Printing to Innovative 4D Printing—A Review
by Edgar Adrian Franco Urquiza
Polymers 2024, 16(5), 700; https://doi.org/10.3390/polym16050700 - 4 Mar 2024
Cited by 34 | Viewed by 7804
Abstract
Technological advances and the development of new and advanced materials allow the transition from three-dimensional (3D) printing to the innovation of four-dimensional (4D) printing. 3D printing is the process of precisely creating objects with complex shapes by depositing superimposed layers of material. Current [...] Read more.
Technological advances and the development of new and advanced materials allow the transition from three-dimensional (3D) printing to the innovation of four-dimensional (4D) printing. 3D printing is the process of precisely creating objects with complex shapes by depositing superimposed layers of material. Current 3D printing technology allows two or more filaments of different polymeric materials to be placed, which, together with the development of intelligent materials that change shape over time or under the action of an external stimulus, allow us to innovate and move toward an emerging area of research, innovative 4D printing technology. 4D printing makes it possible to manufacture actuators and sensors for various technological applications. Its most significant development is currently in the manufacture of intelligent textiles. The potential of 4D printing lies in modular manufacturing, where fabric-printed material interaction enables the creation of bio-inspired and biomimetic devices. The central part of this review summarizes the effect of the primary external stimuli on 4D textile materials, followed by the leading applications. Shape memory polymers attract current and potential opportunities in the textile industry to develop smart clothing for protection against extreme environments, auxiliary prostheses, smart splints or orthoses to assist the muscles in their medical recovery, and comfort devices. In the future, intelligent textiles will perform much more demanding roles, thus envisioning the application fields of 4D printing in the next decade. Full article
(This article belongs to the Special Issue Advanced Additive Processes and 3D Printing for Polymer Composites)
Show Figures

Figure 1

26 pages, 5465 KB  
Article
NOHAS: A Novel Orthotic Hand Actuated by Servo Motors and Mobile App for Stroke Rehabilitation
by Ebenezer Raj Selvaraj Mercyshalinie, Akash Ghadge, Nneka Ifejika and Yonas Tadesse
Robotics 2023, 12(6), 169; https://doi.org/10.3390/robotics12060169 - 8 Dec 2023
Cited by 6 | Viewed by 9869
Abstract
The rehabilitation process after the onset of a stroke primarily deals with assisting in regaining mobility, communication skills, swallowing function, and activities of daily living (ADLs). This entirely depends on the specific regions of the brain that have been affected by the stroke. [...] Read more.
The rehabilitation process after the onset of a stroke primarily deals with assisting in regaining mobility, communication skills, swallowing function, and activities of daily living (ADLs). This entirely depends on the specific regions of the brain that have been affected by the stroke. Patients can learn how to utilize adaptive equipment, regain movement, and reduce muscle spasticity through certain repetitive exercises and therapeutic interventions. These exercises can be performed by wearing soft robotic gloves on the impaired extremity. For post-stroke rehabilitation, we have designed and characterized an interactive hand orthosis with tendon-driven finger actuation mechanisms actuated by servo motors, which consists of a fabric glove and force-sensitive resistors (FSRs) at the tip. The robotic device moves the user’s hand when operated by mobile phone to replicate normal gripping behavior. In this paper, the characterization of finger movements in response to step input commands from a mobile app was carried out for each finger at the proximal interphalangeal (PIP), distal interphalangeal (DIP), and metacarpophalangeal (MCP) joints. In general, servo motor-based hand orthoses are energy-efficient; however, they generate noise during actuation. Here, we quantified the noise generated by servo motor actuation for each finger as well as when a group of fingers is simultaneously activated. To test ADL ability, we evaluated the device’s effectiveness in holding different objects from the Action Research Arm Test (ARAT) kit. Our device, novel hand orthosis actuated by servo motors (NOHAS), was tested on ten healthy human subjects and showed an average of 90% success rate in grasping tasks. Our orthotic hand shows promise for aiding post-stroke subjects recover because of its simplicity of use, lightweight construction, and carefully designed components. Full article
(This article belongs to the Special Issue AI for Robotic Exoskeletons and Prostheses)
Show Figures

Figure 1

19 pages, 5346 KB  
Review
State of the Art Review of Active and Passive Knee Orthoses
by Agustín Barrera Sánchez, Andrés Blanco Ortega, Eladio Martínez Rayón, Fabio Abel Gómez Becerra, Arturo Abúndez Pliego, Rafael Campos Amezcua and César Humberto Guzmán Valdivia
Machines 2022, 10(10), 865; https://doi.org/10.3390/machines10100865 - 27 Sep 2022
Cited by 16 | Viewed by 10098
Abstract
The use of specialized devices, such as orthopedic devices, has become indispensable in the lives of people with disabilities since ancient times. The primary purpose of such devices is to perform activities and solve problems that afflict their bearers in any extremity of [...] Read more.
The use of specialized devices, such as orthopedic devices, has become indispensable in the lives of people with disabilities since ancient times. The primary purpose of such devices is to perform activities and solve problems that afflict their bearers in any extremity of their body. One of the most recurrent problems occurs in the lower extremities regarding mobility and autonomy. In addition, the use of orthopedic devices is considered a tool to lighten the repetitive and heavy rehabilitation work of physiotherapists while improving the patient’s recovery efficiency. A significant challenge is that a great variety of these devices are similar in their design and manufacture, complicating their application in rehabilitation processes. For these reasons, this article aims to provide an overview of the features and considerations made in the architecture of orthosis designs, emphasizing lower extremity orthoses for the case of knee joint analysis. A literature review of active and passive knee orthoses manufactured from the 1970s to the present was carried out, considering aspects such as manufacturing materials, mechanical systems, types of actuators, and control strategies. This review shows that the designs and development of orthoses have been abundant in these devices for lower limbs. Based on the literature collected, we have studied the main robotic devices focusing on the characteristics of design, manufacturing, and control systems to assist in human locomotion and support in rehabilitation processes. Full article
(This article belongs to the Special Issue State-of-the-Art in Service and Rehabilitation Machines)
Show Figures

Figure 1

30 pages, 23558 KB  
Article
Design Approaches of an Exoskeleton for Human Neuromotor Rehabilitation
by Cristian Copilusi, Sorin Dumitru, Ionut Geonea, Leonard Gherghe Ciurezu and Nicolae Dumitru
Appl. Sci. 2022, 12(8), 3952; https://doi.org/10.3390/app12083952 - 13 Apr 2022
Cited by 10 | Viewed by 3282
Abstract
This paper addresses a design for an exoskeleton used for human locomotion purposes in cases of people with neuromotor disorders. The reason for starting this research was given by the development of some intelligent systems for walking recovery involved in a new therapy [...] Read more.
This paper addresses a design for an exoskeleton used for human locomotion purposes in cases of people with neuromotor disorders. The reason for starting this research was given by the development of some intelligent systems for walking recovery involved in a new therapy called stationary walking therapy. This therapy type will be used in this research case, through a robotic system specially designed for functional walking recovery. Thus, the designed robotic system structure will have a patient lifting/positioning mechanism, a special exoskeleton equipped with sensors and actuators, a treadmill for walking, and a command and control unit. The exoskeleton’s lower limbs will have six orthotic devices. Thus, the exoskeleton’s lower limbs’ motions and orthoses angle variations will be generated by healthy human subjects on the treadmill with the possibility of memorizing these specific motions for obtaining one complete gait cycle. After this, the memorized motions will be performed to a patient with neuromotor disorders for walking recovery programs. The design core is focused on two planar-parallel mechanisms implemented at the knee and ankle joints of each leg’s exoskeleton. Thus, numerical simulations for the design process were carried out to validate the engineering feasibility of the proposed leg exoskeleton. Full article
(This article belongs to the Special Issue Exoskeleton Robotic Systems)
Show Figures

Figure 1

18 pages, 827 KB  
Article
Performance of Deep Learning Models in Forecasting Gait Trajectories of Children with Neurological Disorders
by Rania Kolaghassi, Mohamad Kenan Al-Hares, Gianluca Marcelli and Konstantinos Sirlantzis
Sensors 2022, 22(8), 2969; https://doi.org/10.3390/s22082969 - 13 Apr 2022
Cited by 18 | Viewed by 4337
Abstract
Forecasted gait trajectories of children could be used as feedforward input to control lower limb robotic devices, such as exoskeletons and actuated orthotic devices (e.g., Powered Ankle Foot Orthosis—PAFO). Several studies have forecasted healthy gait trajectories, but, to the best of our knowledge, [...] Read more.
Forecasted gait trajectories of children could be used as feedforward input to control lower limb robotic devices, such as exoskeletons and actuated orthotic devices (e.g., Powered Ankle Foot Orthosis—PAFO). Several studies have forecasted healthy gait trajectories, but, to the best of our knowledge, none have forecasted gait trajectories of children with pathological gait yet. These exhibit higher inter- and intra-subject variability compared to typically developing gait of healthy subjects. Pathological trajectories represent the typical gait patterns that rehabilitative exoskeletons and actuated orthoses would target. In this study, we implemented two deep learning models, a Long-Term Short Memory (LSTM) and a Convolutional Neural Network (CNN), to forecast hip, knee, and ankle trajectories in terms of corresponding Euler angles in the pitch, roll, and yaw form for children with neurological disorders, up to 200 ms in the future. The deep learning models implemented in our study are trained on data (available online) from children with neurological disorders collected by Gillette Children’s Speciality Healthcare over the years 1994–2017. The children’s ages range from 4 to 19 years old and the majority of them had cerebral palsy (73%), while the rest were a combination of neurological, developmental, orthopaedic, and genetic disorders (27%). Data were recorded with a motion capture system (VICON) with a sampling frequency of 120 Hz while walking for 15 m. We investigated a total of 35 combinations of input and output time-frames, with window sizes for input vectors ranging from 50–1000 ms, and output vectors from 8.33–200 ms. Results show that LSTMs outperform CNNs, and the gap in performance becomes greater the larger the input and output window sizes are. The maximum difference between the Mean Absolute Errors (MAEs) of the CNN and LSTM networks was 0.91 degrees. Results also show that the input size has no significant influence on mean prediction errors when the output window is 50 ms or smaller. For output window sizes greater than 50 ms, the larger the input window, the lower the error. Overall, we obtained MAEs ranging from 0.095–2.531 degrees for the LSTM network, and from 0.129–2.840 degrees for the CNN. This study establishes the feasibility of forecasting pathological gait trajectories of children which could be integrated with exoskeleton control systems and experimentally explores the characteristics of such intelligent systems under varying input and output window time-frames. Full article
(This article belongs to the Special Issue Rehabilitation Robots and Sensors)
Show Figures

Figure 1

13 pages, 2102 KB  
Review
Developments in Smart Multi-Function Gait Assistive Devices for the Prevention and Treatment of Knee Osteoarthritis—A Literature Review
by Hanatsu Nagano, William Sparrow and Rezaul Begg
Appl. Sci. 2021, 11(22), 10947; https://doi.org/10.3390/app112210947 - 19 Nov 2021
Cited by 6 | Viewed by 7276
Abstract
Knee osteoarthritis (OA) is a degenerative condition that critically affects locomotor ability and quality of life and, the condition is particularly prevalent in the senior population. The current review presents a gait biomechanics conceptual framework for designing active knee orthoses to prevent and [...] Read more.
Knee osteoarthritis (OA) is a degenerative condition that critically affects locomotor ability and quality of life and, the condition is particularly prevalent in the senior population. The current review presents a gait biomechanics conceptual framework for designing active knee orthoses to prevent and remediate knee OA. Constant excessive loading diminishes knee joint articular cartilage and, therefore, measures to reduce kinetic stresses due to the fact of adduction moments and joint compression are an essential target for OA prevention. A powered orthosis enables torque generation to support knee joint motions and machine-learning-driven “smart systems” can optimise the magnitude and timing of joint actuator forces. Although further research is required, recent findings raise the possibility of exoskeleton-supported, non-surgical OA interventions, increasing the treatment options for this prevalent, painful and seriously debilitating disease. Combined with advances in regenerative medicine, such as stem cell implantation and manipulation of messenger ribonucleic acid (m-RNA) transcription, active knee orthoses can be designed to incorporate electro-magnetic stimulators to promote articular cartilage resynthesis. Full article
(This article belongs to the Special Issue Biomechanical and Biomedical Factors of Knee Osteoarthritis)
Show Figures

Figure 1

23 pages, 7117 KB  
Review
Knee Exoskeletons Design Approaches to Boost Strength Capability: A Review
by Juan R. Meda-Gutiérrez, Luis Adrián Zúñiga-Avilés, Adriana H. Vilchis-González and Juan Carlos Ávila-Vilchis
Appl. Sci. 2021, 11(21), 9990; https://doi.org/10.3390/app11219990 - 26 Oct 2021
Cited by 9 | Viewed by 6960
Abstract
There are different devices to increase the strength capacity of people with walking problems. These devices can be classified into exoskeletons, orthotics, and braces. This review aims to identify the state of the art in the design of these medical devices, based on [...] Read more.
There are different devices to increase the strength capacity of people with walking problems. These devices can be classified into exoskeletons, orthotics, and braces. This review aims to identify the state of the art in the design of these medical devices, based on an analysis of patents and literature. However, there are some difficulties in processing the records due to the lack of filters and standardization in the names, generating discrepancies between the search engines, among others. Concerning the patents, 74 patents were analyzed using search engines such as Google Patents, Derwent, The Lens, Patentscope, and Espacenet over the past ten years. A bibliometric analysis was performed using 63 scientific reports from Web of Science and The Lens in the same period for scientific communications. The results show a trend to use the mechanical design of exoskeletons based on articulated rigid structures and elements that provide force to move the structure. These are generally two types: (a) elastic elements and (b) electromechanical elements. The United States accounts for 32% of the technological patents reviewed. The results suggest that the use of exoskeletons or orthoses customized to the users’ needs will continue to increase over the years due to the worldwide growth in disability, particularly related to mobility difficulties and technologies related to the combined use of springs and actuators. Full article
Show Figures

Figure 1

20 pages, 1500 KB  
Article
The Actuation System of the Ankle Exoskeleton T-FLEX: First Use Experimental Validation in People with Stroke
by Daniel Gomez-Vargas, Felipe Ballen-Moreno, Patricio Barria, Rolando Aguilar, José M. Azorín, Marcela Munera and Carlos A. Cifuentes
Brain Sci. 2021, 11(4), 412; https://doi.org/10.3390/brainsci11040412 - 24 Mar 2021
Cited by 34 | Viewed by 5922
Abstract
Robotic devices can provide physical assistance to people who have suffered neurological impairments such as stroke. Neurological disorders related to this condition induce abnormal gait patterns, which impede the independence to execute different Activities of Daily Living (ADLs). From the fundamental role of [...] Read more.
Robotic devices can provide physical assistance to people who have suffered neurological impairments such as stroke. Neurological disorders related to this condition induce abnormal gait patterns, which impede the independence to execute different Activities of Daily Living (ADLs). From the fundamental role of the ankle in walking, Powered Ankle-Foot Orthoses (PAFOs) have been developed to enhance the users’ gait patterns, and hence their quality of life. Ten patients who suffered a stroke used the actuation system of the T-FLEX exoskeleton triggered by an inertial sensor on the foot tip. The VICONmotion capture system recorded the users’ kinematics for unassisted and assisted gait modalities. Biomechanical analysis and usability assessment measured the performance of the system actuation for the participants in overground walking. The biomechanical assessment exhibited changes in the lower joints’ range of motion for 70% of the subjects. Moreover, the ankle kinematics showed a correlation with the variation of other movements analyzed. This variation had positive effects on 70% of the participants in at least one joint. The Gait Deviation Index (GDI) presented significant changes for 30% of the paretic limbs and 40% of the non-paretic, where the tendency was to decrease. The spatiotemporal parameters did not show significant variations between modalities, although users’ cadence had a decrease of 70% of the volunteers. Lastly, the satisfaction with the device was positive, the comfort being the most user-selected aspect. This article presents the assessment of the T-FLEX actuation system in people who suffered a stroke. Biomechanical results show improvement in the ankle kinematics and variations in the other joints. In general terms, GDI does not exhibit significant increases, and the Movement Analysis Profile (MAP) registers alterations for the assisted gait with the device. Future works should focus on assessing the full T-FLEX orthosis in a larger sample of patients, including a stage of training. Full article
(This article belongs to the Special Issue Applications of Neurotechnologies in People with Walking Disabilities)
Show Figures

Figure 1

14 pages, 1061 KB  
Review
Spinal Deformities and Advancement in Corrective Orthoses
by Athar Ali, Vigilio Fontanari, Marco Fontana and Werner Schmölz
Bioengineering 2021, 8(1), 2; https://doi.org/10.3390/bioengineering8010002 - 25 Dec 2020
Cited by 24 | Viewed by 18300
Abstract
Spinal deformity is an abnormality in the spinal curves and can seriously affect the activities of daily life. The conventional way to treat spinal deformities, such as scoliosis, kyphosis, and spondylolisthesis, is to use spinal orthoses (braces). Braces have been used for centuries [...] Read more.
Spinal deformity is an abnormality in the spinal curves and can seriously affect the activities of daily life. The conventional way to treat spinal deformities, such as scoliosis, kyphosis, and spondylolisthesis, is to use spinal orthoses (braces). Braces have been used for centuries to apply corrective forces to the spine to treat spinal deformities or to stabilize the spine during postoperative rehabilitation. Braces have not modernized with advancements in technology, and very few braces are equipped with smart sensory design and active actuation. There is a need to enable the orthotists, ergonomics practitioners, and developers to incorporate new technologies into the passive field of bracing. This article presents a review of the conventional passive braces and highlights the advancements in spinal orthoses in terms of improved sensory designs, active actuation mechanisms, and new construction methods (CAD/CAM, three-dimensional (3D) printing). This review includes 26 spinal orthoses, comprised of passive rigid/soft braces, active dynamics braces, and torso training devices for the rehabilitation of the spine. Full article
Show Figures

Figure 1

8 pages, 622 KB  
Proceeding Paper
A Concept Design of an Adaptive Tendon Driven Mechanism for Active Soft Hand Orthosis
by Bruno Lourenço, Vitorino Neto and Rafhael de Andrade
Proceedings 2020, 64(1), 21; https://doi.org/10.3390/IeCAT2020-08504 - 21 Nov 2020
Cited by 3 | Viewed by 1884
Abstract
The Hands exert a vital role in the simplest to most complex daily tasks. Losing the ability to make hand movements, which is usually caused by spinal cord injury or stroke, dramatically impacts the quality of life. In order to counteract this problem, [...] Read more.
The Hands exert a vital role in the simplest to most complex daily tasks. Losing the ability to make hand movements, which is usually caused by spinal cord injury or stroke, dramatically impacts the quality of life. In order to counteract this problem, several assisting devices have been proposed, but they still present several usage limitations. The marketable orthoses are generally either the static type or over-expensive active orthosis that cannot perform the same degrees of freedom (DoF) that a hand can do. This paper presents a conceptual design of a tendon-driven mechanism for hand’s active orthosis. This study is a part of an effort to develop an effective and low-cost hand’s orthosis for people with hand paralysis. The tendon design proposed was thought to comply with some requisitions such as lightness and low volume, as well as fit with the biomechanical constraints of the hand joints to enable a comfortable use. The mechanism employs small cursors on the phalanges to allow the tendons to run on the dorsal side and by both sides of the fingers, allowing 2 DoF for each finger, and one extra tendon enlarges the hands’ adduction nuances. With this configuration, it is simple enough to execute the flexion and extension movements, which are the most used movements in daily actives, using one single DC actuator for one DoF to reduce manufacturing costs, or with more DC actuators to enable more natural hand coordination. This system of actuation is suitable to create soft exoskeletons for hands easily embedded into 3D printed parts, which could be merged over statics thermoplastic orthosis. The final orthosis design allows dexterous finger movements and force to grasp objects and perform tasks comfortably. Full article
Show Figures

Figure 1

Back to TopTop