Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (38)

Search Parameters:
Keywords = active meadow protection

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 12231 KiB  
Article
Habitat Requirements of the Grey-Headed Woodpecker in Lowland Areas of NE Poland: Evidence from the Playback Experiment
by Grzegorz Zawadzki and Dorota Zawadzka
Birds 2025, 6(3), 32; https://doi.org/10.3390/birds6030032 - 20 Jun 2025
Viewed by 488
Abstract
The grey-headed woodpecker (Picus canus) (GHW) is one of the least-studied European woodpeckers, listed in Annex I of the Birds Directive. We examined the key environmental characteristics that determine the possibility of GHW occurrence in vast forests in northeast Poland. Woodpeckers [...] Read more.
The grey-headed woodpecker (Picus canus) (GHW) is one of the least-studied European woodpeckers, listed in Annex I of the Birds Directive. We examined the key environmental characteristics that determine the possibility of GHW occurrence in vast forests in northeast Poland. Woodpeckers were inventoried in spring on 54 study plots (4 km2) covering 20% of the forest area. Active territories were detected and mapped using the playback experiment of territorial voices and drumming. The generalized linear model GLM, random forest RF, and Boosting were used for modeling. GLM was used to indicate the most critical factors affecting the abundance of GHW. The number of territories in a single study plot ranged from 0 to 3; the most frequent were areas without woodpeckers. The probability of the nesting of the GHW was increasing at plots with watercourses, a bigger share of mixed forest area, and a proportion of stands over 120 years old. The calculation for all 400 quadrats allowed us to estimate the population size at approximately 180–200 breeding pairs. The overall density of GHW in the study area was assessed at 0.13/km2, while at the optimal quadrats, it increased to about 0.75/km2. Preference for watercourses was linked to alders growing along water banks. Near the water, there are often small meadows where the GHW can prey on ants. In turn, old-growth forests above 120 years old increased the probability of the presence of the GHW. There are more dead and dying trees in older forests, which are the ones the GHW chooses to excavate cavities. To effectively protect the habitats of the GHW, it is necessary to maintain a larger area of stands over 120 years old, mainly on wet sites. Full article
Show Figures

Figure 1

24 pages, 2856 KiB  
Article
Comprehensive Evaluation of Soil Quality Reconstruction in Agroforestry Ecosystems of High-Altitude Areas: A Case Study of the Jiangcang Mining Area, Qinghai–Tibet Plateau
by Liya Yang, Shaohua Feng, Xusheng Shao, Jinde Zhang, Tianxiang Wang and Shuisheng Xiong
Agronomy 2025, 15(6), 1390; https://doi.org/10.3390/agronomy15061390 - 5 Jun 2025
Viewed by 547
Abstract
This study focuses on the alpine meadow ecosystem of the Qinghai–Tibet Plateau, which plays a vital role in carbon sequestration and water resource protection. However, mining activities have severely damaged the ecosystem, posing challenges for ecological restoration. The study selected the Jiangcang mining [...] Read more.
This study focuses on the alpine meadow ecosystem of the Qinghai–Tibet Plateau, which plays a vital role in carbon sequestration and water resource protection. However, mining activities have severely damaged the ecosystem, posing challenges for ecological restoration. The study selected the Jiangcang mining area and analyzed the physical, chemical, and carbon characteristics and heavy metal content of soil samples from the slag platforms and slopes (0–20 cm), which were restored in 2015 and 2020 to explore the effects of different soil reconstruction methods on soil function and ecological resilience. The results show that the minimum data set (MDS) can effectively replace the total data set (TDS) in assessing soil quality. The assessment indicates good restoration effects in 2020, with some areas rated high in soil quality. Although issues such as high bulk density, high electrical conductivity, low moisture content, nitrogen deficiency, and low organic matter limit ecological restoration, the carbon sequestration capacity of the restored soil is strong. This study provides scientific evidence for ecological restoration in cold mining areas, indicating that capping measures can enhance soil resistance to erosion, nutrient retention, and carbon sink functions. Full article
Show Figures

Figure 1

21 pages, 4344 KiB  
Article
Development of an Index for Sustainable Use Assessment—A Case Study from Mesic Grasslands with Economic Potential in North Serbia (Vojvodina)
by Sara Pavkov, Andraž Čarni, Željko Škvorc, Nikola Delić and Mirjana Ćuk
Land 2025, 14(5), 1082; https://doi.org/10.3390/land14051082 - 16 May 2025
Viewed by 547
Abstract
The mesic grasslands of the Molinio-Arrhenatheretea Tx. 1937 in Vojvodina could play a crucial role in biodiversity conservation, but also in local economies, providing essential ecosystem services, such as habitats for diverse species and resources for agricultural and pastoral activities. However, they face [...] Read more.
The mesic grasslands of the Molinio-Arrhenatheretea Tx. 1937 in Vojvodina could play a crucial role in biodiversity conservation, but also in local economies, providing essential ecosystem services, such as habitats for diverse species and resources for agricultural and pastoral activities. However, they face growing threats from unsustainable land use, urbanization and climate change. In this study, a database comprising 716 relevés and 636 plant species was created. All meadow plots were classified into seven habitat types and evaluated for their sustainable use potential using the index developed in this study, based on economically notable species, their status of protection and total cover. Through this index, moist or wet mesotrophic to eutrophic pasture demonstrates the highest potential, whereas temperate and boreal moist or wet oligotrophic grassland shows the lowest. This index offers a decision-support tool, optimizing economic benefits while minimizing environmental impact and offering guidelines for sustainable grassland management and policy recommendations tailored to local conditions. It also serves as a framework for other regions facing similar challenges, contributing to the advancement of grassland ecosystem service valuation and its preservation. Full article
Show Figures

Figure 1

21 pages, 10754 KiB  
Article
Accounting of Grassland Ecosystem Assets and Assessment of Sustainable Development Potential in the Bosten Lake Basin
by Zhichao Zhang, Zhoukang Li, Zhen Zhu and Yang Wang
Sustainability 2025, 17(8), 3460; https://doi.org/10.3390/su17083460 - 13 Apr 2025
Viewed by 426
Abstract
Assessing the ecosystem service value (ESV) of grasslands is crucial for sustainable resource management and environmental conservation. This study evaluates the spatiotemporal changes in grassland ecosystem services in the Bosten Lake Basin using long-term land use data (2000–2022). Employing the Patch-generating Land Use [...] Read more.
Assessing the ecosystem service value (ESV) of grasslands is crucial for sustainable resource management and environmental conservation. This study evaluates the spatiotemporal changes in grassland ecosystem services in the Bosten Lake Basin using long-term land use data (2000–2022). Employing the Patch-generating Land Use Simulation (PLUS) model, we develop three future scenarios—natural development, ecological protection, and economic priority—to predict grassland utilization trends. The findings reveal a continuous decline in grassland area and ecosystem service values, driven by climate change and human activities. Compared with 2022, all three scenarios indicate further degradation, but ecological protection measures significantly mitigate ESV loss. This study provides scientific insights for sustainable land management and policy-making, contributing to ecological restoration strategies under climate change impacts. The findings reveal the following: (1) Over the 22-year period, the grassland area in the Bosten Lake Basin has experienced an overall decline. Notably, the area of plain desert steppe grassland expanded from 626,179.41 ha to 1,223,506.62 ha, whereas plain meadow grassland reduced from 556,784.64 ha to 118,948.23 ha. (2) The total ecosystem service value of grasslands in the basin exhibited a marginally insignificant decrease, amounting to a reduction of 5.73422 billion CNY. The values for mountain desert, mountain desert steppe, mountain typical steppe, and mountain meadow grasslands were relatively low and showed minimal change. (3) In comparison to 2022, the projected areas of grassland under the three scenarios for 2000 show a substantial reduction, particularly in plain desert and hilly desert grasslands. The ecosystem service values across all scenarios are expected to decline in tandem with varying degrees of grassland degradation. This research underscores the impact of global warming and human activities on the shrinking grassland area and the diminishing ecosystem service values in the Bosten Lake Basin. The current state of grassland resources in the study area is under threat, highlighting the urgent need for strategic planning and conservation efforts to ensure sustainable development and ecological integrity. Full article
Show Figures

Figure 1

20 pages, 21648 KiB  
Article
Spatial–Temporal Heterogeneity of Wetlands in the Alpine Mountains of the Shule River Basin on the Northeastern Edge of the Qinghai–Tibet Plateau
by Shuya Tai, Donghui Shangguan, Jinkui Wu, Rongjun Wang and Da Li
Remote Sens. 2025, 17(6), 976; https://doi.org/10.3390/rs17060976 - 10 Mar 2025
Viewed by 780
Abstract
Alpine wetland ecosystems, as important carbon sinks and water conservation areas, possess unique ecological functions. Driven by climate change and human activities, the spatial distribution changes in alpine wetlands directly affect the ecosystems and water resource management within a basin. To further refine [...] Read more.
Alpine wetland ecosystems, as important carbon sinks and water conservation areas, possess unique ecological functions. Driven by climate change and human activities, the spatial distribution changes in alpine wetlands directly affect the ecosystems and water resource management within a basin. To further refine the evolution processes of different types of alpine wetlands in different zones of a basin, this study combined multiple field surveys, unmanned aerial vehicle (UAV) flights, and high-resolution images. Based on the Google Earth Engine (GEE) cloud platform, we constructed a Random Forest model to identify and extract alpine wetlands in the Shule River Basin over a long-term period from 1987 to 2021. The results indicated that the accuracy of the extraction based on this method exceeded 90%; the main wetland types are marsh, swamp meadow, and river and lake water bodies; and the spatial–temporal distribution of each wetland type has obvious heterogeneity. In total, 90% of the swamp meadows areas were mainly scattered throughout the study area’s section 3700 to 4300 m above sea level (a.s.l.), and 80% of the marshes areas were concentrated in the Dang River source 3200 m above sea level. From 1987 to 2021, the alpine wetland in the study area showed an overall expansion trend. The total area of the wetland increased by 51,451.8 ha and the area increased by 53.5%. However, this expansion mainly occurred in the elevation zone below 4000 m after 2004, and low-altitude marsh wetland primarily dominated the expansion. The analysis of the spatial–temporal heterogeneity of alpine wetlands can provide a scientific basis for the attribution analysis of the change in alpine wetlands in inland water conservation areas, as well as for protection and rational development and utilization, and promote the healthy development of ecological environments in nature reserves. Full article
Show Figures

Figure 1

31 pages, 2324 KiB  
Review
Microbial Fuel Cell Technology as a New Strategy for Sustainable Management of Soil-Based Ecosystems
by Renata Toczyłowska-Mamińska, Mariusz Ł. Mamiński and Wojciech Kwasowski
Energies 2025, 18(4), 970; https://doi.org/10.3390/en18040970 - 18 Feb 2025
Viewed by 3136
Abstract
Although soil is mainly perceived as the basic component of agricultural production, it also plays a pivotal role in environmental protection and climate change mitigation. Soil ecosystems are the largest terrestrial carbon source and greenhouse gas emitters, and their degradation as a result [...] Read more.
Although soil is mainly perceived as the basic component of agricultural production, it also plays a pivotal role in environmental protection and climate change mitigation. Soil ecosystems are the largest terrestrial carbon source and greenhouse gas emitters, and their degradation as a result of aggressive human activity exacerbates the problem of climate change. Application of microbial fuel cell (MFC) technology to soil-based ecosystems such as sediments, wetlands, farmland, or meadows allows for sustainable management of these environments with energy and environmental benefits. Soil ecosystem-based MFCs enable zero-energy, environmentally friendly soil bioremediation (with efficiencies reaching even 99%), direct clean energy production from various soil-based ecosystems (with power production reaching 334 W/m2), and monitoring of soil quality or wastewater treatment in wetlands (with efficiencies of up to 99%). They are also a new strategy for greenhouse gas, soil salinity, and metal accumulation mitigation. This article reviews the current state of the art in the field of application of MFC technology to various soil-based ecosystems, including soil MFCs, sediment MFCs, plant MFCs, and CW-MFCs (constructed wetlands coupled with MFCs). Full article
Show Figures

Figure 1

19 pages, 18863 KiB  
Article
Impacts of Climate Variations and Human Activities on the Net Primary Productivity of Different Grassland Types in the Three-River Headwaters Region
by Kai Zheng, Xiang Liu, Xiaoyu Zou and Zhaoqi Wang
Remote Sens. 2025, 17(3), 471; https://doi.org/10.3390/rs17030471 - 29 Jan 2025
Cited by 1 | Viewed by 752
Abstract
Climate variations and human activities, as two major driving forces, have profound impacts on alpine ecosystems. The Three-River Headwaters Region (TRHR) is located in the alpine region and is the source of three major rivers flowing to eastern China and Southeast Asia. Grassland [...] Read more.
Climate variations and human activities, as two major driving forces, have profound impacts on alpine ecosystems. The Three-River Headwaters Region (TRHR) is located in the alpine region and is the source of three major rivers flowing to eastern China and Southeast Asia. Grassland is the dominant vegetation type in the TRHR and is fragile and sensitive to climate variations and human activities due to the alpine environment. Different types of grassland may have varying coping mechanisms with disturbances due to their unique environments and physiological functions. However, there is limited quantitative research on the response of different grassland types to climate variations and human activities in the TRHR. Therefore, the Carnegie–Ames–Stanford approach (CASA) was selected to simulate the net primary productivity (NPP) affected by climate (NPPC) and the actual NPP (NPPA) of steppes and meadows in the TRHR from 2001 to 2022, and the NPP affected by human activities (NPPH) was calculated by subtracting the NPPA from the NPPC. Results showed that the NPPA increased by 0.53 gC/m2/a during the study period, with the NPPA of steppes and meadows increasing by 0.55 gC/m2/a and 0.51 gC/m2/a, respectively. The regions dominated by climate variations, human activities, and the combined impact of the two accounted for 22.01%, 29.42%, and 48.57% of the NPPA changes. In terms of climate change, the impact of temperature and soil moisture on the NPP is equally important. It is worth noting that the alpine meadows (67.60%) contributed more to the increases in the NPPA than the steppes (32.40%). In addition, climate variations and human activities contributed more to the increased total NPPA of the meadows (20.54 GgC and 36.41 GgC) than that of the steppes (14.35 GgC and 10.20 GgC). The results clarify the quantitative evaluation system for the impact of human activities and climate change on different types of grasslands in the TRHR, providing guidance for the protection and management of these grasslands. Full article
(This article belongs to the Special Issue Remote Sensing of Mountain and Plateau Vegetation)
Show Figures

Figure 1

19 pages, 8538 KiB  
Article
An Integrative Approach to Assess and Map Zostera noltei Meadows Along the Romanian Black Sea Coast
by Oana Alina Marin, Florin Timofte, Adrian Filimon, Alina Mihaela Croitoru, Wouter van Broekhoven, Charlotte Harper and Roosmarijn van Zummeren
J. Mar. Sci. Eng. 2024, 12(12), 2346; https://doi.org/10.3390/jmse12122346 - 20 Dec 2024
Viewed by 1526
Abstract
Seagrass meadows, including those formed by Zostera noltei, play a crucial role in marine ecosystem health by providing habitat stability and coastal protection. In the Romanian Black Sea, Z. noltei meadows are critically endangered due to pressures from eutrophication, habitat loss, and [...] Read more.
Seagrass meadows, including those formed by Zostera noltei, play a crucial role in marine ecosystem health by providing habitat stability and coastal protection. In the Romanian Black Sea, Z. noltei meadows are critically endangered due to pressures from eutrophication, habitat loss, and climate change. This study presents a comprehensive baseline assessment of Z. noltei meadows near Mangalia, Romania, utilizing in situ field methods and UAV mapping conducted in the spring and summer of 2023. Seven meadow sites (Z1–Z7) were identified, with notable variability in density, shoot counts, and coverage across sites. Site Z1 exhibited the highest density (1223 shoots/m−2) and Z5 and Z7 the longest leaves (an average of 60 cm), reflecting possible environmental influences. Statistical analyses revealed significant inter-site differences in shoot density and leaf length, with density emerging as a primary differentiator. Ex situ analyses of epiphyte load indicated a median, balanced epiphyte load. This baseline dataset supported the selection of Z1 as a reference donor site for seagrass relocation activities along the Romanian coast in 2023. By providing critical insights into Z. noltei structure and health, this study supports future conservation efforts and evidence-based management of these vulnerable coastal habitats. Full article
(This article belongs to the Section Marine Ecology)
Show Figures

Figure 1

15 pages, 10157 KiB  
Article
Spatio-Temporal Variation and the Associated Factor Analysis of Net Primary Productivity in Grasslands in Inner Mongolia
by Zilong Qin, Weiyao Guo and Zongyao Sha
Land 2024, 13(12), 2021; https://doi.org/10.3390/land13122021 - 27 Nov 2024
Cited by 1 | Viewed by 884
Abstract
The grassland ecosystem in the Inner Mongolia Autonomous Region (IMAR) serves as a vital ecological barrier in northern China, and the vegetation productivity in the grasslands exhibits considerable temporal and spatial variations. However, few studies have examined the long-term variations in the NPP [...] Read more.
The grassland ecosystem in the Inner Mongolia Autonomous Region (IMAR) serves as a vital ecological barrier in northern China, and the vegetation productivity in the grasslands exhibits considerable temporal and spatial variations. However, few studies have examined the long-term variations in the NPP in the IMAR and quantified the effects of natural factors and human activities on the NPP. The study modeled the net primary productivity (NPP) of the IMAR’s grasslands using the Carnegie–Ames–Stanford approach (CASA) model and employed linear regression, trend analysis, and spatial statistics to analyze the spatio-temporal patterns in vegetation productivity and explore the impact on the NPP of natural and socio-economic factors over the past two decades. The results reveal that the average NPP value from 2001 to 2021 was 293.80 gC∙m−2 a−1, characterized by spatial clustering of a relatively high NPP in the east, a low NPP in the west, and an annual increase of 3.26 gC∙m−2 over the years. The NPP values varied significantly across different vegetation cover types, with meadows having the highest NPP, followed by typical steppe and desert grasslands. The spatial distribution pattern and temporal changes in the grassland productivity are the result of both natural factors and human activities, including topographical properties and socio-economic indicators such as gross domestic product, night-time light, and population. The results for the NPP in the IMAR were based solely on the CASA model and, therefore, to achieve improved data reliability, exact measurements in real field conditions will be conducted in the future. The findings from the spatial clustering and temporal trajectories of the NPP and the impacts from the factors can provide useful guidance to planning grassland vegetation protection policies for the IMAR. Full article
(This article belongs to the Section Land Use, Impact Assessment and Sustainability)
Show Figures

Figure 1

25 pages, 6473 KiB  
Article
Birds as Cultural Ambassadors: Bridging Ecosystem Services and Biodiversity Conservation in Wetland Planning
by Michela Ingaramo, Anna Rita Bernadette Cammerino, Vincenzo Rizzi, Maurizio Gioiosa and Massimo Monteleone
Sustainability 2024, 16(23), 10286; https://doi.org/10.3390/su162310286 - 24 Nov 2024
Cited by 1 | Viewed by 2354
Abstract
Coastal wetlands deliver essential ecosystem services, including cultural services, which provide non-material benefits such as recreation, education, and spiritual enrichment that are crucial for human well-being. This study investigates the cultural ecosystem services provided by a 40 ha coastal wetland in the Gulf [...] Read more.
Coastal wetlands deliver essential ecosystem services, including cultural services, which provide non-material benefits such as recreation, education, and spiritual enrichment that are crucial for human well-being. This study investigates the cultural ecosystem services provided by a 40 ha coastal wetland in the Gulf of Manfredonia, southern Italy, within the Gargano National Park. By integrating an ecological survey of the bird community with a social survey of visitors to the King’s Lagoon Nature Reserve, the content of tailored planning strategies and management tools for the conservation of wetland biodiversity was developed. An ecological analysis of the bird community was carried out on the assumption that it could be representative of the total biodiversity observed in the wetland. On the other hand, a questionnaire was used to collect information from visitors to the reserve, highlighting the aspects of the wetland that they found most interesting and attractive according to their judgement and beliefs, and thus targeting a specific set of cultural ecological services. The two approaches were then combined to develop a comprehensive strategy. The bird community analysis led to the identification of the mixed biotope category (a combination of wetlands, aquatic/riparian ecosystems, semi-natural vegetated areas, and meadows together with agricultural areas) as the reference biotope for prioritizing wetland management. The Ardeidae family was chosen as a bird flagship group because of its high visibility, ease of identification, attractiveness to visitors, wide local distribution, and fairly constant presence in the study area throughout the year. Flagship species have a dual function: to guide conservation measures and actions by wetland managers, and to attract the interest, curiosity and active participation of potential visitors to the wetland. Based on the results, a list of guidelines for improving the birds’ habitats and providing them with resources (feeding, breeding, shelter, roosting, etc.) has been proposed. The aim of these measures is to optimize the presence and abundance of Ardeidae as flagship species, thereby preserving the biodiversity heritage in general and increasing the provision of cultural ecosystem services in the wetland. The resulting dynamic interplay ensures that both natural and cultural resources are fully and appropriately valued, protected, and maintained for the benefit of present and future generations. Full article
(This article belongs to the Topic Mediterranean Biodiversity)
Show Figures

Figure 1

16 pages, 2380 KiB  
Article
The Impacts of Beaver Dams on Groundwater Regime and Habitat 6510
by Ryszard Oleszczuk, Sławomir Bajkowski, Janusz Urbański, Bogumiła Pawluśkiewicz, Marcin J. Małuszyński, Ilona Małuszyńska, Jan Jadczyszyn and Edyta Hewelke
Land 2024, 13(11), 1902; https://doi.org/10.3390/land13111902 - 13 Nov 2024
Cited by 1 | Viewed by 1386
Abstract
Changes in land usage, increasing climatic uncertainty, and dynamic development of the rate of natural population growth of the Eurasian beaver will lead to increasing benefits and disadvantages from beaver activity. During three growing seasons from 2020 to 2022, four cross-sections were marked [...] Read more.
Changes in land usage, increasing climatic uncertainty, and dynamic development of the rate of natural population growth of the Eurasian beaver will lead to increasing benefits and disadvantages from beaver activity. During three growing seasons from 2020 to 2022, four cross-sections were marked on unused sub-irrigation systems with the periodic occurrence of beaver dams, located on organic soils in parts of the facility protected by the Habitats Directive (natural habitat 6510) in Central Poland. Periodic water table measurements in wells, the beds of adjacent ditches, and the riverbed were carried out. Identification of the states and structures of plant communities was done using the botanical-weight analysis of several samples with an area of 1 m2. Beaver dams increased water levels in the river, ditches, and groundwater depth in over 78% of events in 2020–2022 years. A large impact of precipitation on the hydraulic conditions in the meadow was observed. In the studied area, since a moderately moist habitat (6510) is protected within the Natura 2000 network, phenomena increasing soil moisture, in the absence of mowing of meadows and the occurrence of expansive herbaceous vegetation that tolerates increased moisture, may lead to the disappearance of these habitats, especially in the zone near the riverbed. Full article
Show Figures

Figure 1

24 pages, 16360 KiB  
Article
Estimating Grassland Carrying Capacity in the Source Area of Nujiang River and Selinco Lake, Tibetan Plateau (2001–2020) Based on Multisource Remote Sensing
by Fangkun Ji, Guilin Xi, Yaowen Xie, Xueyuan Zhang, Hongxin Huang, Zecheng Guo, Haoyan Zhang and Changhui Ma
Remote Sens. 2024, 16(20), 3790; https://doi.org/10.3390/rs16203790 - 12 Oct 2024
Cited by 2 | Viewed by 1551
Abstract
Estimating the spatiotemporal variations in natural grassland carrying capacity is crucial for maintaining the balance between grasslands and livestock. However, accurately assessing this capacity presents significant challenges due to the high costs of biomass measurement and the impact of human activities. In this [...] Read more.
Estimating the spatiotemporal variations in natural grassland carrying capacity is crucial for maintaining the balance between grasslands and livestock. However, accurately assessing this capacity presents significant challenges due to the high costs of biomass measurement and the impact of human activities. In this study, we propose a novel method to estimate grassland carrying capacity based on potential net primary productivity (NPP), applied to the source area of the Nujiang River and Selinco Lake on the Tibetan Plateau. Initially, we utilize multisource remote sensing data—including soil, topography, and climate information—and employ the random forest regression algorithm to model potential NPP in areas where grazing is banned. The construction of the random forest model involves rigorous feature selection and hyperparameter optimization, enhancing the model’s accuracy. Next, we apply this trained model to areas with grazing, ensuring a more accurate estimation of grassland carrying capacity. Finally, we analyze the spatiotemporal variations in grassland carrying capacity. The main results showed that the model achieved a high level of precision, with a root mean square error (RMSE) of 4.89, indicating reliable predictions of grassland carrying capacity. From 2001 to 2020, the average carrying capacity was estimated at 9.44 SU/km2, demonstrating a spatial distribution that decreases from southeast to northwest. A slight overall increase in carrying capacity was observed, with 65.7% of the area exhibiting an increasing trend, suggesting that climate change has a modest positive effect on the recovery of grassland carrying capacity. Most of the grassland carrying capacity is found in areas below 5000 m in altitude, with alpine meadows and alpine meadow steppes below 4750 m being particularly suitable for grazing. Given that the overall grassland carrying capacity remains low, it is crucial to strictly control local grazing intensity to mitigate the adverse impacts of human activities. This study provides a solid scientific foundation for developing targeted grassland management and protection policies. Full article
(This article belongs to the Section Ecological Remote Sensing)
Show Figures

Figure 1

17 pages, 6885 KiB  
Article
Simulating the Sustainable Impact of Land Use Change on Carbon Emissions in the Upper Yellow River of Gannan: A Multi-Scenario Perspective Based on the PLUS Model
by Yu-Chen Zhao, Yuan Tian, Qi-Peng Zhang, Li-Yan Jiang and Qian Wang
Sustainability 2024, 16(13), 5481; https://doi.org/10.3390/su16135481 - 27 Jun 2024
Cited by 1 | Viewed by 1361
Abstract
Changes to land use carbon emissions (LUCEs) have become significant contributors to increasingly severe climate issues. Land use change is one of the crucial factors that affect carbon emissions. Alpine meadows regions are sensitive to climate change and human activities. However, current research [...] Read more.
Changes to land use carbon emissions (LUCEs) have become significant contributors to increasingly severe climate issues. Land use change is one of the crucial factors that affect carbon emissions. Alpine meadows regions are sensitive to climate change and human activities. However, current research on LUCEs mainly focuses on analyzing present land use status and spatial patterns. To reveal and forecast future LUCEs in the alpine region, the Upper Yellow River of Gannan (UYRG) was used as a case study. Based on the land use data from 1990 to 2020, we used the multi-scenario PLUS model to predict the land use types in 2030 and analyzed the spatial and temporal dynamic trends of LUCEs from 1990 to 2030. The results showed a strong correlation between the predicted and actual land use types, with a Kappa value of 0.93, indicating the applicability of the PLUS model in predicting land use in the UYRG. Over the study period, construction land expanded, while woodland and grassland diminished. Carbon emissions (CEs) increased by 516.4% from −200,541.43 Mg CO2e in 1990 to 835,054.08 Mg CO2e in 2020, with construction land being the main contributor. In the Natural Development scenario for 2030, construction land expanded most rapidly, resulting in the highest LUCEs. In the Ecological Protection scenario, woodland and grassland expanded, while construction land decreased, leading to an expansion in carbon sinks. In the Cropland Protection scenario, cropland expanded, with CEs falling between the other two scenarios. These findings lay a theoretical groundwork for formulating policies addressing LUCEs in alpine meadows, providing valuable insights for further studies. Full article
Show Figures

Graphical abstract

11 pages, 1853 KiB  
Article
Effects of Sheep Grazing and Nitrogen Addition on Dicotyledonous Seedling Abundance and Diversity in Alpine Meadows
by Huanhuan Dong, Yuqi Ma, Zuoyi Wang, Yuan Yang, Longxin Zhang, Xin Yin, Honglin Li, Lanping Li, Huakun Zhou, Zhen Ma and Chunhui Zhang
Nitrogen 2024, 5(2), 498-508; https://doi.org/10.3390/nitrogen5020032 - 31 May 2024
Viewed by 1469
Abstract
Seedling is a crucial stage in the growth and development of plants, and the expansion and persistence of plant populations can be achieved through seed regeneration. Sheep grazing, fertilization, light, soil moisture, vegetation diversity and biomass, and litter all have potential impacts on [...] Read more.
Seedling is a crucial stage in the growth and development of plants, and the expansion and persistence of plant populations can be achieved through seed regeneration. Sheep grazing, fertilization, light, soil moisture, vegetation diversity and biomass, and litter all have potential impacts on species regeneration. We measured vegetation diversity, annual net primary productivity (ANPP), litter, ground photosynthetically active radiation (PAR), and soil moisture of alpine meadows under sheep grazing and nitrogen addition treatments, and studied their effects on the dicotyledonous seedling abundance and diversity using linear regression models (LMs) and structural equation models (SEMs). We found that sheep grazing reduced ANPP, increased vegetation diversity and PAR, and decreased soil moisture. Fertilization increased ANPP and litter, decreased vegetation diversity and PAR, but had no effect on soil moisture. Sheep grazing and fertilization both reduced the abundance of dicotyledonous seedlings, and simultaneously fertilization can reduce the diversity of dicotyledonous seedlings, while sheep grazing had no effect on the diversity of dicotyledonous seedlings. LMs showed that vegetation diversity, ANPP, and litter, rather than light and soil moisture, affected dicotyledonous seedling abundance and diversity. SEMs revealed that sheep grazing and fertilization indirectly influenced seedling regeneration through vegetation diversity rather than ANPP and litter. Our research will increase our understanding of the dicotyledonous plant regeneration process in alpine grasslands and facilitate the development of strategies for management and protection of alpine grassland. Full article
Show Figures

Figure 1

15 pages, 2032 KiB  
Article
Comparative Effects of No-dig and Conventional Cultivation with Vermicompost Fertilization on Earthworm Community Parameters and Soil Physicochemical Condition
by Anna Mazur-Pączka, Kevin R. Butt, Mariola Garczyńska, Marcin Jaromin, Edmund Hajduk, Joanna Kostecka and Grzegorz Pączka
Agriculture 2024, 14(6), 870; https://doi.org/10.3390/agriculture14060870 - 30 May 2024
Cited by 2 | Viewed by 1313
Abstract
Because of the numerous ecosystem services provided by soil, such as elemental cycling, food production, and water filtration and storage, this resource requires special protection to maintain total efficiency of these services. However, standard agricultural practices can have a degrading effect, not only [...] Read more.
Because of the numerous ecosystem services provided by soil, such as elemental cycling, food production, and water filtration and storage, this resource requires special protection to maintain total efficiency of these services. However, standard agricultural practices can have a degrading effect, not only on the physical and chemical properties of soil, but may also threaten soil invertebrate communities. Soil macrofauna, and earthworms in particular, play a critical role in soil ecosystems because their activities affect the availability of nutrients for plants, shape soil structure, and significantly impact organic matter dynamics. The present study was undertaken to determine the effects of two systems used in plant cultivation (no-dig and conventional digging). Both used vermicompost as an organic fertilizer and looked at selected characteristics of Lumbricidae groupings and the dynamics of selected soil physicochemical properties. This study was conducted over three years in the same area to ensure that the soil characteristics were the same. The NDG (no-dig) and DG (conventional digging) sites were prepared as appropriate with a perennial hay meadow (MW) used as a control site. An electrical extraction (octet) method was used to collect earthworms. The same six species of earthworm were found at each site: Dendrodrilus rubidus (Sav.), Lumbricus rubellus (Hoff.), Aporrectodea caliginosa (Sav.), Aporrectodea rosea (Sav.), Octolasion lacteum (Örley), and Lumbricus terrestris (L.). Earthworm abundance and biomass were found to be significantly higher at the NDG site compared to DG (NDG > DG; abundance by 24% (p < 0.05), biomass by 22% (p < 0.05)). No significant differences between NDG and MW were shown. Moisture, temperature, and soil organic carbon content likely influenced the abundance and biomass of Lumbricidae. The NDG site showed significantly higher organic carbon and moisture content and significantly lower temperatures than the DG site. The average number of earthworms damaged by digging was 0.85 ind. m−2, but did not significantly affect the other results. Overall, NDG is preferable to DG for enhancing the earthworm and physicochemical parameters of soil. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

Back to TopTop