Effects of Sheep Grazing and Nitrogen Addition on Dicotyledonous Seedling Abundance and Diversity in Alpine Meadows
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Experimental Design
2.3. Measurement of Abundance and Diversity of Dicotyledonous Seedling and Adult Plants
2.4. Measurement of Aboveground Biomass, Litter, and Environmental Factors
2.5. Statistical Analyses
3. Results
4. Discussion
4.1. Influences of Sheep Grazing on the Dicotyledonous Seedling Based on ANOVAs and Linear Regression Models
4.2. Influences of Fertilization on the Dicotyledonous Seedling Based on ANOVAs and Linear Regression Models
4.3. Indirect and Direct Effects of Sheep Grazing and Fertilization on the Dicotyledonous Seedling
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fenner, M. (Ed.) Seeds: The Ecology of Regeneration in Plant Communities; CABI Publishing: Wallingford, UK; New York, NY, USA, 2000. [Google Scholar]
- Ma, Z.; Willis, C.G.; Zhang, C.; Zhou, H.; Zhao, X.; Dong, S.; Yao, B.; Huang, X.; Zhao, F.-Y.; Yin, G.-J.; et al. Direct and indirect effect of seed size on seedling survival along an experimental light availability gradient. Agric. Ecosyst. Environ. 2019, 281, 64–71. [Google Scholar] [CrossRef]
- Hanley, M.E. Seedling herbivory and the influence of plant species richness in seedling neighbourhood. Plant Ecol. 2004, 170, 35–41. [Google Scholar] [CrossRef]
- Loydi, A.; Donath, T.W.; Eckstein, R.L.; Otte, A. Non-native species litter reduces germination and growth of resident forbs and grasses: Allelopathic, osmotic or mechanical effects? Biol. Invasions 2015, 17, 581–595. [Google Scholar] [CrossRef]
- Li, W.; Wu, G.L.; Zhang, G.F.; Du, G.Z. The maintenance of offspring diversity in response to land use: Sexual and asexual recruitment in an alpine meadow on the Tibetan Plateau. Nord. J. Bot. 2011, 29, 81–86. [Google Scholar] [CrossRef]
- Monsi, M.; Saeki, T. On the factor light in plant communities and its importance for matter production. Ann. Bot. 2005, 95, 549–567. [Google Scholar] [CrossRef] [PubMed]
- Whippo, C.W.; Hangarter, R.P. Phototropism: Bending towards enlightenment. Plant Cell 2006, 18, 1110–1119. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Willis, C.G.; Burghardt, L.T.; Qi, W.; Liu, K.; de Moura Souza-Filho, P.R.; Ma, Z.; Du, G. The community-level effect of light on germination timing in relation to seed mass: A source of regeneration niche differentiation. New Phytol. 2014, 204, 496–506. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Liu, K.; Qi, W.; Ma, Z.; Du, G. Light-dependent associations of germination timing with subsequent life-history traits and maternal habitats for 476 angiosperms species of the eastern Tibetan Plateau grasslands. Seed Sci. Res. 2014, 24, 207–215. [Google Scholar] [CrossRef]
- Himanen, K.; Lilja, A.; Rytkönen, A.; Nygren, K. Soaking effects on seed germination and fungal infection in Picea abies. Scand. J. For. Res. 2013, 28, 1–7. [Google Scholar] [CrossRef]
- Javaid, M.M.; Tanveer, A. Germination ecology of Emex spinosa and Emex australis, invasive weeds of winter crops. Weed Res. 2014, 54, 565–575. [Google Scholar] [CrossRef]
- Wang, T.; Zhou, W.; Xiao, J.; Xie, L. Estimating the grassland aboveground biomass based on remote sensing data and machine learning algorithm. J. Glaciol. Geocryol. 2023, 45, 753–762. [Google Scholar]
- Cizungu, L.; Staelens, J.; Huygens, D.; Walangululu, J.; Muhindo, D.; Van Cleemput, O.; Boeckx, P. Litterfall and leaf litter decomposition in a central African tropical mountain forest and Eucalyptus plantation. For. Ecol. Manag. 2014, 326, 109–116. [Google Scholar] [CrossRef]
- Giweta, M. Role of litter production and its decomposition, and factors affecting the processes in a tropical forest ecosystem: A review. J. Ecol. Environ. 2020, 44, 11. [Google Scholar] [CrossRef]
- Liu, S.; Plaza, C.; Ochoa-Hueso, R.; Trivedi, C.; Wang, J.; Trivedi, P.; Zhou, G.; Piñeiro, J.; Martins, C.S.C.; Singh, B.K.; et al. Litter and soil biodiversity jointly drive ecosystem functions. Glob. Chang. Biol. 2023, 29, 6276–6285. [Google Scholar] [CrossRef]
- Loydi, A.; Eckstein, R.L.; Otte, A.; Donath, T.W. Effects of litter on seedling establishment in natural and semi-natural grasslands: A meta-analysis. J. Ecol. 2013, 101, 454–464. [Google Scholar] [CrossRef]
- Zhang, X.; Ni, X.; Heděnec, P.; Yue, K.; Wei, X.; Yang, J.; Wu, F. Litter facilitates plant development but restricts seedling establishment during vegetation regeneration. Funct. Ecol. 2022, 36, 3134–3147. [Google Scholar] [CrossRef]
- Li, J.; Zhang, C.; Yang, Z.; Guo, H.; Zhou, X.; Du, G. Grazing and fertilization influence plant species richness via direct and indirect pathways in an alpine meadow of the eastern Tibetan Plateau. Grass Forage Sci. 2017, 72, 343–354. [Google Scholar] [CrossRef]
- Zhang, C.; Willis, C.G.; Ma, Z.; Ma, M.; Csontos, P.; Baskin, C.C.; Baskin, J.M.; Li, J.; Zhou, H.; Zhao, X.; et al. Direct and indirect effects of long-term fertilization on the stability of the persistent seed bank. Plant Soil 2019, 438, 239–250. [Google Scholar] [CrossRef]
- Lebauer, D.S.; Treseder, K.K. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 2008, 89, 371–379. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.; Manning, P.; Rist, J.; Power, S.A.; Marsh, C. A global comparison of grassland biomass responses to CO2 and nitrogen enrichment. Philos. Trans. R. Soc. B. 2010, 365, 2047–2056. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Delgado-Baquerizo, M.; Li, G.; Isbell, F.; Wang, Y.; Hautier, Y.; Wang, Y.; Xiao, Y.; Cai, J.; Pan, X.; et al. Experimental impacts of grazing on grassland biodiversity and function are explained by aridity. Nat. Commun. 2023, 14, 5040. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.D.; Sun, Y.X.; Wang, Y.H.; Luo, G.; Ran, J.H.; Zeng, T.; Zhang, P. Grazing weakens the linkages between plants and soil biotic communities in the alpine grassland. Sci. Total Environ. 2024, 913, 169417. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.C.; Chen, Z.; Liu, W.W.; Yang, M.Y.; Du, Z.L.; Wang, Y.F.; Bol, R.; Wu, D. Grazing exclusion alters denitrification N2O/(N2O + N2) ratio in alpine meadow of Qinghai-Tibet Plateau. Sci. Total Environ. 2024, 912, 169358. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Willis, C.G.; Klein, J.A.; Ma, Z.; Li, J.; Zhou, H.; Zhao, X. Recovery of plant species diversity during long-term experimental warming of a species-rich alpine meadow community on the Qinghai-Tibet plateau. Biol. Conserv. 2017, 213, 218–224. [Google Scholar] [CrossRef]
- Eichberg, C.; Donath, T.W. Sheep trampling on surface-lying seeds improves seedling recruitment in open sand ecosystems. Restor. Ecol. 2018, 26, S211–S219. [Google Scholar] [CrossRef]
- Gallacher, D.J.; Hill, J.P. Effects of camel grazing on density and species diversity of seedling emergence in the Dubai (UAE) inland desert. J. Arid. Environ. 2008, 72, 853–860. [Google Scholar] [CrossRef]
- Niu, K.; He, J.S.; Lechowicz, M.J. Grazing-induced shifts in community functional composition and soil nutrient availability in Tibetan alpine meadows. J. Appl. Ecol. 2016, 53, 1554–1564. [Google Scholar] [CrossRef]
- Yu, G.; Jia, Y.; He, N.; Zhu, J.; Chen, Z.; Wang, Q.; Piao, S.; Liu, X.; He, H.; Guo, X.; et al. Stabilization of atmospheric nitrogen deposition in China over the past decade. Nat. Geosci. 2019, 12, 424–429. [Google Scholar] [CrossRef]
- Hawkes, C.V. Effects of biological soil crusts on seed germination of four endangered herbs in a xeric Florida shrubland during drought. Plant Ecol. 2004, 170, 121–134. [Google Scholar] [CrossRef]
- Deutsch, E.S.; Bork, E.W.; Willms, W.D. Soil moisture and plant growth responses to litter and defoliation impacts in Parkland grasslands. Agric. Ecosyst. Environ. 2010, 135, 1–9. [Google Scholar] [CrossRef]
- Gunaratne, A.M.T.A.; Gunatilleke, C.V.S.; Gunatilleke, I.A.U.N.; Madawala, H.M.S.P.; Burslem, D.F.R.P. Overcoming ecological barriers to tropical lower montane forest succession on anthropogenic grasslands: Synthesis and future prospects. For. Ecol. Manag. 2014, 329, 340–350. [Google Scholar] [CrossRef]
- Aarssen, L.W.; Schamp, B.S.; Pither, J. Why are there so many small plants? Implications for species coexistence. J. Ecol. 2006, 94, 569–580. [Google Scholar] [CrossRef]
- Hillebrand, H.; Gruner, D.S.; Borer, E.T.; Bracken, M.E.S.; Cleland, E.E.; Elser, J.J.; Harpole, W.S.; Ngai, J.T.; Seabloom, E.W.; Shurin, J.B.; et al. Consumer versus resource control of producer diversity depends on ecosystem type and producer community structure. Proc. Natl. Acad. Sci. USA 2007, 104, 10904–10909. [Google Scholar] [CrossRef]
- Semmartin, M.; Garibaldi, L.A.; Chaneton, E.J. Grazing history effects on above-and below-ground litter decomposition and nutrient cycling in two co-occurring grasses. Plant Soil 2008, 303, 177–189. [Google Scholar] [CrossRef]
- Gusmeroli, F.; Della Marianna, G.; Fava, F.; Monteiro, A.; Bocchi, S.; Parolo, G. Effects of ecological, landscape and management factors on plant species composition, biodiversity and forage value in Alpine meadows. Grass Forage Sci. 2013, 68, 437–447. [Google Scholar] [CrossRef]
- Westoby, M.; Wright, I.J. Land-plant ecology on the basis of functional traits. Trends Ecol. Evol. 2006, 21, 261–268. [Google Scholar] [CrossRef] [PubMed]
- Long, R.L.; Gorecki, M.J.; Renton, M.; Scott, J.K.; Colville, L.; Goggin, D.E.; Commander, L.E.; Westcott, D.A.; Cherry, H.; Finch-Savage, W.E. The ecophysiology of seed persistence: A mechanistic view of the journey to germination or demise. Biol. Rev. 2015, 90, 31–59. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Ma, Z.; Zhou, H.; Zhao, X. Long-term warming results in species-specific shifts in seed mass in alpine communities. PeerJ 2019, 7, e7416. [Google Scholar] [CrossRef] [PubMed]
- Lefcheck, J.S. piecewiseSEM: Piecewise structural equation modelling in r for ecology, evolution, and systematics. Methods Ecol. Evol. 2016, 7, 573–579. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023; Available online: https://www.R-project.org/ (accessed on 6 April 2023).
- Onipchenko, V.G.; Makarov, M.I.; Akhmetzhanova, A.A.; Soudzilovskaia, N.A.; Aibazova, F.U.; Elkanova, M.K.; Stogova, A.V.; Cornelissen, J.H.C. Alpine plant functional group responses to fertiliser addition depend on abiotic regime and community composition. Plant Soil 2012, 357, 103–115. [Google Scholar] [CrossRef]
- Feng, B.; Liu, Y.-Z.; Liu, W.-T.; Lv, W.-D.; Sun, C.-C.; Yang, Z.-Z.; Li, C.-D.; Zhou, Q.-Y.; Wang, F.-C.; Yang, X.-X.; et al. Soil physicochemical properties and plant functional traits regulate ecosystem multifunctionality of alpine grassland under different livestock grazing assemblies. Agric. Ecosyst. Environ. 2024, 366, 108947. [Google Scholar] [CrossRef]
- He, S.; Du, J.; Wang, Y.; Cui, L.; Liu, W.; Xiao, Y.; Ran, Q.; Li, L.; Zhang, Z.; Tang, L.; et al. Differences in background environment and fertilization method mediate plant response to nitrogen fertilization in alpine grasslands on the Qinghai-Tibetan Plateau. Sci. Total Environ. 2024, 906, 167272. [Google Scholar] [CrossRef] [PubMed]
- An, H.; Baskin, C.C.; Ma, M. Nonlinear response of the soil seed bank and its role in plant community regeneration with increased grazing disturbance. J. Appl. Ecol. 2022, 59, 2593–2603. [Google Scholar] [CrossRef]
- Shi, Y.; Shi, S.; Huang, X.; Jiang, Y.; Liu, J.; Zhao, Y.; Zhang, Z. A global meta-analysis of grazing effects on soil seed banks. Land Degrad. Dev. 2022, 33, 1892–1900. [Google Scholar] [CrossRef]
- Osem, Y.; Konsens, I.; Perevolotsky, A.; Kigel, J. Soil seed bank and seedling emergence of Sarcopoterium spinosum as affected by grazing in a patchy semiarid shrubland. Israel J. Plant Sci. 2007, 55, 35–43. [Google Scholar] [CrossRef]
- Kiss, R.; Deak, B.; Tothmeresz, B.; Miglecz, T.; Toth, K.; Torok, P.; Lukacs, K.; Godo, L.; Kormoczi, Z.; Radocz, S.; et al. Establishment gaps in species-poor grasslands: Artificial biodiversity hotspots to support the colonization of target species. Restor. Ecol. 2021, 29, e13135. [Google Scholar] [CrossRef]
- Wang, X.; Zi, H.; Wang, J.; Guo, X.; Zhang, Z.; Yan, T.; Wang, Q.; He, J.-S. Grazing-induced changes in soil microclimate and aboveground biomass modulate freeze–thaw processes in a Tibetan alpine meadow. Agric. Ecosyst. Environ. 2023, 357, 108659. [Google Scholar] [CrossRef]
- Levin, S.A.; Paine, R.T. Disturbance, patch formation, and community structure. Proc. Natl. Acad. Sci. USA 1974, 71, 2744–2747. [Google Scholar] [CrossRef] [PubMed]
- Hautier, Y.; Niklaus, P.A.; Hector, A. Competition for light causes plant biodiversity loss after eutrophication. Science 2009, 324, 636–638. [Google Scholar] [CrossRef] [PubMed]
- Rotundo, J.L.; Aguiar, M.R. Litter effects on plant regeneration in arid lands: A complex balance between seed retention, seed longevity and soil-seed contact. J. Ecol. 2005, 93, 829–838. [Google Scholar] [CrossRef]
PAR0 | PAR5 | Soil Moisture | Vegetation Diversity | ANPP | Litter | Dicotyledonous Seedling Abundance | Dicotyledonous Seedling Diversity | |
---|---|---|---|---|---|---|---|---|
Grazing | 76.70 *** | 156.34 *** | 9.74 ** | 6.95 * | 24.29 *** | 1.17 | 6.25 * | 0.00 |
Fertilization | 12.34 ** | 18.85 *** | 1.01 | 111.42 *** | 34.81 *** | 45.85 *** | 167.89 *** | 16.95 *** |
Grazing × Fertilization | 0.47 | 0.18 | 0.83 | 0.19 | 2.78 | 0.36 | 13.70 *** | 2.85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, H.; Ma, Y.; Wang, Z.; Yang, Y.; Zhang, L.; Yin, X.; Li, H.; Li, L.; Zhou, H.; Ma, Z.; et al. Effects of Sheep Grazing and Nitrogen Addition on Dicotyledonous Seedling Abundance and Diversity in Alpine Meadows. Nitrogen 2024, 5, 498-508. https://doi.org/10.3390/nitrogen5020032
Dong H, Ma Y, Wang Z, Yang Y, Zhang L, Yin X, Li H, Li L, Zhou H, Ma Z, et al. Effects of Sheep Grazing and Nitrogen Addition on Dicotyledonous Seedling Abundance and Diversity in Alpine Meadows. Nitrogen. 2024; 5(2):498-508. https://doi.org/10.3390/nitrogen5020032
Chicago/Turabian StyleDong, Huanhuan, Yuqi Ma, Zuoyi Wang, Yuan Yang, Longxin Zhang, Xin Yin, Honglin Li, Lanping Li, Huakun Zhou, Zhen Ma, and et al. 2024. "Effects of Sheep Grazing and Nitrogen Addition on Dicotyledonous Seedling Abundance and Diversity in Alpine Meadows" Nitrogen 5, no. 2: 498-508. https://doi.org/10.3390/nitrogen5020032
APA StyleDong, H., Ma, Y., Wang, Z., Yang, Y., Zhang, L., Yin, X., Li, H., Li, L., Zhou, H., Ma, Z., & Zhang, C. (2024). Effects of Sheep Grazing and Nitrogen Addition on Dicotyledonous Seedling Abundance and Diversity in Alpine Meadows. Nitrogen, 5(2), 498-508. https://doi.org/10.3390/nitrogen5020032