Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (23)

Search Parameters:
Keywords = activation energy of α- and β-transitions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 5225 KiB  
Review
A Study of the Dielectric Relaxation of Nitrile–Butadiene Rubber, Ethylene–Propylene–Diene Monomer, and Fluoroelastomer Polymers with a Self-Developed Deconvolution Analysis Program
by Youngil Moon, Gyunghyun Kim and Jaekap Jung
Polymers 2025, 17(11), 1539; https://doi.org/10.3390/polym17111539 - 31 May 2025
Viewed by 1050
Abstract
This study presents an integrated analysis of the dielectric characteristics of nitrile–butadiene rubber (NBR), ethylene–propylene–diene monomer (EPDM), and fluoroelastomer (FKM) polymers. Dispersion spectra were obtained over a wide range of frequencies and temperatures, and, via our self-developed “Dispersion Analysis” program, the obtained dielectric [...] Read more.
This study presents an integrated analysis of the dielectric characteristics of nitrile–butadiene rubber (NBR), ethylene–propylene–diene monomer (EPDM), and fluoroelastomer (FKM) polymers. Dispersion spectra were obtained over a wide range of frequencies and temperatures, and, via our self-developed “Dispersion Analysis” program, the obtained dielectric spectra were precisely deconvoluted. Notably, α, α’, β, and γ relaxation phenomena, including the DC conduction process, were identified in NBR, whereas three relaxation processes, namely, α, β, and the Maxwell‒Wagner‒Sillars (MWS) process, as well as DC conduction, were observed in EPDM and FKM copolymers. The activation energies (Ea) for secondary relaxation—namely, β, γ, and MWS—and the DC conduction process, which are observed in NBR, EPDM, and FKM, were determined via the Arrhenius temperature dependence model, and these values were compared with previously published results. Furthermore, the glass transition temperature (Tg), extrapolated from the relaxation rate of the α process, was estimated via the Vogel–Fulcher–Tamman–Hesse (VFTH) law. The values of Tg obtained using dielectric spectroscopy for NBR, EPDM, and FKM agreed well with the differential scanning calorimetry (DSC) measurements. This study provides foundational insights into the dielectric properties of widely used rubber polymers, offering a comprehensive reference for future research. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Figure 1

23 pages, 5205 KiB  
Article
Femtosecond Laser-Engineered β-TCP Scaffolds: A Comparative Study of Green-Synthesized AgNPs vs. Ion Doping Against S. aureus for Bone Regeneration
by Marco Oliveira, Liliya Angelova, Georgi Avdeev, Liliana Grenho, Maria Helena Fernandes and Albena Daskalova
Int. J. Mol. Sci. 2025, 26(10), 4888; https://doi.org/10.3390/ijms26104888 - 20 May 2025
Viewed by 581
Abstract
Implant-associated infections, particularly those linked to Staphylococcus aureus (S. aureus), continue to compromise the clinical success of β-tricalcium phosphate (β-TCP) implants despite their excellent biocompatibility and osteoconductivity. This investigation aims to tackle these challenges by integrating femtosecond (fs)-laser surface processing with [...] Read more.
Implant-associated infections, particularly those linked to Staphylococcus aureus (S. aureus), continue to compromise the clinical success of β-tricalcium phosphate (β-TCP) implants despite their excellent biocompatibility and osteoconductivity. This investigation aims to tackle these challenges by integrating femtosecond (fs)-laser surface processing with two complementary strategies: ion doping and functionalization with green-synthesized silver nanoparticles (AgNPs). AgNPs were produced via fs-laser photoreduction using green tea leaf extract (GTLE), noted for its anti-inflammatory and antioxidant properties. Fs-laser processing was applied to modify β-TCP scaffolds by systematically varying scanning velocities, fluences, and patterns. Lower scanning velocities generated organized nanostructures with enhanced roughness and wettability, as confirmed by scanning electron microscopy (SEM), optical profilometry, and contact angle measurements, whereas higher laser energies induced significant phase transitions between hydroxyapatite (HA) and α-tricalcium phosphate (α-TCP), as revealed by X-ray diffraction (XRD). AgNP-functionalized scaffolds demonstrated markedly superior antibacterial activity against S. aureus compared to the ion-doped variants, attributed to the synergistic interplay of nanostructure-mediated surface disruption and AgNP-induced bactericidal mechanisms. Although ion-doped scaffolds exhibited limited direct antibacterial effects, they showed concentration-dependent activity in indirect assays, likely due to controlled ion release. Both strategies promoted osteogenic differentiation of human bone marrow mesenchymal stem cells (hBM-MSCs) under defined conditions, albeit with transient cytotoxicity at higher fluences and excessive ion doping. Overall, this approach holds promise for markedly improving antibacterial efficacy and osteogenic compatibility, potentially transforming bone regeneration therapies. Full article
(This article belongs to the Special Issue Recent Research of Nanomaterials in Molecular Science: 2nd Edition)
Show Figures

Figure 1

19 pages, 3246 KiB  
Article
Effect of Fungal Metabolism on Zn Minerals Formation: The Case of Aspergillus niger and Penicillium chrysogenum
by Katerina V. Sazanova, Marina S. Zelenskaya, Anatoliy V. Korneev, Elena V. Bakhvalova, Dmitry Yu. Vlasov and Olga V. Frank-Kamenetskaya
Crystals 2025, 15(2), 118; https://doi.org/10.3390/cryst15020118 - 23 Jan 2025
Viewed by 1255
Abstract
Soil fungi are significantly resistant to heavy metals, which allows them to be used in biotechnologies for environmental bioremediation. In order to clarify the prospects for using the fungi in Zn-detoxifying technologies, we investigated in vitro the effect of fungal metabolism on Zn [...] Read more.
Soil fungi are significantly resistant to heavy metals, which allows them to be used in biotechnologies for environmental bioremediation. In order to clarify the prospects for using the fungi in Zn-detoxifying technologies, we investigated in vitro the effect of fungal metabolism on Zn minerals formation. The cultivation of fungi with different acid-producing activities (Aspergillus niger and Penicillium chrysogenum) was carried out in a liquid Czapek–Dox nutrient medium with Zn concentrations from 250 to 2000 µmol within 28 days. The quantitates of low-molecular-weight organic acids, phosphates, and hydrophosphates ions in the medium were determined through chromatography–mass spectrometry; analysis of biomineralization products was carried out through powder X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. It was found that Zn in concentrations 250–500 μmol acts as a physiologically essential element, activating the growth of fungal mycelium, while at high concentrations (1000–2000 μmol), Zn acts as a toxic heavy metal, inhibiting fungal growth. Zn also activates the formation of oxalic acid by both species of fungi. But A. niger strongly acidified the medium, while P. chrysogenum leaves the medium pH close to neutral or slightly alkaline. Oxalate and phosphate crystallization occur with the participation of both fungal species. The ratio of biogenic oxalates and phosphates is directly dependent on the acid-reducing capacity of fungi. The solid solutions of katsarosite–glushinskite of the isodimorphic series with the general formula (Zn,Mg)C2O4·2H2O (Mg ions comes from Czapek–Dox medium) were detected at all Zn concentrations in a wide range of pH (from 2 to 9.0). The transition from monoclinic (α-modifications) to orthorhombic (β-modifications) occurs at the ratio Mg/Zn > 1. Fungal zinc phosphate hopeite Zn3(PO4)2·4H2O was formed at a near-neutral pH at high Zn concentrations (1000 and 2000 µmol/L). In the Zn example, it was shown that not only oxalate but also phosphate fungal biomineralization can be used for the environment detoxification of heavy metals. The application of phosphate biomineralization seems promising in the case of severe pollutions. To create a near-neutral medium favorable for the formation of phosphates, it is advisable to use soil fungi non-producing or weakly producing organic acids (for example, P. chrysogenum). Full article
(This article belongs to the Collection Topic Collection: Mineralogical Crystallography)
Show Figures

Figure 1

31 pages, 7485 KiB  
Article
Micro Gas Turbines in the Global Energy Landscape: Bridging the Techno-Economic Gap with Comparative and Adaptive Insights from Internal Combustion Engines and Renewable Energy Sources
by A. H. Samitha Weerakoon and Mohsen Assadi
Energies 2024, 17(21), 5457; https://doi.org/10.3390/en17215457 - 31 Oct 2024
Cited by 1 | Viewed by 1833
Abstract
This paper investigates the potential of Micro Gas Turbines (MGTs) in the global shift towards low-carbon energy systems, particularly focusing on their integration within microgrids and distributed energy generation systems. MGTs, recognized for their fuel flexibility and efficiency, have yet to achieve the [...] Read more.
This paper investigates the potential of Micro Gas Turbines (MGTs) in the global shift towards low-carbon energy systems, particularly focusing on their integration within microgrids and distributed energy generation systems. MGTs, recognized for their fuel flexibility and efficiency, have yet to achieve the commercialization success of rival technologies such as Internal Combustion Engines (ICEs), wind turbines, and solar power (PV) installations. Through a comprehensive review of recent techno-economic assessment (TEA) studies, we highlight the challenges and opportunities for MGTs, emphasizing the critical role of TEA in driving market penetration and technological advancement. Comparative analysis with ICE and RES technologies reveals significant gaps in TEA activities for MGTs, which have hindered their broader adoption. This paper also explores the learning and experience effects associated with TEA, demonstrating how increased research activities have propelled the success of ICE and RES technologies. The analysis reveals a broad range of learning and experience effects, with learning rates (α) varying from 0.1 to 0.25 and experience rates (β) from 0.05 to 0.15, highlighting the significant role these effects play in reducing the levelized cost of energy (LCOE) and improving the net present value (NPV) of MGT systems. Hybrid systems integrating MGTs with renewable energy sources (RESs) and ICE technologies demonstrate the most substantial cost reductions and efficiency improvements, with systems like the hybrid renewable energy CCHP with ICE achieving a learning rate of α = 0.25 and significant LCOE reductions from USD 0.02/kWh to USD 0.017/kWh. These findings emphasize the need for targeted TEA studies and strategic investments to unlock the full potential of MGTs in a decarbonized energy landscape. By leveraging learning and experience effects, stakeholders can predict cost trajectories more accurately and make informed investment decisions, positioning MGTs as a competitive and sustainable energy solution in the global energy transition. Full article
(This article belongs to the Special Issue Renewable Fuels for Internal Combustion Engines: 2nd Edition)
Show Figures

Figure 1

15 pages, 1935 KiB  
Article
Precipitation Kinetics of Water-Cooled Copper Mold Al-Mg-Si(-Mn, Zr) Alloy during Aging
by Hua Shen, Jianchao Shi, Yukun Zhou, Xiaofeng Wang and Guangchun Yao
Materials 2023, 16(23), 7424; https://doi.org/10.3390/ma16237424 - 29 Nov 2023
Viewed by 1513
Abstract
The aging precipitation behavior of 6061 aluminum alloy that underwent iron casting and water-cooled copper casting and 6061 aluminum with Mn and Zr elements added was studied. Firstly, the hardness curves, tensile properties, and fracture morphology of four aging alloys—6061 (iron mold casting), [...] Read more.
The aging precipitation behavior of 6061 aluminum alloy that underwent iron casting and water-cooled copper casting and 6061 aluminum with Mn and Zr elements added was studied. Firstly, the hardness curves, tensile properties, and fracture morphology of four aging alloys—6061 (iron mold casting), 6061 (water-cooled copper mold casting), 6061-0.15Mn-0.05Zr (iron mold casting), and 6061-0.15Mn-0.05Zr (water-cooled copper mold casting)—were studied. The results of the aging hardness curve show that the aging precipitated phase of the 6061 alloy cast with a water-cooled copper mold is dispersed. The addition of Mn increases the amount of coarse inclusion α-(AlMnFeSi) in the alloy, resulting in a decrease in the age hardening property. The addition of Zr is related to the nucleation and growth of the G.P. region in the early aging period, mainly changing the formation rate and quantity of the G.P. region, leading to the advancement of peak aging and an increase in hardness. After the G.P. region gradually transforms into the β phase, the hardness of the alloy increases with the increase in the volume fraction of the β phase. When the β″ phase is coarsened to the point where the fault line can be bypassed, the transitional metastable β′ phase begins to precipitate, and the coherent distortion around it weakens, indicating over-aging. Finally, the equilibrium phase Mg2Si is formed. The results of the tensile tests indicate that the tensile strength and yield strength of the 6061-0.15Mn-0.05Zr alloy produced by water-cooled copper casting after aging are 356 Mpa and 230 Mpa, respectively. These values are 80 MPa and 75 MPa higher, respectively, than those of the 6061 aluminum alloy produced via iron casting. However, the elongation is by 5%. The fracture morphology of the tensile sample of the aging alloy shows that dislocation slip in the alloy results in dislocation plugging, stress concentration, and the initiation of crack cleavage on the surface. The fracture of the water-cooled copper mold-casting alloy is a ductile fracture of the microporous aggregation type, and the macroscopic fracture exhibits an obvious “neck shrinkage” phenomenon. The fracture analysis is consistent with the mechanical properties. The DSC curve shows that there is no enrichment process of solute atoms during the heating process, and the aging precipitation process after homogenization is as follows: G.P. zone → β″ phase → β′ phase. The aging precipitation process of the water-cooled copper casting alloy after homogenization treatment is as follows: β″ phase → β′ phase (no precipitation in the G.P. zone was observed). The results of the differential scanning calorimetry (DSC) analysis show that the main strengthening phase in the experimental alloy system is the β″ phase. The activation energies for the β″ phase precipitation were calculated and found to be 147 KJ/mol, 217 KJ/mol, 185 KJ/mol, and 235 KJ/mol, respectively. Additionally, a kinetic equation for the β″ phase precipitation during alloy aging was fitted. Full article
(This article belongs to the Special Issue Advanced Metal Matrix Functional Composites and Applications)
Show Figures

Figure 1

13 pages, 8002 KiB  
Article
Deformation Behavior and Microstructure Evolution of a TiB-Reinforced Ti-6.5Al-2Zr-1Mo-1V Matrix Composite
by Maxim Ozerov, Nikita Stepanov, Vitaly Sokolovsky, Ilya Astakhov, Margarita Klimova, Alexander Galtsev, Lujun Huang and Sergey Zherebtsov
Metals 2023, 13(11), 1812; https://doi.org/10.3390/met13111812 - 27 Oct 2023
Cited by 3 | Viewed by 1360
Abstract
A Ti-6.5Al-2Zr-1Mo-1V/TiB metal-matrix composite with 10.0 vol.% of TiB reinforcing fibers was produced using vacuum arc melting and compared with an unreinforced arc-melted Ti-6.5Al-2Zr-1Mo-1V alloy. The initial microstructure of the composite consisted of two-phase α + β matrix with randomly distributed boride fibers. [...] Read more.
A Ti-6.5Al-2Zr-1Mo-1V/TiB metal-matrix composite with 10.0 vol.% of TiB reinforcing fibers was produced using vacuum arc melting and compared with an unreinforced arc-melted Ti-6.5Al-2Zr-1Mo-1V alloy. The initial microstructure of the composite consisted of two-phase α + β matrix with randomly distributed boride fibers. The addition of TiB fibers resulted in a 40% increase in strength. At room temperature, the composite attained a yield strength of 1100 MPa and a ductility of 10% in compression. At elevated temperatures (400–950 °C), the values of yield strength of the composite remained ~1.5–2 times greater in comparison with the unreinforced alloy. A faster development of globularization in the composite in comparison with the unreinforced alloy was established. The interphase TiB particle/matrix boundary did not contain either a transition layer or any defects like pores or microcracks. Using the obtained results, the apparent activation energy of the plastic deformation was calculated, and processing maps were analyzed both for the unreinforced alloy and for the composite. Full article
Show Figures

Figure 1

21 pages, 17476 KiB  
Article
Alkali-Induced Phase Transition to β-Spodumene along the LiAlSi2O6-LiAlSi4O10 Join
by Yves Thibault and Joanne Gamage McEvoy
Crystals 2023, 13(8), 1182; https://doi.org/10.3390/cryst13081182 - 29 Jul 2023
Cited by 6 | Viewed by 2517
Abstract
Due to the refractory nature of α-spodumene (LiAlSi2O6) and petalite (LiAlSi4O10), two major lithium minerals, conventional lithium recovery processes involve a high-temperature pre-treatment (>1000 °C) to induce a phase transition to tetragonal β-spodumene, an open [...] Read more.
Due to the refractory nature of α-spodumene (LiAlSi2O6) and petalite (LiAlSi4O10), two major lithium minerals, conventional lithium recovery processes involve a high-temperature pre-treatment (>1000 °C) to induce a phase transition to tetragonal β-spodumene, an open structure allowing easier access to lithium through ion exchange. Considering that these high temperatures are not dictated by thermodynamics but rather sluggish kinetics, the study investigates the mechanisms enhancing the rate of transformation to β-spodumene at lower temperatures while minimizing the growth of metastable hexagonal β-quartz typically observed at the onset of the conversion. The heat treatment of natural α-spodumene revealed that rapid growth of β-spodumene veinlets is achieved at ≤600 °C by activation of alkali-rich fluid inclusions, through a dissolution–recrystallization process. For petalite, the mechanism of the phase transition, initiated at ≈750 °C is a solid-state transformation keeping crystallographic coincidence with the mineral host. Synthetic growth experiments along the LiAlSi2O6-LiAlSi4O10 join indicate a compositional dependence on the resulting β-phase structure, where minor sodium doping strongly favors β-spodumene, as the tetrahedral framework of β-quartz does not allow the extent of deformation to accommodate the larger alkali. These findings open opportunities for energy-efficient lithium recovery pathways where the phase transition and ion exchange can be achieved simultaneously without a high-temperature pre-treatment. Full article
Show Figures

Figure 1

13 pages, 2157 KiB  
Article
The Energy Characteristics of the Surface of Statistical Copolymers
by Anatoly E. Chalykh, Valentina Y. Stepanenko, Tatiana F. Petrova and Anna A. Shcherbina
Polymers 2023, 15(8), 1939; https://doi.org/10.3390/polym15081939 - 19 Apr 2023
Viewed by 1601
Abstract
The results of systematic studies on the surface energy γ and its polar γP and dispersion γD components of statistical copolymers of styrene and butadiene, acrylonitrile and butadiene, and butyl acrylate and vinyl acetate, with regard to their thermal prehistory, are [...] Read more.
The results of systematic studies on the surface energy γ and its polar γP and dispersion γD components of statistical copolymers of styrene and butadiene, acrylonitrile and butadiene, and butyl acrylate and vinyl acetate, with regard to their thermal prehistory, are generalized. Along with copolymers, the surfaces of their composing homopolymers were examined. We obtained the energy characteristics of the adhesive surfaces of copolymers that contacted with air, high-energy aluminium Al (γ = 160 mJ/m2), and the low-energy substrate surface of polytetrafluoroethylene F4 (PTFE) (γ = 18 mJ/m2). The surfaces of copolymers in contact with air, aluminium, and PTFE were investigated for the first time. It was found that the surface energy of these copolymers tended to occupy an intermediate value between the surface energy of the homopolymers. The additive nature of the change in the surface energy of the copolymers with their composition, as previously established in the works of Wu, extends to the dispersive component of the free surface energy γD and the critical surface energy γcr, according to Zisman. It was shown that a significant influence on the adhesive activity of copolymers was exerted by the substrate surface upon which the adhesive was formed. Thus, for the butadiene–nitrile copolymer (BNC) samples formed in contact with a high-energy substrate, their surface energy growth was associated with a significant increase in the polar component of the surface energy γP from 2 mJ/m2 for the samples formed in contact with air, to an increase from 10 to 11 mJ/m2 for the samples formed in contact with Al. The reason why the interface influenced the change in the energy characteristics of the adhesives was the selective interaction of each macromolecule fragment with the active centres of the substrate surface. As a result, the composition of the boundary layer changed and it became enriched with one of the components. The structure of such layers is nonequilibrium. The thermal annealing of copolymers in the mode of a stepwise temperature increase led to a convergence in the values of γ, asymptotically tending to the value characteristic of the surface of the copolymers formed in air. The activation energies for the processes of the conformational rearrangements of the macromolecules in the surface layers of the copolymers were calculated. It was found that the conformational rearrangements of the macromolecules in the surface layers occurred as a result of the internal rotation of the functional groups that determined the polar component of the surface energy. Full article
(This article belongs to the Special Issue Polymer Surfaces and Interfaces)
Show Figures

Figure 1

19 pages, 3722 KiB  
Article
Eutectic Mixture Formation and Relaxation Dynamics of Coamorphous Mixtures of Two Benzodiazepine Drugs
by Sofia Valenti, Claudio Cazorla, Michela Romanini, Josep Lluís Tamarit and Roberto Macovez
Pharmaceutics 2023, 15(1), 196; https://doi.org/10.3390/pharmaceutics15010196 - 5 Jan 2023
Cited by 7 | Viewed by 3024
Abstract
The formation of coamorphous mixtures of pharmaceuticals is an interesting strategy to improve the solubility and bioavailability of drugs, while at the same time enhancing the kinetic stability of the resulting binary glass and allowing the simultaneous administration of two active principles. In [...] Read more.
The formation of coamorphous mixtures of pharmaceuticals is an interesting strategy to improve the solubility and bioavailability of drugs, while at the same time enhancing the kinetic stability of the resulting binary glass and allowing the simultaneous administration of two active principles. In this contribution, we describe kinetically stable amorphous binary mixtures of two commercial active pharmaceutical ingredients, diazepam and nordazepam, of which the latter, besides being administered as a drug on its own, is also the main active metabolite of the other in the human body. We report the eutectic equilibrium-phase diagram of the binary mixture, which is found to be characterized by an experimental eutectic composition of 0.18 molar fraction of nordazepam, with a eutectic melting point of Te = 395.4 ± 1.2 K. The two compounds are barely miscible in the crystalline phase. The mechanically obtained mixtures were melted and supercooled to study the glass-transition and molecular-relaxation dynamics of amorphous mixtures at the corresponding concentration. The glass-transition temperature was always higher than room temperature and varied linearly with composition. The Te was lower than the onset of thermal decomposition of either compound (pure nordazepam decomposes upon melting and pure diazepam well above its melting point), thus implying that the eutectic liquid and glass can be obtained without any degradation of the drugs. The eutectic glass was kinetically stable against crystallization for at least a few months. The relaxation processes of the amorphous mixtures were studied by dielectric spectroscopy, which provided evidence for a single structural (α) relaxation, a single Johari–Goldstein (β) relaxation, and a ring-inversion conformational relaxation of the diazepinic ring, occurring on the same timescale in both drugs. We further characterized both the binary mixtures and pure compounds by FTIR spectroscopy and first-principles density functional theory (DFT) simulations to analyze intermolecular interactions. The DFT calculations confirm the presence of strong attractive forces within the heteromolecular dimer, leading to large dimer interaction energies of the order of −0.1 eV. Full article
(This article belongs to the Special Issue Recent Advances in Amorphous Drug)
Show Figures

Figure 1

8 pages, 1782 KiB  
Article
Determination of Melting Parameters of Cyclodextrins Using Fast Scanning Calorimetry
by Askar K. Gatiatulin, Ivan A. Grishin, Aleksey V. Buzyurov, Timur A. Mukhametzyanov, Marat A. Ziganshin and Valery V. Gorbatchuk
Int. J. Mol. Sci. 2022, 23(21), 13120; https://doi.org/10.3390/ijms232113120 - 28 Oct 2022
Cited by 10 | Viewed by 2314
Abstract
The first evidence of native cyclodextrins fusion was registered using fast scanning calorimetry (FSC) with heating rates up to 40,000 K s−1. The endothermal effects, detected at low heating rates, correspond to the decomposition processes. Upon the increase of the heating [...] Read more.
The first evidence of native cyclodextrins fusion was registered using fast scanning calorimetry (FSC) with heating rates up to 40,000 K s−1. The endothermal effects, detected at low heating rates, correspond to the decomposition processes. Upon the increase of the heating rate the onset of these effects shifts to higher temperatures, reaching a limiting value at high heating rates. The limiting temperatures were identified as the melting points of α-, β- and γ-cyclodextrins, as the decomposition processes are suppressed at high heating rates. For γ-cyclodextrin the fusion enthalpy was measured. The activation energies of thermal decomposition of cyclodextrins were determined by dependence of the observed thermal effects on heating rates from 4 K min−1 in conventional differential scanning calorimetry to 40,000 K s−1 in FSC. The lower thermal stability and activation energy of decomposition of β-cyclodextrin than for the other two cyclodextrins were found, which may be explained by preliminary phase transition and chemical reaction without mass loss. The obtained values of fusion parameters of cyclodextrins are needed in theoretical models widely used for prediction of solubility and solution rates and in preparation of cyclodextrin inclusion compounds involving heating. Full article
(This article belongs to the Special Issue Recent Insights in Chemistry and Technology of Cyclodextrins)
Show Figures

Figure 1

25 pages, 3394 KiB  
Article
An Ising Model for Supercooled Liquids and the Glass Transition
by Ralph V. Chamberlin
Symmetry 2022, 14(10), 2211; https://doi.org/10.3390/sym14102211 - 20 Oct 2022
Cited by 4 | Viewed by 2488
Abstract
We describe the behavior of an Ising model with orthogonal dynamics, where changes in energy and changes in alignment never occur during the same Monte Carlo (MC) step. This orthogonal Ising model (OIM) allows conservation of energy and conservation of (angular) momentum to [...] Read more.
We describe the behavior of an Ising model with orthogonal dynamics, where changes in energy and changes in alignment never occur during the same Monte Carlo (MC) step. This orthogonal Ising model (OIM) allows conservation of energy and conservation of (angular) momentum to proceed independently, on their own preferred time scales. The OIM also includes a third type of MC step that makes or breaks the interaction between neighboring spins, facilitating an equilibrium distribution of bond energies. MC simulations of the OIM mimic more than twenty distinctive characteristics that are commonly found above and below the glass temperature, Tg. Examples include a specific heat that has hysteresis around Tg, out-of-phase (loss) response that exhibits primary (α) and secondary (β) peaks, super-Arrhenius T dependence for the α-response time (τα), and fragilities that increase with increasing system size (N). Mean-field theory for energy fluctuations in the OIM yields a critical temperature (Tc) and a novel expression for the super-Arrhenius divergence as TTc: ln(τα)~1/(1Tc/T)2. Because this divergence is reminiscent of the Vogel-Fulcher-Tammann (VFT) law squared, we call it the “VFT2 law”. A modified Stickel plot, which linearizes the VFT2 law, shows that at high T where mean-field theory should apply, only the VFT2 law gives qualitatively consistent agreement with measurements of τα (from the literature) on five glass-forming liquids. Such agreement with the OIM suggests that several basic features govern supercooled liquids. The freezing of a liquid into a glass involves an underlying 2nd-order transition that is broadened by finite-size effects. The VFT2 law for τα comes from energy fluctuations that enhance the pathways through an entropy bottleneck, not activation over an energy barrier. Values of τα vary exponentially with inverse N, consistent with the distribution of relaxation times deduced from measurements of α response. System sizes found via the T dependence of τα from simulations and measurements are similar to sizes of independently relaxing regions (IRR) measured by nuclear magnetic resonance (NMR) for simple-molecule glass-forming liquids. The OIM elucidates the key ingredients needed to interpret the thermal and dynamic properties of amorphous materials, while providing a broad foundation for more-detailed models of liquid-glass behavior. Full article
Show Figures

Figure 1

12 pages, 1927 KiB  
Article
Zinc Oxide Nanoparticles Promote YAP/TAZ Nuclear Localization in Alveolar Epithelial Type II Cells
by Vincent Laiman, Didik Setyo Heriyanto, Yueh-Lun Lee, Ching-Huang Lai, Chih-Hong Pan, Wei-Liang Chen, Chung-Ching Wang, Kai-Jen Chuang, Jer-Hwa Chang and Hsiao-Chi Chuang
Atmosphere 2022, 13(2), 334; https://doi.org/10.3390/atmos13020334 - 16 Feb 2022
Cited by 5 | Viewed by 3211
Abstract
We investigated roles of Hippo signaling pathway components in alveolar type II cells (AECII) after zinc oxide nanoparticle (ZnONP) exposure. ZnONPs physicochemistry was characterized using field emission-scanning electron microscopy (FE-SEM) and energy-dispersive X-ray (EDX) microanalysis. ZnONP deposition in human respiratory tract was estimated [...] Read more.
We investigated roles of Hippo signaling pathway components in alveolar type II cells (AECII) after zinc oxide nanoparticle (ZnONP) exposure. ZnONPs physicochemistry was characterized using field emission-scanning electron microscopy (FE-SEM) and energy-dispersive X-ray (EDX) microanalysis. ZnONP deposition in human respiratory tract was estimated using multiple-path particle dosimetry (MPPD) model. MLE-12 AECII were cultured and exposed to 0, 1, and 5 μg/mL of ZnONPs for 24 h. Western blots were used to investigate signaling pathways associated with Yes-associated protein (YAP)/transcriptional co-activator with PDZ-binding motif (TAZ), cell adherens junctions, differentiation, and senescence. ZnONPs morphology was irregular, with Zn and O identified. Approximately 72% of inhaled ZnONPs were deposited in lungs, with 26% being deposited in alveolar regions. ZnONP exposure increased nuclear YAP expression and decreased cytoplasmic YAP expression by AECII. Adherens junction proteins, E-cadherin, α-catenin, and β-catenin, on AECII decreased after ZnONP exposure. ZnONP exposure of AECII increased alveolar type I (AECI) transition protein, LGALS3, and the AECI protein, T1α, while decreasing AECII SPC expression. ZnONP exposure induced Sirt1 and p53 senescence proteins by AECII. Our findings showed that inhalable ZnONPs can deposit in alveoli, which promotes YAP nuclear localization in AECII, resulting in decrease tight junctions, cell differentiation, and cell senescence. Full article
(This article belongs to the Special Issue Feature Papers in Atmosphere Science)
Show Figures

Graphical abstract

14 pages, 4856 KiB  
Article
Nonenzymatic Deamidation Mechanism on a Glutamine Residue with a C-Terminal Adjacent Glycine Residue: A Computational Mechanistic Study
by Haruka Asai, Koichi Kato, Tomoki Nakayoshi, Yoshinobu Ishikawa, Eiji Kurimoto, Akifumi Oda and Nobuyuki Fukuishi
AppliedChem 2021, 1(2), 142-155; https://doi.org/10.3390/appliedchem1020011 - 8 Dec 2021
Cited by 2 | Viewed by 5179
Abstract
The deamidation of glutamine (Gln) residues, which occurs non-enzymatically under physiological conditions, triggers protein denaturation and aggregation. Gln residues are deamidated via the cyclic glutarimide intermediates to l-α-, d-α-, l-β-, and d-β-glutamate residues. The production of these biologically uncommon [...] Read more.
The deamidation of glutamine (Gln) residues, which occurs non-enzymatically under physiological conditions, triggers protein denaturation and aggregation. Gln residues are deamidated via the cyclic glutarimide intermediates to l-α-, d-α-, l-β-, and d-β-glutamate residues. The production of these biologically uncommon amino acid residues is implicated in the pathogenesis of autoimmune diseases. The reaction rate of Gln deamidation is influenced by the C-terminal adjacent (N +1) residue and is highest in the Gln-glycine (Gly) sequence. Here, we investigated the effect of the (N + 1) Gly on the mechanism of Gln deamidation and the activation barrier using quantum chemical calculations. Energy-minima and transition-state geometries were optimized by the B3LYP density functional theory, and MP2 calculations were used to obtain the single-point energy. The calculated activation barrier (85.4 kJ mol−1) was sufficiently low for the reactions occurring under physiological conditions. Furthermore, the hydrogen bond formation between the catalytic ion and the main chain of Gly on the C-terminal side was suggested to accelerate Gln deamidation by stabilizing the transition state. Full article
(This article belongs to the Special Issue Feature Papers in AppliedChem)
Show Figures

Graphical abstract

17 pages, 6723 KiB  
Article
Phenolic Compounds from Mori Cortex Ameliorate Sodium Oleate-Induced Epithelial–Mesenchymal Transition and Fibrosis in NRK-52e Cells through CD36
by Yuan Ruan, Pei-Pei Yuan, Ya-Xin Wei, Qi Zhang, Li-Yuan Gao, Pan-Ying Li, Yi Chen, Yang Fu, Yan-Gang Cao, Xiao-Ke Zheng and Wei-Sheng Feng
Molecules 2021, 26(20), 6133; https://doi.org/10.3390/molecules26206133 - 11 Oct 2021
Cited by 5 | Viewed by 3016
Abstract
Lipid deposition in the kidney can cause serious damage to the kidney, and there is an obvious epithelial–mesenchymal transition (EMT) and fibrosis in the late stage. To investigate the interventional effects and mechanisms of phenolic compounds from Mori Cortex on the EMT and [...] Read more.
Lipid deposition in the kidney can cause serious damage to the kidney, and there is an obvious epithelial–mesenchymal transition (EMT) and fibrosis in the late stage. To investigate the interventional effects and mechanisms of phenolic compounds from Mori Cortex on the EMT and fibrosis induced by sodium oleate-induced lipid deposition in renal tubular epithelial cells (NRK-52e cells), and the role played by CD36 in the adjustment process, NRK-52e cells induced by 200 μmol/L sodium oleate were given 10 μmoL/L moracin-P-2″-O-β-d-glucopyranoside (Y-1), moracin-P-3′-O-β-d-glucopyranoside (Y-2), moracin-P-3′-O-α-l-arabinopyranoside (Y-3), and moracin-P-3′-O-[β-glucopyranoside-(1→2)arabinopyranoside] (Y-4), and Oil Red O staining was used to detect lipid deposition. A Western blot was used to detect lipid deposition-related protein CD36, inflammation-related protein (p-NF-κB-P65, NF-κB-P65, IL-1β), oxidative stress-related protein (NOX1, Nrf2, Keap1), EMT-related proteins (CD31, α-SMA), and fibrosis-related proteins (TGF-β, ZEB1, Snail1). A qRT-PCR test detected inflammation, EMT, and fibrosis-related gene mRNA levels. The TNF-α levels were detected by ELISA, and the colorimetric method was used to detects SOD and MDA levels. The ROS was measured by flow cytometry. A high-content imaging analysis system was applied to observe EMT and fibrosis-related proteins. At the same time, the experiment silenced CD36 and compared the difference between before and after drug treatment, then used molecular docking technology to predict the potential binding site of the active compounds with CD36. The research results show that sodium oleate can induce lipid deposition, inflammation, oxidative stress, and fibrosis in NRK-52e cells. Y-1 and Y-2 could significantly ameliorate the damage caused by sodium oleate, and Y-2 had a better ameliorating effect, while there was no significant change in Y-3 or Y-4. The amelioration effect of Y-1 and Y-2 disappeared after silencing CD36. Molecular docking technology showed that the Y-1 and Y-2 had hydrogen bonds to CD36 and that, compared with Y-1, Y-2 requires less binding energy. In summary, moracin-P-2″-O-β-d-glucopyranoside and moracin-P-3′-O-β-d-glucopyranoside from Mori Cortex ameliorated lipid deposition, EMT, and fibrosis induced by sodium oleate in NRK-52e cells through CD36. Full article
Show Figures

Figure 1

14 pages, 3458 KiB  
Article
A DFT Study for Catalytic Deoxygenation of Methyl Butyrate on a Lewis Acid Site of ZSM-5 Zeolite
by Xiaobo Chen, Ruiying Li, Hao Yan, Yibin Liu and Chaohe Yang
Catalysts 2020, 10(11), 1233; https://doi.org/10.3390/catal10111233 - 24 Oct 2020
Cited by 3 | Viewed by 3027
Abstract
The catalytic deoxygenation mechanism of fatty acid esters on a Lewis acid site of ZSM-5 zeolite was elucidated via density functional theory (DFT) by using a methyl butyrate (MB) as the model compound for fatty acid esters. The configurations of the initial reactant, [...] Read more.
The catalytic deoxygenation mechanism of fatty acid esters on a Lewis acid site of ZSM-5 zeolite was elucidated via density functional theory (DFT) by using a methyl butyrate (MB) as the model compound for fatty acid esters. The configurations of the initial reactant, transition states, and products together with the activation barrier of each elementary reaction were determined. The activation barrier of different initial cracking reactions decreases in the order of α-C–C > β-C–C > α-C–O > β-C–O. The best reaction path for catalytic deoxygenation of methyl butyrate over Lewis acid site is CH3CH2CH2C(OCH3)=O⋯Lewis → CH3CH2⋯Lewis⋯C(=CH2)OCH3 → CH2=CH2 + CH3COOCH3 + Lewis. The oxygen of methyl butyrate is mainly removed as CO2, methyl acetate, formaldehyde, and butyraldehyde, while ethylene, propylene, and butane are the main hydrocarbon products. In addition, the group generated by cracking of methyl butyrate form a bond with the Lewis acid site, promoting the transformation between a Lewis acid and a Brønsted acid. The corresponding intermediates have a high single point energy, but the poor stability leads to further deoxygenation and cracking reactions. This work provides a theoretical basis for the modification in the number of Brønsted acid and Lewis acid sites in the ZSM-5 zeolite. Full article
(This article belongs to the Section Computational Catalysis)
Show Figures

Figure 1

Back to TopTop