Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (49)

Search Parameters:
Keywords = activated carbon fibers (ACFs)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 7123 KiB  
Article
Study and Application of Nitric-Acid-Modified Activated Carbon Fiber on Nitrogen Oxide Adsorption Performance
by Jiahao Wan, Wei Xu, Xinghui Zhang, Xinyu Jia and Cong Zhang
Processes 2025, 13(3), 760; https://doi.org/10.3390/pr13030760 - 6 Mar 2025
Viewed by 1146
Abstract
Nitrogen oxides are a kind of atmospheric pollutants that cause great harm to the environment and human body. The modified activated carbon fiber (ACF) has good adsorption performance for nitrogen oxides. The ACF was modified by nitric acid. The results of ACF modification [...] Read more.
Nitrogen oxides are a kind of atmospheric pollutants that cause great harm to the environment and human body. The modified activated carbon fiber (ACF) has good adsorption performance for nitrogen oxides. The ACF was modified by nitric acid. The results of ACF modification were verified and evaluated by chemical and physical characterization of the materials. In the laboratory stage, the initial concentration of pollutants, the wind speed, the number of loading materials, and the number of regeneration times were used to explore the influence of modified ACF adsorption, and the change rule and the cause were analyzed. After procedures were carried out to study the adsorption of industrial exhaust gas, the concentration of nitrogen oxides before and after the modified ACF filter adsorption core was measured. The actual effect of industrial exhaust gas adsorption partially deviated from that of the laboratory. The results showed that the adsorption effect of nitric oxide increased with the increase in regeneration times, while the adsorption amount of nitric oxide by modified ACF in the laboratory stage gradually decreased with the increase in regeneration times. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

19 pages, 4837 KiB  
Article
Construction of Antibacterial MoS2-ACF Phenotype Switcher for Bidirectionally Regulating Inflammation–Proliferation Transition in Wound Healing
by Mengxin Mao, Diyi Li, Yunyun Wu, Bing Li, Xiaoqing Han, Jiao Yan, Lei Shang, Haiyuan Zhang and Xi Li
Materials 2025, 18(5), 963; https://doi.org/10.3390/ma18050963 - 21 Feb 2025
Cited by 1 | Viewed by 626
Abstract
The transition between the inflammatory phase and the proliferative phase is critical for wound healing. However, the development of proper switchers that can regulate this transition is facing great challenges. Macrophages play versatile roles in all wound healing phases because they can readily [...] Read more.
The transition between the inflammatory phase and the proliferative phase is critical for wound healing. However, the development of proper switchers that can regulate this transition is facing great challenges. Macrophages play versatile roles in all wound healing phases because they can readily switch from pro-inflammatory M1 phenotypes to anti-inflammatory M2 phenotypes in response to different microenvironment stimuli. Herein, taking advantage of enhanced electron transfer by coupling MoS2 with a highly conductive activated carbon fiber (ACF) network, a MoS2-ACF heterojunction structure was constructed as a macrophage M1-M2 phenotype switcher (MAPS) for regulating inflammation–proliferation transition to accelerate wound healing. In the early stages of wound repair, MAPS-mediated photothermal effects with near-infrared laser irradiation could promote macrophage reprogramming to the M1 phenotype, which can expedite inflammation. NIR photo-induced hyperthermia, together with M1 macrophages, directly and indirectly kills bacteria. Later, during the healing process, the MAPS could further reprogram macrophages towards the M2 phenotype via its inherent reactive oxygen species (ROS) scavenging ability to resolve inflammation, promoting cell proliferation. Therefore, MoS2-ACF heterojunction structures provide a new strategy to modulate inflammation–proliferation transition by rebalancing the immuno-environmental equilibrium of macrophage M1/M2 phenotypes. Full article
Show Figures

Figure 1

16 pages, 3375 KiB  
Article
Mastering Snow Analysis: Enhancing Sampling Techniques and Introducing ACF Extraction Method with Applications in Svalbard
by Marina Cerasa, Catia Balducci, Benedetta Giannelli Moneta, Ettore Guerriero, Maria Luisa Feo, Alessandro Bacaloni and Silvia Mosca
Molecules 2024, 29(21), 5111; https://doi.org/10.3390/molecules29215111 - 29 Oct 2024
Cited by 1 | Viewed by 1265
Abstract
Semi-volatile organic contaminants (SVOCs) are known for their tendency to evaporate from source regions and undergo atmospheric transport to distant areas. Cold condensation intensifies dry deposition, particle deposition, and scavenging by snow and rain, allowing SVOCs to move from the atmosphere into terrestrial [...] Read more.
Semi-volatile organic contaminants (SVOCs) are known for their tendency to evaporate from source regions and undergo atmospheric transport to distant areas. Cold condensation intensifies dry deposition, particle deposition, and scavenging by snow and rain, allowing SVOCs to move from the atmosphere into terrestrial and aquatic ecosystems in alpine and polar regions. However, no standardized methods exist for the sampling, laboratory processing, and instrumental analysis of persistent organic pollutants (POPs) in snow. The lack of reference methods makes these steps highly variable and prone to errors. This study critically reviews the existing literature to highlight the key challenges in the sampling phase, aiming to develop a reliable, consistent, and easily reproducible technique. The goal is to simplify this crucial step of the analysis, allowing data to be shared more effectively through standardized methods, minimizing errors. Additionally, an innovative method for laboratory processing is introduced, which uses activated carbon fibers (ACFs) as adsorbents, streamlining the analysis process. The extraction method is applied to analyze polychlorobiphenyls (PCBs) and chlorinated pesticides (α-HCH, γ-HCH, p,p′-DDE, o,p′-DDT, HCB, and PeCB). The entire procedure, from sampling to instrumental analysis, is subsequently tested on snow samples collected on the Svalbard Islands. To validate the efficiency of the new extraction system, quality control measures based on the EPA methods 1668B and 1699 for aqueous methods are employed. This study presents a new, reliable method that covers both sampling and lab analysis, tailored for detecting POPs in snow. Full article
(This article belongs to the Special Issue Novel Analytical Methods to Evaluate and Monitor the Pollutants)
Show Figures

Graphical abstract

21 pages, 452 KiB  
Review
Wastewater Treatment by Coupling Adsorption and Photocatalytic Oxidation: A Review of the Removal of Phenolic Compounds in the Oil Industry
by Cristian Yoel Quintero-Castañeda, Paola Andrea Acevedo, Luis Roberto Hernández-Angulo, Daniel Tobón-Vélez, Anamaría Franco-Leyva and María Margarita Sierra-Carrillo
Eng 2024, 5(4), 2441-2461; https://doi.org/10.3390/eng5040128 - 3 Oct 2024
Cited by 4 | Viewed by 2524
Abstract
The development of the oil industry and the fossil fuel economy has historically improved the quality of life for many people, but it has also led to significant environmental degradation. As a response, the concept of ‘sustainable development’ has gained prominence recently, emphasizing [...] Read more.
The development of the oil industry and the fossil fuel economy has historically improved the quality of life for many people, but it has also led to significant environmental degradation. As a response, the concept of ‘sustainable development’ has gained prominence recently, emphasizing the importance of balancing economic progress with environmental protection. Among the many environmental challenges we face today, preserving water resources is one of the most pressing. To tackle this issue, researchers are focusing on strategies to reduce water consumption and enhance the efficiency of wastewater treatment. In this context, the present review explores recent advancements in a novel coupled treatment process that integrates adsorption in activated carbon fiber (ACF) and photocatalytic oxidation using TiO2 to remove micropollutants from wastewater. This innovative approach would allow for the in situ and continuous regeneration of ACF with TiO2 photocatalysis, increasing the oxidative degradation efficiencies of the supported semiconductor thanks to the adsorbent material, all under the possibility of a durable and low-cost process using solar radiation. In addition, this is vital for meeting regulatory standards, protecting aquatic ecosystems, and safeguarding human health. Full article
(This article belongs to the Special Issue Green Engineering for Sustainable Development 2024)
15 pages, 5317 KiB  
Article
Enhanced Adsorption of Gaseous Naphthalene by Activated Carbon Fibers at Elevated Temperatures
by Chiou-Liang Lin, Chun-Yi Huang and Zhen-Shu Liu
Toxics 2024, 12(8), 537; https://doi.org/10.3390/toxics12080537 - 24 Jul 2024
Cited by 4 | Viewed by 1254
Abstract
This study utilized activated carbon fibers (ACFs) as adsorbents to investigate the removal efficiency of naphthalene and toluene at elevated temperatures and their competitive adsorption behavior. Three types of ACFs, inlet concentrations of naphthalene (343, 457, and 572 mg·Nm−3), and toluene [...] Read more.
This study utilized activated carbon fibers (ACFs) as adsorbents to investigate the removal efficiency of naphthalene and toluene at elevated temperatures and their competitive adsorption behavior. Three types of ACFs, inlet concentrations of naphthalene (343, 457, and 572 mg·Nm−3), and toluene (2055, 2877, and 4110 mg·Nm−3) were investigated to determine the adsorption capacities of naphthalene and toluene. To study the reaction mechanisms of naphthalene and toluene on the ACFs, the BET, SEM, FTIR, and TGA methods were used to examine the physical and chemical characteristics of ACFs. Results showed ACF-A’s superior adsorption capacity for naphthalene that was attributed to its mesoporous structure and hydrophobicity. Adsorption equilibrium studies indicated multilayer adsorption behavior. Competitive adsorption experiments demonstrated the displacement of toluene by naphthalene on ACF-A, highlighting its higher selectivity for naphthalene. Functional group analysis revealed changes in ACF surfaces after naphthalene adsorption, suggesting π-π dispersion and electron donor–acceptor interactions. Overall, this study underscores the importance of pore structure and surface properties in designing ACFs for the efficient adsorption of high-boiling-point organic pollutants. Full article
(This article belongs to the Section Toxicity Reduction and Environmental Remediation)
Show Figures

Figure 1

12 pages, 3137 KiB  
Article
Versatile Activated Carbon Fibers Derived from the Cotton Fibers Used as CO2 Solid-State Adsorbents and Electrode Materials
by Peiyu Wang, Hang Liu, Wenting Zhu, Wanjun Chen, Xiangli Wang, Le Yang, Bao Yang, Qiong Chen, Cairang Limao and Zhuoma Cairang
Molecules 2024, 29(13), 3153; https://doi.org/10.3390/molecules29133153 - 2 Jul 2024
Cited by 5 | Viewed by 1491
Abstract
Activated carbon has an excellent porous structure and is considered a promising adsorbent and electrode material. In this study, activated carbon fibers (ACFs) with abundant microporous structures, derived from natural cotton fibers, were successfully synthesized at a certain temperature in an Ar atmosphere [...] Read more.
Activated carbon has an excellent porous structure and is considered a promising adsorbent and electrode material. In this study, activated carbon fibers (ACFs) with abundant microporous structures, derived from natural cotton fibers, were successfully synthesized at a certain temperature in an Ar atmosphere and then activated with KOH. The obtained ACFs were characterized by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), elemental analysis, nitrogen and carbon dioxide adsorption–desorption analysis, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and N2 adsorption–desorption measurement. The obtained ACFs showed high porous qualities and had a surface area from 673 to 1597 m2/g and a pore volume from 0.33 to 0.79 cm3/g. The CO2 capture capacities of prepared ACFs were measured and the maximum capture capacity for CO2 up to 6.9 mmol/g or 4.6 mmol/g could be achieved at 0 °C or 25 °C and 1 standard atmospheric pressure (1 atm). Furthermore, the electrochemical capacitive properties of as-prepared ACFs in KOH aqueous electrolyte were also studied. It is important to note that the pore volume of the pores below 0.90 nm plays key roles to determine both the CO2 capture ability and the electrochemical capacitance. This study provides guidance for designing porous carbon materials with high CO2 capture capacity or excellent capacitance performance. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Graphical abstract

14 pages, 4568 KiB  
Article
A Chemical Safety Assessment of Lyocell-Based Activated Carbon Fiber with a High Surface Area through the Evaluation of HCl Gas Adsorption and Electrochemical Properties
by Jong Gu Kim and Byong Chol Bai
Separations 2024, 11(3), 79; https://doi.org/10.3390/separations11030079 - 2 Mar 2024
Cited by 7 | Viewed by 2249
Abstract
This study investigates lyocell-based activated carbon fibers (ACFs) for their suitability in adsorbing and electrochemically detecting toxic HCl gas. ACFs were prepared via steam activation, varying temperature (800–900 °C) and time (40–240 min) to assess their adsorption and sensing capabilities. The adjustment of [...] Read more.
This study investigates lyocell-based activated carbon fibers (ACFs) for their suitability in adsorbing and electrochemically detecting toxic HCl gas. ACFs were prepared via steam activation, varying temperature (800–900 °C) and time (40–240 min) to assess their adsorption and sensing capabilities. The adjustment of activation temperature and reaction time aimed to regulate the uniformity of the pore structure and pore size of the active reaction area, as well as the number of reaction sites in the ACFs. Optimal ACFs were achieved at 900 °C for 50 min, exhibiting the highest specific surface area (1403 m2/g) and total pore volume (0.66 cm3/g). Longer reaction times resulted in pore formation and disorder, reducing mechanical strength. The ACFs prepared under optimal conditions demonstrated a rapid increase in resistance during sensor measurement, indicating a significant sensitivity to HCl gas. These findings suggest the potential of ACFs for efficient HCl gas adsorption (1626.20 mg/g) and highlight the importance of activation parameters in tailoring their properties for practical applications. Full article
(This article belongs to the Special Issue Development and Applications of Porous Materials in Adsorptions)
Show Figures

Figure 1

16 pages, 4995 KiB  
Article
Sustainable Electrochemical Activation of Self-Generated Persulfate for the Degradation of Endocrine Disruptors: Kinetics, Performances, and Mechanisms
by Xiaofeng Tang, Zhiquan Jin, Rui Zou, Yi Zhu, Xia Yao, Mengxuan Li, Shuang Song, Shuangliu Liu and Tao Zeng
Toxics 2024, 12(2), 156; https://doi.org/10.3390/toxics12020156 - 17 Feb 2024
Cited by 2 | Viewed by 2298
Abstract
This study presents an electrolysis system utilizing a novel self-circulation process of sulfate (SO42−) and persulfate (S2O82−) ions based on a boron-doped diamond (BDD) anode and an activated carbon fiber (ACF) cathode, which is designed [...] Read more.
This study presents an electrolysis system utilizing a novel self-circulation process of sulfate (SO42−) and persulfate (S2O82−) ions based on a boron-doped diamond (BDD) anode and an activated carbon fiber (ACF) cathode, which is designed to enable electrochemical remediation of environmental contaminants with reduced use of chemical reagents and minimized residues. The production of S2O82− and hydrogen peroxide (H2O2) on the BDD anode and ACF cathode, respectively, is identified as the source of active radicals for the contaminant degradation. The initiator, sulfate, is identified by comparing the degradation efficiency in NaSO4 and NaNO3 electrolytes. Quenching experiments and electron paramagnetic resonance (EPR) spectroscopy confirmed that the SO4· and ·OH generated on the ACF cathode are the main reactive radicals. A comparison of the degradation efficiency and the generated S2O82−/H2O2 of the divided/undivided electrolysis system is used to demonstrate the superiority of the synergistic effect between the BDD anode and ACF cathode. This work provides evidence of the effectiveness of the philosophy of “catalysis in lieu of supplementary chemical agents” and sheds light on the mechanism of the generation and transmission of reactive species in the BDD and ACF electrolysis system, thereby offering new perspectives for the design and optimization of electrolysis systems. Full article
(This article belongs to the Special Issue Effective Catalytic Processes for Water and Wastewater Treatment)
Show Figures

Figure 1

17 pages, 2890 KiB  
Article
Facile Preparation of Polyacrylonitrile-Based Activated Carbon Fiber Felts for Effective Adsorption of Dipropyl Sulfide
by Tianhao Zhang, Yafang He, Shiqi Hu, Jianlong Ge, Tianye Chen, Haoru Shan, Tao Ji, Decheng Yu and Qixia Liu
Polymers 2024, 16(2), 252; https://doi.org/10.3390/polym16020252 - 16 Jan 2024
Cited by 6 | Viewed by 1797
Abstract
Activated carbon fibers (ACFs) derived from various polymeric fibers with the characteristics of a high specific surface area, developed pore structure, and good flexibility are promising for the new generation of chemical protection clothing. In this paper, a polyacrylonitrile-based ACF felt was prepared [...] Read more.
Activated carbon fibers (ACFs) derived from various polymeric fibers with the characteristics of a high specific surface area, developed pore structure, and good flexibility are promising for the new generation of chemical protection clothing. In this paper, a polyacrylonitrile-based ACF felt was prepared via the process of liquid phase pre-oxidation, along with a one-step carbonization and chemical activation method. The obtained ACF felt exhibited a large specific surface area of 2219.48 m2/g and pore volume of 1.168 cm3/g, as well as abundant polar groups on the surface. Owing to the developed pore structure and elaborated surface chemical property, the ACF felt possessed an intriguing adsorption performance for a chemical warfare agent simulant dipropyl sulfide (DPS), with the highest adsorption capacity being 202.38 mg/g. The effects of the initial concentration of DPS and temperature on the adsorption performance of ACF felt were investigated. Meanwhile, a plausible adsorption mechanism was proposed based on the kinetic analysis and fitting of different adsorption isotherm models. The results demonstrated that the adsorption process of DPS onto ACF felt could be well fitted with a pseudo-second-order equation, indicating a synergistic effect of chemical adsorption and physical adsorption. We anticipate that this work could be helpful to the design and development of advanced ACF felts for the application of breathable chemical protection clothing. Full article
Show Figures

Figure 1

13 pages, 2279 KiB  
Article
Exploring the Impact of DAHP Impregnation on Activated Carbon Fibers for Efficient Charge Storage and Selective O2 Reduction to Peroxide
by Nemanja Gavrilov, Stefan Breitenbach, Christoph Unterweger, Christian Fürst and Igor A. Pašti
C 2023, 9(4), 105; https://doi.org/10.3390/c9040105 - 6 Nov 2023
Cited by 3 | Viewed by 1982
Abstract
Understanding the properties and behavior of carbon materials is of paramount importance in the pursuit of sustainable energy solutions and technological advancements. As versatile and abundant resources, carbon materials play a central role in various energy conversion and storage applications, making them essential [...] Read more.
Understanding the properties and behavior of carbon materials is of paramount importance in the pursuit of sustainable energy solutions and technological advancements. As versatile and abundant resources, carbon materials play a central role in various energy conversion and storage applications, making them essential components in the transition toward a greener and more efficient future. This study explores the impact of diammonium hydrogen phosphate (DAHP) impregnation on activated carbon fibers (ACFs) for efficient energy storage and conversion applications. The viscose fibers were impregnated with varying DAHP concentrations, followed by carbonization and activation processes. The capacitance measurements were conducted in 6 mol dm−3 KOH, 0.5 mol dm−3 H2SO4, and 2 mol dm−3 KNO3 solutions, while the oxygen reduction reaction (ORR) measurements were performed in O2-saturated 0.1 mol dm−3 KOH solution. We find that the presented materials display specific capacitances up to 160 F g−1 when the DAHP concentration is in the range of 1.0 to 2.5%. Moreover, for the samples with lower DAHP concentrations, highly selective O2 reduction to peroxide was achieved while maintaining low ORR onset potentials. Thus, by impregnating viscose fibers with DAHP, it is possible to tune their electrochemical properties while increasing the yield, enabling the more sustainable and energy-efficient synthesis of advanced materials for energy conversion applications. Full article
Show Figures

Graphical abstract

18 pages, 8181 KiB  
Article
Efficient Adsorption of Ammonia by Surface-Modified Activated Carbon Fiber Mesh
by Yongxiang Niu, Chao Zheng, Yucong Xie, Kai Kang, Hua Song, Shupei Bai, Hao Han and Shunyi Li
Nanomaterials 2023, 13(21), 2857; https://doi.org/10.3390/nano13212857 - 28 Oct 2023
Cited by 12 | Viewed by 4244
Abstract
In view of the characteristics and risks of ammonia, its removal is important for industrial production and environmental safety. In this study, viscose-based activated carbon fiber (ACF) was used as a substrate and chemically modified by nitric acid impregnation to enhance the adsorption [...] Read more.
In view of the characteristics and risks of ammonia, its removal is important for industrial production and environmental safety. In this study, viscose-based activated carbon fiber (ACF) was used as a substrate and chemically modified by nitric acid impregnation to enhance the adsorption capacity of the adsorbent for ammonia. A series of modified ACF-based adsorbents were prepared and characterized using BET, FTIR, XPS, and Boehm titration. Isotherm tests (293.15 K, 303.15 K, 313.15 K) and dynamic adsorption experiments were performed. The characterization results showed that impregnation with low concentrations of nitric acid not only increased the surface acidic functional group content but also increased the specific surface area, while impregnation with high concentrations of nitric acid could be able to decrease the specific surface area. ACF-N-6 significantly increased the surface functional group content without destroying the physical structure of the activated carbon fibers. The experimental results showed that the highest adsorption of ammonia by ACFs was 14.08 mmol-L−1 (ACF-N-6) at 293 K, and the adsorption capacity was increased by 165% compared with that of ACF-raw; by fitting the adsorption isotherm and calculating the equivalent heat of adsorption and thermodynamic parameters using the Langmuir–Freundlich model, the adsorption process could be found to exist simultaneously. Regarding physical adsorption and chemical adsorption, the results of the correlation analysis showed that the ammonia adsorption performance was strongly correlated with the carboxyl group content and positively correlated with the relative humidity (RH) of the inlet gas. This study contributes to the development of an efficient ammonia adsorption system with important applications in industrial production and environmental safety. Full article
Show Figures

Figure 1

13 pages, 3473 KiB  
Article
Textile Waste-Derived Cobalt Nanoparticles Embedded in Active Carbon Fiber for Efficient Activation of Peroxymonosulfate to Remove Organic Pollutants
by Peiyuan Xiao, Ying Wang, Huanzheng Du, Zhiyong Yan, Bincheng Xu and Guangming Li
Nanomaterials 2023, 13(19), 2724; https://doi.org/10.3390/nano13192724 - 8 Oct 2023
Viewed by 1796
Abstract
Burning and dumping textile wastes have caused serious damage to the environment and are a huge waste of resources. In this work, cobalt nanoparticles embedded in active carbon fiber (Co/ACF) were prepared from bio-based fabric wastes, including cotton, flax and viscose. The obtained [...] Read more.
Burning and dumping textile wastes have caused serious damage to the environment and are a huge waste of resources. In this work, cobalt nanoparticles embedded in active carbon fiber (Co/ACF) were prepared from bio-based fabric wastes, including cotton, flax and viscose. The obtained Co/ACF was applied as a catalyst for the heterogeneous activation of peroxymonosulfate (PMS) to remove bisphenol A (BPA) from an aqueous solution. The results showed that cotton-, flax- and viscose-derived Co/ACF all exhibited excellent performance for BPA degradation; over ~97.0% of BPA was removed within 8 min. The Co/ACF/PMS system exhibited a wide operating pH range, with a low consumption of the catalyst (0.1 g L−1) and PMS (0.14 g L−1). The high specific surface area (342 m2/g) and mesoporous structure of Co/ACF allowed the efficient adsorption of pollutants as well as provided more accessible active sites for PMS activation. This study provided an example of using textile wastes to produce a valuable and recyclable catalyst for environmental remediation. Full article
(This article belongs to the Special Issue Nanocatalysts for Environmental Remediation)
Show Figures

Figure 1

14 pages, 4282 KiB  
Review
Preparation and Characterization of Activated Carbon/Polymer Composites: A Review
by Yoon-Ji Yim and Byung-Joo Kim
Polymers 2023, 15(16), 3472; https://doi.org/10.3390/polym15163472 - 19 Aug 2023
Cited by 12 | Viewed by 6363
Abstract
Activated carbon (AC) and activated carbon fibers (ACFs) are materials with a large specific surface area and excellent physical adsorption properties due to their rich porous structure, and they are used as electrode materials to improve the performance of adsorbents or capacitors. Recently, [...] Read more.
Activated carbon (AC) and activated carbon fibers (ACFs) are materials with a large specific surface area and excellent physical adsorption properties due to their rich porous structure, and they are used as electrode materials to improve the performance of adsorbents or capacitors. Recently, multiple studies have confirmed the applicability of AC/polymer compo-sites in various fields by exploiting the unique physical and chemical properties of AC. As the excellent mechanical properties, stability, antistatic and electromagnetic interference (EMI) shielding functions of activated carbon/polymer composite materials were confirmed in recent studies, it is expected that activated carbon can be utilized as an ideal reinforcing material for low-cost polymer composite materials. Therefore, in this review, we would like to describe the fabrication, characterization and applicability of AC/polymer composites. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

13 pages, 3379 KiB  
Article
Effects of Nickel Impregnation on the Catalytic Removal of Nitric Oxide by Polyimide-Based Activated Carbon Fibers
by Hun-Seung Jeong and Byung-Joo Kim
Nanomaterials 2023, 13(16), 2297; https://doi.org/10.3390/nano13162297 - 10 Aug 2023
Cited by 3 | Viewed by 1657
Abstract
Activated carbon fibers (ACFs) are beneficial for adsorbing harmful gases because of the well-developed micropores on their surface. Usually, the physical adsorption of harmful gases by ACFs is limited by their textural properties. In this study, the effect of nickel particle catalyst impregnation [...] Read more.
Activated carbon fibers (ACFs) are beneficial for adsorbing harmful gases because of the well-developed micropores on their surface. Usually, the physical adsorption of harmful gases by ACFs is limited by their textural properties. In this study, the effect of nickel particle catalyst impregnation on the physicochemical removal of nitric oxide (NO) by polyimide (PI)-based ACFs (PI-ACFs) was investigated. Ni(NO3)2 was used as the precursor of nickel particle catalysts and impregnated on ACFs as a function of concentrations. The Ni(NO3)2/ACFs were then thermally reduced in an argon atmosphere containing 4% hydrogen (400 °C, 1 h). The gases generated during heat treatment were verified using Fourier transform infrared spectroscopy, and the impregnation amount of metallic nickel was also calculated based on the gas amount generated. The specific surface areas of the ACF and Ni-ACFs were determined to be 1010–1180 m2/g, while the nickel impregnation amount was 0.85–5.28 mg/g. The NO removal capacity of the Ni-ACF was found to be enhanced with the addition of Ni catalysts. In addition, metallic nickel particles on the ACFs maintained their chemical molecular structures before and after the NO removal tests.a Full article
(This article belongs to the Special Issue Functionalized Nanostructures for Novel Energy Storage Systems)
Show Figures

Figure 1

18 pages, 4880 KiB  
Article
Removal of Organic Contaminants in Gas-to-Liquid (GTL) Process Water Using Adsorption on Activated Carbon Fibers (ACFs)
by Roghayeh Yousef, Hazim Qiblawey and Muftah H. El-Naas
Processes 2023, 11(7), 1932; https://doi.org/10.3390/pr11071932 - 27 Jun 2023
Cited by 5 | Viewed by 1680
Abstract
Gas-To-Liquid (GTL) processing involves the conversion of natural gas to liquid hydrocarbons that are widely used in the chemical industry. In this process, the Fischer–Tropsch (F-T) approach is utilized and, as a result, wastewater is produced as a by-product. This wastewater commonly contains [...] Read more.
Gas-To-Liquid (GTL) processing involves the conversion of natural gas to liquid hydrocarbons that are widely used in the chemical industry. In this process, the Fischer–Tropsch (F-T) approach is utilized and, as a result, wastewater is produced as a by-product. This wastewater commonly contains alcohols and acids as contaminants. Prior to discharge, the treatment of this wastewater is essential, and biological treatment is the common approach. However, this approach is not cost effective and poses various waste-related issues. Due to this, there is a need for a cost-effective treatment method. This study evaluated the adsorption performance of activated carbon fibers (ACFs) for the treatment of GTL wastewater. The ACF in this study exhibited a surface area of 1232.2 m2/g, which provided a significant area for the adsorption to take place. Response surface methodology (RSM) under central composite design was used to assess the effect of GTL wastewater’s pH, initial concentration and dosage on the ACF adsorption performance and optimize its uptake capacity. It was observed that ACF was vitally affected by the three studied factors (pH, initial concentration and dosage), where optimum conditions were found to be at a pH of 3, 1673 mg/L initial concentration and 0.03 g of dosage, with an optimum uptake of 250 mg/L. Kinetics and isotherm models were utilized to fit the adsorption data. From this analysis, it was found that adsorption was best described using the pseudo-second order and Freundlich models, respectively. The resilience of ACF was shown in this study through conducting a regeneration analysis, as the results showed high regeneration efficiency (~86%) under acidic conditions. The results obtained from this study show the potential of using ACF under acidic conditions for the treatment of industrial GTL wastewater. Full article
Show Figures

Figure 1

Back to TopTop