Wastewater Treatment by Coupling Adsorption and Photocatalytic Oxidation: A Review of the Removal of Phenolic Compounds in the Oil Industry
Abstract
:1. Introduction
- (i)
- (ii)
- (iii)
- (iv)
2. Adsorption on Activated Carbon Fiber
2.1. Adsorption Principle
2.2. Adsorption Isotherms and Kinetics
2.3. Activated Carbon
2.4. Activated Carbon Fiber
2.5. Adsorption of 2,4-Dimethylphenol in Aqueous Medium
3. Advanced Oxidation Processes and Heterogeneous Photocatalysis
3.1. Advanced Oxidation Processes for Wastewater Treatment
3.2. Principle of Heterogeneous Photocatalysis
3.3. Doped Photocatalysts
3.4. Supported Photocatalysts
3.5. The TiO2 Photocatalyst
4. Coupling Adsorption and Photocatalysis Using TiO2/ACF
4.1. Deposition Techniques of TiO2 on Activated Carbon Fiber
4.2. Performance of the Photocatalytic Couple TiO2/ACF
4.3. Removal of Phenolic Compounds by Adsorption and Photocatalytic Oxidation
- Not generating transformation by-products that are difficult to remove, which occurs in some cases with the implementation of oxidative processes alone (for example, ozonation [189]).
- No reagents in the solution that need post-treatment to remove elements used in the reaction and stabilize the pH, which occurs in some cases of the Fenton process [190].
4.4. Re-Use Performance of the TiO2/ACF Photocatalyst
4.5. Use of Solar Radiation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Varjani, S.; Joshi, R.; Srivastava, V.K.; Ngo, H.H.; Guo, W. Treatment of Wastewater from Petroleum Industry: Current Practices and Perspectives. Environ. Sci. Pollut. Res. 2020, 27, 27172–27180. [Google Scholar] [CrossRef]
- Bourneuf, S.; Jacob, M.; Albasi, C.; Sochard, S.; Richard, R.; Manero, M.H. Desorption Experiments and Modeling of Micropollutants on Activated Carbon in Water Phase: Application to Transient Concentrations Mitigation. Int. J. Environ. Sci. Technol. 2016, 13, 1–10. [Google Scholar] [CrossRef]
- Shi, J.; Zheng, J.; Wu, P.; Ji, X. Immobilization of TiO2 Films on Activated Carbon Fiber and Their Photocatalytic Degradation Properties for Dye Compounds with Different Molecular Size. Catal. Commun. 2008, 9, 1846–1850. [Google Scholar] [CrossRef]
- Ladeia Ramos, R.; Rezende Moreira, V.; Santos Amaral, M.C. Phenolic Compounds in Water: Review of Occurrence, Risk, and Retention by Membrane Technology. J. Environ. Manag. 2024, 351, 119772. [Google Scholar] [CrossRef]
- Herrmann, J.-M.; Matos, J.; Disdier, J.; Guillard, C.; Laine, J.; Malato, S.; Blanco, J. Solar Photocatalytic Degradation of 4-Chlorophenol Using the Synergistic Effect between Titania and Activated Carbon in Aqueous Suspension. Catal. Today 1999, 54, 255–265. [Google Scholar] [CrossRef]
- Julcour Lebigue, C.; Andriantsiferana, C.; Krou, N.; Ayral, C.; Mohamed, E.; Wilhelm, A.-M.; Delmas, H.; Le Coq, L.; Gerente, C.; Smith, K.M.; et al. Application of Sludge-Based Carbonaceous Materials in a Hybrid Water Treatment Process Based on Adsorption and Catalytic Wet Air Oxidation. J. Environ. Manag. 2010, 91, 2432–2439. [Google Scholar] [CrossRef]
- Saharan, V.K.; Pinjari, D.V.; Gogate, P.R.; Pandit, A.B. Chapter 3—Advanced Oxidation Technologies for Wastewater Treatment: An Overview A2—Ranade, Vivek V. In Industrial Wastewater Treatment, Recycling and Reuse; Bhandari, V.M., Ed.; Butterworth-Heinemann: Oxford, UK, 2014; pp. 141–191. ISBN 978-0-08-099968-5. [Google Scholar]
- Trapido, M.; Veressenina, Y.; Munter, R. Advanced Oxidation Processes for Degradation of 2,4-Dichlo- and 2,4-Dimethylphenol. J. Environ. Eng. 1998, 12, 690–694. [Google Scholar] [CrossRef]
- Vittenet, J.; Rodriguez, J.; Petit, E.; Cot, D.; Mendret, J.; Galarneau, A.; Brosillon, S. Removal of 2,4-Dimethylphenol Pollutant in Water by Ozonation Catalyzed by SOD, LTA, FAU-X Zeolites Particles Obtained by Pseudomorphic Transformation (Binderless). Microporous Mesoporous Mater. 2014, 189, 200–209. [Google Scholar] [CrossRef]
- Yuan, R.; Guan, R.; Liu, P.; Zheng, J. Photocatalytic Treatment of Wastewater from Paper Mill by TiO2 Loaded on Activated Carbon Fibers. Colloids Surf. Physicochem. Eng. Asp. 2007, 293, 80–86. [Google Scholar] [CrossRef]
- Inagaki, M.; Kang, F.; Toyoda, M.; Konno, H. Chapter 13—Carbon Materials in Photocatalysis. In Advanced Materials Science and Engineering of Carbon; Butterworth-Heinemann: Boston, MA, USA, 2014; pp. 289–311. ISBN 978-0-12-407789-8. [Google Scholar]
- Abd Rahman, N.; Choong, C.E.; Pichiah, S.; Nah, I.W.; Kim, J.R.; Oh, S.-E.; Yoon, Y.; Choi, E.H.; Jang, M. Recent Advances in the TiO2 Based Photoreactors for Removing Contaminants of Emerging Concern in Water. Sep. Purif. Technol. 2023, 304, 122294. [Google Scholar] [CrossRef]
- Pawar, R.C.; Lee, C.S. Chapter 1—Basics of Photocatalysis. In Heterogeneous Nanocomposite-Photocatalysis for Water Purification; William Andrew Publishing: Boston, MA, USA, 2015; pp. 1–23. ISBN 978-0-323-39310-2. [Google Scholar]
- Binjhade, R.; Mondal, R.; Mondal, S. Continuous Photocatalytic Reactor: Critical Review on the Design and Performance. J. Environ. Chem. Eng. 2022, 10, 107746. [Google Scholar] [CrossRef]
- Andriantsiferana, C.; Mohamed, E.F.; Delmas, H. Sequential Adsorption—Photocatalytic Oxidation Process for Wastewater Treatment Using a Composite Material TiO2/Activated Carbon. Environ. Eng. Res. 2015, 20, 181–189. [Google Scholar] [CrossRef]
- Zhu, P.; Sottorff, I.; Zhang, T.; Helmreich, B. Adsorption of Heavy Metals and Biocides from Building Runoff onto Granular Activated Carbon—The Influence of Different Fractions of Dissolved Organic Matter. Water 2023, 15, 2099. [Google Scholar] [CrossRef]
- Amorós-Pérez, A.; Lillo-Ródenas, M.Á.; Román-Martínez, M.d.C.; García-Muñoz, P.; Keller, N. TiO2 and TiO2-Carbon Hybrid Photocatalysts for Diuron Removal from Water. Catalysts 2021, 11, 457. [Google Scholar] [CrossRef]
- Hassani, A.; Khataee, A.R. 10—Activated Carbon Fiber for Environmental Protection A2—Chen, Jonathan Y. In Activated Carbon Fiber and Textiles; Woodhead Publishing Series in Textiles; Woodhead Publishing: Oxford, UK, 2017; pp. 245–280. ISBN 978-0-08-100660-3. [Google Scholar]
- Lin, C.-L.; Huang, C.-Y.; Liu, Z.-S. Enhanced Adsorption of Gaseous Naphthalene by Activated Carbon Fibers at Elevated Temperatures. Toxics 2024, 12, 537. [Google Scholar] [CrossRef]
- Plantard, G.; Goetz, V. Correlations between Optical, Specific Surface and Photocatalytic Properties of Media Integrated in a Photo-Reactor. Chem. Eng. J. 2014, 252, 194–201. [Google Scholar] [CrossRef]
- Kacem, M.; Goetz, V.; Plantard, G.; Wery, N. Modeling Heterogeneous Photocatalytic Inactivation of Coli Using Suspended and Immobilized TiO2 Reactors. AIChE J. 2015, 61, 2532–2542. [Google Scholar] [CrossRef]
- Jain, P.; Kumar, A.; Verma, N.; Gupta, R.K. In-Situ Synthesis of TiO2 Nanoparticles in ACF: Photocatalytic Degradation under Continuous Flow. Sol. Energy 2019, 189, 35–44. [Google Scholar] [CrossRef]
- Zhou, Y.; Yang, Y.; Zhao, R.; Chen, Z.; Lu, J.; Zhang, Y.; Tan, L.; Shi, Y. In Situ Generation of Nano TiO2 on Activated Carbon Fiber with Enhanced Photocatalytic Degradation Performance. Res. Chem. Intermed. 2021, 47, 3769–3784. [Google Scholar] [CrossRef]
- Triquet, T.; Tendero, C.; Latapie, L.; Richard, R.; Andriantsiferana, C. The Use of Composite TiO2/Activated Carbon Fibers as a Photocatalyst in a Sequential Adsorption/Photocatalysis Process for the Elimination of Ciprofloxacin. Catal. Res. 2022, 2, 1–34. [Google Scholar] [CrossRef]
- Fu, X.; Yang, H.; Lu, G.; Tu, Y.; Wu, J. Improved Performance of Surface Functionalized TiO2/Activated Carbon for Adsorption–Photocatalytic Reduction of Cr(VI) in Aqueous Solution. Mater. Sci. Semicond. Process. 2015, 39, 362–370. [Google Scholar] [CrossRef]
- Khan, H.; Shah, M.U.H. Modification Strategies of TiO2 Based Photocatalysts for Enhanced Visible Light Activity and Energy Storage Ability: A Review. J. Environ. Chem. Eng. 2023, 11, 111532. [Google Scholar] [CrossRef]
- Suhan, M.d.B.K.; Al-Mamun, M.d.R.; Farzana, N.; Aishee, S.M.; Islam, M.d.S.; Marwani, H.M.; Hasan, M.d.M.; Asiri, A.M.; Rahman, M.M.; Islam, A.; et al. Sustainable Pollutant Removal and Wastewater Remediation Using TiO2-Based Nanocomposites: A Critical Review. Nano-Struct. Nano-Objects 2023, 36, 101050. [Google Scholar] [CrossRef]
- Saha, D.; Grappe, H.A. 5—Adsorption Properties of Activated Carbon Fibers. In Activated Carbon Fiber and Textiles; Chen, J.Y., Ed.; Woodhead Publishing Series in Textiles; Woodhead Publishing: Oxford, UK, 2017; pp. 143–165. ISBN 978-0-08-100660-3. [Google Scholar]
- Gilot, B.; GUIRAUD, R. Cinétique et Catalyse Hétérogènes; TECHNOSUP: Génie chimique; Ellipses Edition: Paris, France, 2004; ISBN 2-7298-1898-7. [Google Scholar]
- Gökırmak Söğüt, E.; Gülcan, M. Chapter 1—Adsorption: Basics, Properties, and Classification. In Adsorption through Advanced Nanoscale Materials; Verma, C., Aslam, J., Khan, M.E., Eds.; Micro and Nano Technologies; Elsevier: Amsterdam, The Netherlands, 2023; pp. 3–21. ISBN 978-0-443-18456-7. [Google Scholar]
- Mohamed, E.F.; Andriantsiferana, C.; Wilhelm, A.M.; Delmas, H. Competitive Adsorption of Phenolic Compounds from Aqueous Solution Using Sludge-based Activated Carbon. Environ. Technol. 2011, 32, 1325–1336. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef]
- Liu, D.; Qiu, F.; Liu, N.; Cai, Y.; Guo, Y.; Zhao, B.; Qiu, Y. Pore Structure Characterization and Its Significance for Gas Adsorption in Coals: A Comprehensive Review. Unconv. Resour. 2022, 2, 139–157. [Google Scholar] [CrossRef]
- Lazarević-Pašti, T.; Jocić, A.; Milanković, V.; Tasić, T.; Batalović, K.; Breitenbach, S.; Unterweger, C.; Fürst, C.; Pašti, I.A. Investigating the Adsorption Kinetics of Dimethoate, Malathion and Chlorpyrifos on Cellulose-Derived Activated Carbons: Understanding the Influence of Physicochemical Properties. C 2023, 9, 103. [Google Scholar] [CrossRef]
- Solomakou, N.; Goula, A.M. Treatment of Olive Mill Wastewater by Adsorption of Phenolic Compounds. Rev. Environ. Sci. Biotechnol. 2021, 20, 839–863. [Google Scholar] [CrossRef]
- Akhtar, M.S.; Ali, S.; Zaman, W. Innovative Adsorbents for Pollutant Removal: Exploring the Latest Research and Applications. Molecules 2024, 29, 4317. [Google Scholar] [CrossRef]
- Solomakou, N.; Drosaki, A.; Zamvrakidis, G.; Goula, A.M. Adsorption of Phenolic Compounds from Olive Mill Wastewaters on Spent Coffee Grounds: Isotherms, Kinetics, and Pure Phenol Adsorption. Biomass Convers. Biorefinery 2023, 13, 16557–16567. [Google Scholar] [CrossRef]
- Sushma; Kumari, M.; Saroha, A.K. Performance of Various Catalysts on Treatment of Refractory Pollutants in Industrial Wastewater by Catalytic Wet Air Oxidation: A Review. J. Environ. Manag. 2018, 228, 169–188. [Google Scholar] [CrossRef] [PubMed]
- Gkika, D.A.; Mitropoulos, A.C.; Kyzas, G.Z. Why Reuse Spent Adsorbents? The Latest Challenges and Limitations. Sci. Total Environ. 2022, 822, 153612. [Google Scholar] [CrossRef] [PubMed]
- Nava-Andrade, K.; Carbajal-Arízaga, G.G.; Obregón, S.; Rodríguez-González, V. Layered Double Hydroxides and Related Hybrid Materials for Removal of Pharmaceutical Pollutants from Water. J. Environ. Manag. 2021, 288, 112399. [Google Scholar] [CrossRef] [PubMed]
- Aydın, H.; Bulut, Y.; Yerlikaya, Ç. Removal of Copper (II) from Aqueous Solution by Adsorption onto Low-Cost Adsorbents. J. Environ. Manag. 2008, 87, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Baral, S.S.; Das, S.N.; Rath, P. Hexavalent Chromium Removal from Aqueous Solution by Adsorption on Treated Sawdust. Biochem. Eng. J. 2006, 31, 216–222. [Google Scholar] [CrossRef]
- Yue, Y.; Wang, Y.; Qu, C.; Xu, X. Modification of Polyacrylonitrile-Based Activated Carbon Fibers and Their p-Nitrophenol Adsorption and Degradation Properties. J. Environ. Chem. Eng. 2021, 9, 105390. [Google Scholar] [CrossRef]
- Aktar, J. 1—Batch Adsorption Process in Water Treatment. In Intelligent Environmental Data Monitoring for Pollution Management; Bhattacharyya, S., Mondal, N.K., Platos, J., Snášel, V., Krömer, P., Eds.; Intelligent Data-Centric Systems; Academic Press: Cambridge, MA, USA, 2021; pp. 1–24. ISBN 978-0-12-819671-7. [Google Scholar]
- Pastrana-Martínez, L.M.; López-Ramón, M.V.; Moreno-Castilla, C. Adsorption and Thermal Desorption of the Herbicide Fluroxypyr on Activated Carbon Fibers and Cloth at Different PH Values. J. Colloid Interface Sci. 2009, 331, 2–7. [Google Scholar] [CrossRef]
- Marczewski, A.W.; Seczkowska, M.; Deryło-Marczewska, A.; Blachnio, M. Adsorption Equilibrium and Kinetics of Selected Phenoxyacid Pesticides on Activated Carbon: Effect of Temperature. Adsorption 2016, 22, 777–790. [Google Scholar] [CrossRef]
- Jiaqiang, E.; Zhou, H.; Kou, C.; Feng, C.; Zou, Z. Effect Analysis on the Hydrocarbon Adsorption Performance Enhancement of the Different Zeolite Molecular Sieves in the Gasoline Engine under the Cold Start Process. Energy 2024, 305, 132212. [Google Scholar] [CrossRef]
- Pradeep Sekhar, C.; Kalidhasan, S.; Rajesh, V.; Rajesh, N. Bio-Polymer Adsorbent for the Removal of Malachite Green from Aqueous Solution. Chemosphere 2009, 77, 842–847. [Google Scholar] [CrossRef]
- El-Zahhar, A.A.; Awwad, N.S.; El-Katori, E.E. Removal of Bromophenol Blue Dye from Industrial Waste Water by Synthesizing Polymer-Clay Composite. J. Mol. Liq. 2014, 199, 454–461. [Google Scholar] [CrossRef]
- Lee, Y.-C.; Kim, E.J.; Yang, J.-W.; Shin, H.-J. Removal of Malachite Green by Adsorption and Precipitation Using Aminopropyl Functionalized Magnesium Phyllosilicate. J. Hazard. Mater. 2011, 192, 62–70. [Google Scholar] [CrossRef] [PubMed]
- Anako Opotu, L.; Mohammed Inuwa, I.; Wong, S.; Ngadi, N.; Amirah Razmi, F. Errors and Inconsistencies in Scientific Reporting of Aqueous Phase Adsorption of Contaminants: A Bibliometric Study. Clean. Mater. 2022, 5, 100100. [Google Scholar] [CrossRef]
- Baharlouei, A.; Jalilnejad, E.; Sirousazar, M. Fixed-Bed Column Performance of Methylene Blue Biosorption by Luffa Cylindrica: Statistical and Mathematical Modeling. Chem. Eng. Commun. 2018, 205, 1537–1554. [Google Scholar] [CrossRef]
- González-López, M.E.; Laureano-Anzaldo, C.M.; Pérez-Fonseca, A.A.; Arellano, M.; Robledo-Ortíz, J.R. A Critical Overview of Adsorption Models Linearization: Methodological and Statistical Inconsistencies. Sep. Purif. Rev. 2022, 51, 358–372. [Google Scholar] [CrossRef]
- Schälte, Y.; Stapor, P.; Hasenauer, J. Evaluation of Derivative-Free Optimizers for Parameter Estimation in Systems Biology. IFAC-Pap. 2018, 51, 98–101. [Google Scholar] [CrossRef]
- Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by Simulated Annealing. Science 1983, 220, 671–680. [Google Scholar] [CrossRef]
- Hu, Q.; Lan, R.; He, L.; Liu, H.; Pei, X. A Critical Review of Adsorption Isotherm Models for Aqueous Contaminants: Curve Characteristics, Site Energy Distribution and Common Controversies. J. Environ. Manag. 2023, 329, 117104. [Google Scholar] [CrossRef]
- Sips, R. On the Structure of a Catalyst Surface. J. Chem. Phys. 1948, 16, 490–495. [Google Scholar] [CrossRef]
- Redlich, O.; Peterson, D.L. A Useful Adsorption Isotherm. J. Phys. Chem. 1959, 63, 1024. [Google Scholar] [CrossRef]
- Alberti, G.; Amendola, V.; Pesavento, M.; Biesuz, R. Beyond the Synthesis of Novel Solid Phases: Review on Modelling of Sorption Phenomena. Coord. Chem. Rev. 2012, 256, 28–45. [Google Scholar] [CrossRef]
- Radke, C.J.; Prausnitz, J.M. Adsorption of Organic Solutes from Dilute Aqueous Solution of Activated Carbon. Ind. Eng. Chem. Fundam. 1972, 11, 445–451. [Google Scholar] [CrossRef]
- Yang, K.; Zhu, L.; Xing, B. Adsorption of Polycyclic Aromatic Hydrocarbons by Carbon Nanomaterials. Environ. Sci. Technol. 2006, 40, 1855–1861. [Google Scholar] [CrossRef]
- Brunauer, S.; Love, K.S.; Keenan, R.G. Adsorption of Nitrogen and the Mechanism of Ammonia Decomposition over Iron Catalysts*. J. Am. Chem. Soc. 1942, 64, 751–758. [Google Scholar] [CrossRef]
- Hill, T.L. Statistical Mechanics of Multimolecular Adsorption II. Localized and Mobile Adsorption and Absorption. J. Chem. Phys. 1946, 14, 441–453. [Google Scholar] [CrossRef]
- Cerofolini, G.F. Localized Adsorption on Heterogeneous Surfaces. Thin Solid Films 1974, 23, 129–152. [Google Scholar] [CrossRef]
- Do, D.D. Adsorption Analysis: Equilibria and Kinetics; Series on Chemical Engineering; Imperial College Press: London, UK, 1998; ISBN 978-1-86094-130-6. [Google Scholar]
- Chen, X.; Hossain, M.F.; Duan, C.; Lu, J.; Tsang, Y.F.; Islam, M.S.; Zhou, Y. Isotherm Models for Adsorption of Heavy Metals from Water—A Review. Chemosphere 2022, 307, 135545. [Google Scholar] [CrossRef]
- Mozaffari Majd, M.; Kordzadeh-Kermani, V.; Ghalandari, V.; Askari, A.; Sillanpää, M. Adsorption Isotherm Models: A Comprehensive and Systematic Review (2010−2020). Sci. Total Environ. 2022, 812, 151334. [Google Scholar] [CrossRef]
- Wang, J.; Guo, X. Adsorption Isotherm Models: Classification, Physical Meaning, Application and Solving Method. Chemosphere 2020, 258, 127279. [Google Scholar] [CrossRef]
- Alzaydien, A.S.; Manasreh, W. Equilibrium, Kinetic and Thermodynamic Studies on the Adsorption of Phenol onto Activated Phosphate Rock. Int. J. Phys. Sci. 2009, 4, 172–181. [Google Scholar]
- Yang, Z. Kinetics and Mechanism of the Adsorption of Methylene Blue onto ACFs. J. China Univ. Min. Technol. 2008, 18, 437–440. [Google Scholar] [CrossRef]
- Yao, S.; Song, S.; Shi, Z. Adsorption Properties and Photocatalytic Activity of TiO2/Activated Carbon Fiber Composite. Russ. J. Phys. Chem. A 2014, 88, 1066–1070. [Google Scholar] [CrossRef]
- Revellame, E.D.; Fortela, D.L.; Sharp, W.; Hernandez, R.; Zappi, M.E. Adsorption Kinetic Modeling Using Pseudo-First Order and Pseudo-Second Order Rate Laws: A Review. Clean. Eng. Technol. 2020, 1, 100032. [Google Scholar] [CrossRef]
- Ho, Y.S.; McKay, G. Pseudo-Second Order Model for Sorption Processes. Process Biochem. 1999, 34, 451–465. [Google Scholar] [CrossRef]
- Inyinbor, A.A.; Adekola, F.A.; Olatunji, G.A. Kinetics, Isotherms and Thermodynamic Modeling of Liquid Phase Adsorption of Rhodamine B Dye onto Raphia hookerie Fruit Epicarp. Water Resour. Ind. 2016, 15, 14–27. [Google Scholar] [CrossRef]
- Vali, I.P.; Anusha, B.S.; Pruthvija, M.; Savitha, S.; Ravindra, S.; Nagaveni, M.; Poojitha, P.S.; Swathi, N. Bamboo and Coconut Shell Based Activated Carbon: A Raman Spectroscopic Study. Mater. Chem. Phys. 2024, 318, 129240. [Google Scholar] [CrossRef]
- Dalto, F.; Kuźniarska-Biernacka, I.; Pereira, C.; Mesquita, E.; Soares, O.S.G.P.; Pereira, M.F.R.; Rosa, M.J.; Mestre, A.S.; Carvalho, A.P.; Freire, C. Solar Light-Induced Methylene Blue Removal over TiO2/AC Composites and Photocatalytic Regeneration. Nanomaterials 2021, 11, 3016. [Google Scholar] [CrossRef]
- Solomakou, N.; Tsafrakidou, P.; Goula, A.M. Holistic Exploitation of Spent Coffee Ground: Use as Biosorbent for Olive Mill Wastewaters After Extraction of Its Phenolic Compounds. Water. Air. Soil Pollut. 2022, 233, 173. [Google Scholar] [CrossRef]
- Zubov, I.N.; Savrasova, Y.A.; Bogdanovich, N.I. Preparation of Highly Effective Carbon Adsorbents Based on High-Moor Peat from the European North of Russia. Solid Fuel Chem. 2024, 58, 185–188. [Google Scholar] [CrossRef]
- Ren, Y.; He, M.; Qu, G.; Ren, N.; Ning, P.; Yang, Y.; Chen, X.; Wang, Z.; Hu, Y. Study on the Mechanism of Removing Fluoride from Wastewater by Oxalic Acid Modified Aluminum Ash-Carbon Slag-Carbon Black Doped Composite. Arab. J. Chem. 2023, 16, 104668. [Google Scholar] [CrossRef]
- Yanan, C.; Srour, Z.; Ali, J.; Guo, S.; Taamalli, S.; Fèvre-Nollet, V.; da Boit Martinello, K.; Georgin, J.; Franco, D.S.P.; Silva, L.F.O.; et al. Adsorption of Paracetamol and Ketoprofenon Activated Charcoal Prepared from the Residue of the Fruit of Butiacapitate: Experiments and Theoretical Interpretations. Chem. Eng. J. 2023, 454, 139943. [Google Scholar] [CrossRef]
- Chalil Oglou, R.; Gokce, Y.; Yagmur, E.; Aktas, Z. Production of Demineralised High Quality Hierarchical Activated Carbon from Lignite and Determination of Adsorption Performance Using Methylene Blue and P-Nitrophenol: The Role of Surface Functionality, Accessible Pore Size and Surface Area. J. Environ. Manag. 2023, 345, 118812. [Google Scholar] [CrossRef] [PubMed]
- Spencer, W.; Ibana, D.; Singh, P.; Nikoloski, A.N. Effect of Surface Area, Particle Size and Acid Washing on the Quality of Activated Carbon Derived from Lower Rank Coal by KOH Activation. Sustainability 2024, 16, 5876. [Google Scholar] [CrossRef]
- Wang, K.; Xu, S. Preparation of High Specific Surface Area Activated Carbon from Petroleum Coke by KOH Activation in a Rotary Kiln. Processes 2024, 12, 241. [Google Scholar] [CrossRef]
- Pallarés, J.; González-Cencerrado, A.; Arauzo, I. Production and Characterization of Activated Carbon from Barley Straw by Physical Activation with Carbon Dioxide and Steam. Biomass Bioenergy 2018, 115, 64–73. [Google Scholar] [CrossRef]
- Greco, G.; Canevesi, R.L.S.; Di Stasi, C.; Celzard, A.; Fierro, V.; Manyà, J.J. Biomass-Derived Carbons Physically Activated in One or Two Steps for CH4/CO2 Separation. Renew. Energy 2022, 191, 122–133. [Google Scholar] [CrossRef]
- Shahcheragh, S.K.; Bagheri Mohagheghi, M.M.; Shirpay, A. Effect of Physical and Chemical Activation Methods on the Structure, Optical Absorbance, Band Gap and Urbach Energy of Porous Activated Carbon. SN Appl. Sci. 2023, 5, 313. [Google Scholar] [CrossRef]
- Tsai, C.-H.; Tsai, W.-T. Optimization of Physical Activation Process by CO2 for Activated Carbon Preparation from Honduras Mahogany Pod Husk. Materials 2023, 16, 6558. [Google Scholar] [CrossRef]
- Plaza, M.G.; González, A.S.; Pis, J.J.; Rubiera, F.; Pevida, C. Production of Microporous Biochars by Single-Step Oxidation: Effect of Activation Conditions on CO2 Capture. Appl. Energy 2014, 114, 551–562. [Google Scholar] [CrossRef]
- Yao, Z.; Zhang, W.; Yu, X. Fabricating Porous Carbon Materials by One-Step Hydrothermal Carbonization of Glucose. Processes 2023, 11, 1923. [Google Scholar] [CrossRef]
- Saha, D.; Orkoulas, G.; Bates, D. One-Step Synthesis of Sulfur-Doped Nanoporous Carbons from Lignin with Ultra-High Surface Area, Sulfur Content and CO2 Adsorption Capacity. Materials 2023, 16, 455. [Google Scholar] [CrossRef] [PubMed]
- Oginni, O.; Singh, K.; Oporto, G.; Dawson-Andoh, B.; McDonald, L.; Sabolsky, E. Influence of One-Step and Two-Step KOH Activation on Activated Carbon Characteristics. Bioresour. Technol. Rep. 2019, 7, 100266. [Google Scholar] [CrossRef]
- Heidarinejad, Z.; Dehghani, M.H.; Heidari, M.; Javedan, G.; Ali, I.; Sillanpää, M. Methods for Preparation and Activation of Activated Carbon: A Review. Environ. Chem. Lett. 2020, 18, 393–415. [Google Scholar] [CrossRef]
- Bergna, D.; Varila, T.; Romar, H.; Lassi, U. Comparison of the Properties of Activated Carbons Produced in One-Stage and Two-Stage Processes. C 2018, 4, 41. [Google Scholar] [CrossRef]
- El-Hendawy, A.-N.A.; Samra, S.E.; Girgis, B.S. Adsorption Characteristics of Activated Carbons Obtained from Corncobs. Colloids Surf. Physicochem. Eng. Asp. 2001, 180, 209–221. [Google Scholar] [CrossRef]
- Lee, T.; Ooi, C.-H.; Othman, R.; Yeoh, F.-Y. Activated Carbon Fiber—The Hybrid of Carbon Fiber and Activated Carbon. Rev. Adv. Mater. Sci. 2014, 36, 118–136. [Google Scholar]
- Chen, J.Y. 1—Introduction. In Activated Carbon Fiber and Textiles; Woodhead Publishing Series in Textiles; Woodhead Publishing: Oxford, UK, 2017; pp. 3–20. ISBN 978-0-08-100660-3. [Google Scholar]
- Liu, J.; Yang, R.; Li, S. Preparation and Application of Efficient TiO2/ACFs Photocatalyst. J. Environ. Sci. 2006, 18, 979–982. [Google Scholar] [CrossRef] [PubMed]
- Dąbrowski, A.; Podkościelny, P.; Hubicki, Z.; Barczak, M. Adsorption of Phenolic Compounds by Activated Carbon—A Critical Review. Chemosphere 2005, 58, 1049–1070. [Google Scholar] [CrossRef]
- Grant, T.M.; King, C.J. Mechanism of Irreversible Adsorption of Phenolic Compounds by Activated Carbons. Ind. Eng. Chem. Res. 1990, 29, 264–271. [Google Scholar] [CrossRef]
- Hassani, A.; Vafaei, F.; Karaca, S.; Khataee, A.R. Adsorption of a Cationic Dye from Aqueous Solution Using Turkish Lignite: Kinetic, Isotherm, Thermodynamic Studies and Neural Network Modeling. J. Ind. Eng. Chem. 2014, 20, 2615–2624. [Google Scholar] [CrossRef]
- US EPA. National Recommended Water Quality Criteria—Organoleptic Effects. Available online: https://www.epa.gov/wqc/national-recommended-water-quality-criteria-organoleptic-effects (accessed on 19 September 2024).
- US EPA. National Recommended Water Quality Criteria—Human Health Criteria Table. Available online: https://www.epa.gov/wqc/national-recommended-water-quality-criteria-human-health-criteria-table (accessed on 19 September 2024).
- Shi, J.; Wan, N.; Yang, S.; Yang, Y.; Han, H. Which Biofilm Reactor Is Suitable for Degradation of 2,4-Dimethylphenol, Focusing on Bacteria, Algae, or a Combination of Bacteria-Algae? J. Hazard. Mater. 2024, 478, 135492. [Google Scholar] [CrossRef] [PubMed]
- Nazal, M.K.; Rao, D.; Abuzaid, N. The Nature and Kinetics of 2,4-Dimethylphenol Adsorption in Aqueous Solution on Biochar Derived from Sargassum Boveanum Macroalgae. J. Water Supply Res. Technol.-Aqua 2020, 69, 438–452. [Google Scholar] [CrossRef]
- Al-Obaidi, M.A.; Kara-Zaïtri, C.; Mujtaba, I.M. Optimisation of Membrane Design Parameters of a Spiral-Wound Reverse Osmosis Module for High Rejection of Dimethylphenol from Wastewater at Low Energy Consumption. In Computer Aided Chemical Engineering; Espuña, A., Graells, M., Puigjaner, L., Eds.; 27 European Symposium on Computer Aided Process Engineering; Elsevier: Amsterdam, The Netherlands, 2017; Volume 40, pp. 2713–2718. [Google Scholar]
- Khan, M.J.; Wibowo, A.; Karim, Z.; Posoknistakul, P.; Matsagar, B.M.; Wu, K.C.-W.; Sakdaronnarong, C. Wastewater Treatment Using Membrane Bioreactor Technologies: Removal of Phenolic Contaminants from Oil and Coal Refineries and Pharmaceutical Industries. Polymers 2024, 16, 443. [Google Scholar] [CrossRef]
- Nazal, M.K.; Gijjapu, D.R.; Abuzaid, N. Effective Removal of Methylated Phenol and Chlorinated Phenol from Aqueous Solutions Using a New Activated Carbon Derived from Halodule uninervis Waste. Colloid Interface Sci. Commun. 2021, 41, 100370. [Google Scholar] [CrossRef]
- Konan, A.T.S.; Richard, R.; Andriantsiferana, C.; Yao, K.B.; Manero, M.-H. Low-Cost Activated Carbon for Adsorption and Heterogeneous Ozonation of Phenolic Wastewater. Desalination Water Treat. 2019, 163, 336–346. [Google Scholar] [CrossRef]
- Jain, A.K.; Suhas; Bhatnagar, A. Methylphenols Removal from Water by Low-Cost Adsorbents. J. Colloid Interface Sci. 2002, 251, 39–45. [Google Scholar] [CrossRef]
- Kusvuran, E.; Samil, A.; Atanur, O.M.; Erbatur, O. Photocatalytic Degradation Kinetics of Di- and Tri-Substituted Phenolic Compounds in Aqueous Solution by TiO2/UV. Appl. Catal. B Environ. 2005, 58, 211–216. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, X.; Wang, N.; Wang, Q. Optimization of TiO2/ACF Photocatalytic Continuous Treatment of MB Wastewater Based on Response Surface Methodology. Water. Air. Soil Pollut. 2024, 235, 226. [Google Scholar] [CrossRef]
- Yang, Y.; Guan, C. Adsorption Properties of Activated Carbon Fiber for Highly Effective Removal of Methyl Orange Dye. IOP Conf. Ser. Earth Environ. Sci. 2018, 208, 012005. [Google Scholar] [CrossRef]
- Yao, S.; Li, J.; Shi, Z. Immobilization of TiO2 Nanoparticles on Activated Carbon Fiber and Its Photodegradation Performance for Organic Pollutants. Particuology 2010, 8, 272–278. [Google Scholar] [CrossRef]
- Deng, Y.; Zhao, R. Advanced Oxidation Processes (AOPs) in Wastewater Treatment. Curr. Pollut. Rep. 2015, 1, 167–176. [Google Scholar] [CrossRef]
- Mantzavinos, D.; Kassinos, D.; Parsons, S.A. Applications of Advanced Oxidation Processes in Wastewater Treatment. Water Res. 2009, 43, 3901. [Google Scholar] [CrossRef] [PubMed]
- Moreira, F.C.; Boaventura, R.A.R.; Brillas, E.; Vilar, V.J.P. Electrochemical Advanced Oxidation Processes: A Review on Their Application to Synthetic and Real Wastewaters. Appl. Catal. B Environ. 2017, 202, 217–261. [Google Scholar] [CrossRef]
- Masomboon, N.; Ratanatamskul, C.; Lu, M.-C. Chemical Oxidation of 2,6-Dimethylaniline in the Fenton Process. Environ. Sci. Technol. 2009, 43, 8629–8634. [Google Scholar] [CrossRef]
- Simonsen, M.E. Chapter 4—Heterogeneous Photocatalysis A2—Søgaard, Erik G. In Chemistry of Advanced Environmental Purification Processes of Water; Elsevier: Amsterdam, The Netherlands, 2014; pp. 135–170. ISBN 978-0-444-53178-0. [Google Scholar]
- Al-Mamun, M.R.; Kader, S.; Islam, M.S.; Khan, M.Z.H. Photocatalytic Activity Improvement and Application of UV-TiO2 Photocatalysis in Textile Wastewater Treatment: A Review. J. Environ. Chem. Eng. 2019, 7, 103248. [Google Scholar] [CrossRef]
- Lee, S.-Y.; Park, S.-J. TiO2 Photocatalyst for Water Treatment Applications. J. Ind. Eng. Chem. 2013, 19, 1761–1769. [Google Scholar] [CrossRef]
- Newton, G.L.; Milligan, J.R. Fluorescence Detection of Hydroxyl Radicals. Radiat. Phys. Chem. 2006, 75, 473–478. [Google Scholar] [CrossRef]
- Fulford, J.; Nikjoo, H.; Goodhead, D.T.; O’Neill, P. Yields of SSB and DSB Induced in DNA by AlK Ultrasoft X-Rays and α-Particles: Comparison of Experimental and Simulated Yields. Int. J. Radiat. Biol. 2001, 77, 1053–1066. [Google Scholar] [CrossRef]
- Triquet, T.; Tendero, C.; Latapie, L.; Manero, M.-H.; Richard, R.; Andriantsiferana, C. TiO2 MOCVD Coating for Photocatalytic Degradation of Ciprofloxacin Using 365 Nm UV LEDs—Kinetics and Mechanisms. J. Environ. Chem. Eng. 2020, 8, 104544. [Google Scholar] [CrossRef]
- Herrmann, J.-M. Heterogeneous Photocatalysis: Fundamentals and Applications to the Removal of Various Types of Aqueous Pollutants. Catal. Today 1999, 53, 115–129. [Google Scholar] [CrossRef]
- Herrmann, J.-M. Photocatalysis Fundamentals Revisited to Avoid Several Misconceptions. Appl. Catal. B Environ. 2010, 99, 461–468. [Google Scholar] [CrossRef]
- Sheikhmohammadi, A.; Asgari, E.; Nourmoradi, H.; Fazli, M.M.; Yeganeh, M. Ultrasound-Assisted Decomposition of Metronidazole by Synthesized TiO2/Fe3O4 Nanocatalyst: Influencing Factors and Mechanisms. J. Environ. Chem. Eng. 2021, 9, 105844. [Google Scholar] [CrossRef]
- Andriantsiferana, C.; Mohamed, E.F.; Delmas, H. Photocatalytic Degradation of an Azo-Dye on TiO2/Activated Carbon Composite Material. Environ. Technol. 2014, 35, 355–363. [Google Scholar] [CrossRef]
- Sathishkumar, P.; Mangalaraja, R.V.; Anandan, S. Review on the Recent Improvements in Sonochemical and Combined Sonochemical Oxidation Processes—A Powerful Tool for Destruction of Environmental Contaminants. Renew. Sustain. Energy Rev. 2016, 55, 426–454. [Google Scholar] [CrossRef]
- Yuan, R.; Guan, R.; Shen, W.; Zheng, J. Photocatalytic Degradation of Methylene Blue by a Combination of TiO2 and Activated Carbon Fibers. J. Colloid Interface Sci. 2005, 282, 87–91. [Google Scholar] [CrossRef]
- Comninellis, C.; Kapalka, A.; Malato, S.; Parsons, S.A.; Poulios, I.; Mantzavinos, D. Advanced Oxidation Processes for Water Treatment: Advances and Trends for R&D. ResearchGate 2008, 83, 769–776. [Google Scholar] [CrossRef]
- Bamba, D.; Zoro, E.G.; Coulibaly, M.; Konan, L.K.; Dongui, B.; Andji-Yapi, J.Y.; Robert, D. Etudes Comparatives De L’activite Photocatalytique De Differents Materiaux: Effet De Parametres Physicochimiques. Int. J. Innov. Appl. Stud. 2018, 25, 283–293. [Google Scholar]
- Bhachu, D.S.; Egdell, R.G.; Sankar, G.; Carmalt, C.J.; Parkin, I.P. Electronic Properties of Antimony-Doped Anatase TiO2 Thin Films Prepared by Aerosol Assisted Chemical Vapour Deposition. J. Mater. Chem. C 2017, 5, 9694–9701. [Google Scholar] [CrossRef]
- Rajbongshi, B.M.; Samdarshi, S.K. Cobalt-Doped Zincblende–Wurtzite Mixed-Phase ZnO Photocatalyst Nanoparticles with High Activity in Visible Spectrum. Appl. Catal. B Environ. 2014, 144, 435–441. [Google Scholar] [CrossRef]
- Katsumata, H.; Sada, M.; Nakaoka, Y.; Kaneco, S.; Suzuki, T.; Ohta, K. Photocatalytic Degradation of Diuron in Aqueous Solution by Platinized TiO2. J. Hazard. Mater. 2009, 171, 1081–1087. [Google Scholar] [CrossRef]
- Singh, A.; Singh, J.; Vasishth, A.; Kumar, A.; Pattnaik, S.S. Emerging Materials in Advanced Oxidation Processes for Micropollutant Treatment Process. In Advanced Oxidation Processes for Micropollutant Remediation; CRC Press: Boca Raton, FL, USA, 2023; pp. 133–155. ISBN 978-1-00-090654-7. [Google Scholar]
- Huang, B.-S.; Chang, F.-Y.; Wey, M.-Y. Photocatalytic Properties of Redox-Treated Pt/TiO2 Photocatalysts for H2 Production from an Aqueous Methanol Solution. Int. J. Hydrogen Energy 2010, 35, 7699–7705. [Google Scholar] [CrossRef]
- Khan, M.M.; Ansari, S.A.; Lee, J.; Cho, M.H. Enhanced Optical, Visible Light Catalytic and Electrochemical Properties of Au@TiO2 Nanocomposites. J. Ind. Eng. Chem. 2013, 19, 1845–1850. [Google Scholar] [CrossRef]
- Schostag, M.D.; Gobbi, A.; Fini, M.N.; Ellegaard-Jensen, L.; Aamand, J.; Hansen, L.H.; Muff, J.; Albers, C.N. Combining Reverse Osmosis and Microbial Degradation for Remediation of Drinking Water Contaminated with Recalcitrant Pesticide Residue. Water Res. 2022, 216, 118352. [Google Scholar] [CrossRef] [PubMed]
- Quiñones, D.H.; Rey, A.; Álvarez, P.M.; Beltrán, F.J.; Plucinski, P.K. Enhanced Activity and Reusability of TiO2 Loaded Magnetic Activated Carbon for Solar Photocatalytic Ozonation. Appl. Catal. B Environ. 2014, 144, 96–106. [Google Scholar] [CrossRef]
- Galenda, A.; Natile, M.M.; El Habra, N. Large-Scale MOCVD Deposition of Nanostructured TiO2 on Stainless Steel Woven: A Systematic Investigation of Photoactivity as a Function of Film Thickness. Nanomaterials 2022, 12, 992. [Google Scholar] [CrossRef]
- Maury, F.; Duminica, F.-D. TiOxNy Coatings Grown by Atmospheric Pressure Metal Organic Chemical Vapor Deposition. Surf. Coat. Technol. 2010, 205, 1287–1293. [Google Scholar] [CrossRef]
- Jung, S.-C.; Bang, H.-J.; Lee, H.; Ha, H.-H.; Yu, Y.H.; Kim, S.-J.; Park, Y.-K. Assessing the Photocatalytic Activity of Europium Doped TiO2 Using Liquid Phase Plasma Process on Acetylsalicylic Acid. Catal. Today 2022, 388–389, 365–371. [Google Scholar] [CrossRef]
- Arconada, N.; Durán, A.; Suárez, S.; Portela, R.; Coronado, J.M.; Sánchez, B.; Castro, Y. Synthesis and Photocatalytic Properties of Dense and Porous TiO2-Anatase Thin Films Prepared by Sol–Gel. Appl. Catal. B Environ. 2009, 86, 1–7. [Google Scholar] [CrossRef]
- He, J.; Burt, S.P.; Ball, M.R.; Hermans, I.; Dumesic, J.A.; Huber, G.W. Catalytic C-O Bond Hydrogenolysis of Tetrahydrofuran-Dimethanol over Metal Supported WOx/TiO2 Catalysts. Appl. Catal. B Environ. 2019, 258, 117945. [Google Scholar] [CrossRef]
- Kaswan, V.; Kaur, H. A Comparative Study of Advanced Oxidation Processes for Wastewater Treatment. Water Pract. Technol. 2023, 18, 1233–1254. [Google Scholar] [CrossRef]
- Eddy, D.R.; Permana, M.D.; Sakti, L.K.; Sheha, G.A.N.; Solihudin; Hidayat, S.; Takei, T.; Kumada, N.; Rahayu, I. Heterophase Polymorph of TiO2 (Anatase, Rutile, Brookite, TiO2 (B)) for Efficient Photocatalyst: Fabrication and Activity. Nanomaterials 2023, 13, 704. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.-C.; Kim, S.-J.; Imaishi, N.; Cho, Y.-I. Effect of TiO2 Thin Film Thickness and Specific Surface Area by Low-Pressure Metal–Organic Chemical Vapor Deposition on Photocatalytic Activities. Appl. Catal. B Environ. 2005, 55, 253–257. [Google Scholar] [CrossRef]
- Yang, H.G.; Sun, C.H.; Qiao, S.Z.; Zou, J.; Liu, G.; Smith, S.C.; Cheng, H.M.; Lu, G.Q. Anatase TiO2 Single Crystals with a Large Percentage of Reactive Facets. Nature 2008, 453, 638–641. [Google Scholar] [CrossRef] [PubMed]
- Duminica, F.-D.; Maury, F.; Hausbrand, R. Growth of TiO2 Thin Films by AP-MOCVD on Stainless Steel Substrates for Photocatalytic Applications. Surf. Coat. Technol. 2007, 201, 9304–9308. [Google Scholar] [CrossRef]
- Opra, D.P.; Gnedenkov, S.V.; Sinebryukhov, S.L. Recent Efforts in Design of TiO2(B) Anodes for High-Rate Lithium-Ion Batteries: A Review. J. Power Sources 2019, 442, 227225. [Google Scholar] [CrossRef]
- Xie, S.; Zhang, Q.; Liu, G.; Wang, Y. Photocatalytic and Photoelectrocatalytic Reduction of CO2 Using Heterogeneous Catalysts with Controlled Nanostructures. Chem. Commun. 2016, 52, 35–59. [Google Scholar] [CrossRef]
- Nahar, S.; Zain, M.F.M.; Kadhum, A.A.H.; Hasan, H.A.; Hasan, M.R. Advances in Photocatalytic CO2 Reduction with Water: A Review. Materials 2017, 10, 629. [Google Scholar] [CrossRef]
- Singh, J.; Sahu, K.; Singh, R.; Som, T.; Kotnala, R.K.; Mohapatra, S. Thermal Annealing Induced Strong Photoluminescence Enhancement in Ag-TiO2 Plasmonic Nanocomposite Thin Films. J. Alloys Compd. 2019, 786, 750–757. [Google Scholar] [CrossRef]
- Shi, Y.; Ma, J.; Chen, Y.; Qian, Y.; Xu, B.; Chu, W.; An, D. Recent Progress of Silver-Containing Photocatalysts for Water Disinfection under Visible Light Irradiation: A Review. Sci. Total Environ. 2022, 804, 150024. [Google Scholar] [CrossRef]
- Chakhtouna, H.; Benzeid, H.; Zari, N.; Qaiss, A.E.K.; Bouhfid, R. Recent Progress on Ag/TiO2 Photocatalysts: Photocatalytic and Bactericidal Behaviors. Environ. Sci. Pollut. Res. 2021, 28, 44638–44666. [Google Scholar] [CrossRef]
- Kanakaraju, D.; anak Kutiang, F.D.; Lim, Y.C.; Goh, P.S. Recent Progress of Ag/TiO2 Photocatalyst for Wastewater Treatment: Doping, Co-Doping, and Green Materials Functionalization. Appl. Mater. Today 2022, 27, 101500. [Google Scholar] [CrossRef]
- Nogueira, V.; Lopes, I.; Rocha-Santos, T.; Gonçalves, F.; Pereira, R. Toxicity of Solid Residues Resulting from Wastewater Treatment with Nanomaterials. Aquat. Toxicol. 2015, 165, 172–178. [Google Scholar] [CrossRef] [PubMed]
- Rueda-Marquez, J.J.; Levchuk, I.; Fernández Ibañez, P.; Sillanpää, M. A Critical Review on Application of Photocatalysis for Toxicity Reduction of Real Wastewaters. J. Clean. Prod. 2020, 258, 120694. [Google Scholar] [CrossRef]
- Lee, S.-W.; Kim, S.-M.; Choi, J. Genotoxicity and Ecotoxicity Assays Using the Freshwater Crustacean Daphnia Magna and the Larva of the Aquatic Midge Chironomus Riparius to Screen the Ecological Risks of Nanoparticle Exposure. Environ. Toxicol. Pharmacol. 2009, 28, 86–91. [Google Scholar] [CrossRef]
- Shabbir, S.; Kulyar, M.F.-A.; Bhutta, Z.A.; Boruah, P.; Asif, M. Toxicological Consequences of Titanium Dioxide Nanoparticles (TiO2NPs) and Their Jeopardy to Human Population. BioNanoScience 2021, 11, 621–632. [Google Scholar] [CrossRef]
- Shakeel, M.; Jabeen, F.; Shabbir, S.; Asghar, M.S.; Khan, M.S.; Chaudhry, A.S. Toxicity of Nano-Titanium Dioxide (TiO2-NP) Through Various Routes of Exposure: A Review. Biol. Trace Elem. Res. 2016, 172, 1–36. [Google Scholar] [CrossRef]
- Liu, S.; Yang, Z. Evaluation of the Effect of Acute and Subacute Exposure to TiO2 Nanoparticles on Oxidative Stress. In Oxidative Stress and Nanotechnology: Methods and Protocols; Armstrong, D., Bharali, D.J., Eds.; Métodos en Biología Molecular; Humana Press: Totowa, NJ, USA, 2013; pp. 135–145. ISBN 978-1-62703-475-3. [Google Scholar]
- Ayorinde, T.; Sayes, C.M. An Updated Review of Industrially Relevant Titanium Dioxide and Its Environmental Health Effects. J. Hazard. Mater. Lett. 2023, 4, 100085. [Google Scholar] [CrossRef]
- Pulido-Reyes, G.; Moreno-Martín, G.; Gómez-Gómez, B.; Navas, J.M.; Madrid, Y.; Fernández-Cruz, M.L. Fish Acute Toxicity of Nine Nanomaterials: Need of Pre-Tests to Ensure Comparability and Reuse of Data. Environ. Res. 2024, 245, 118072. [Google Scholar] [CrossRef] [PubMed]
- Ao, Y.; Xu, J.; Fu, D.; Shen, X.; Yuan, C. Low Temperature Preparation of Anatase TiO2-Activated Carbon Composite Film. Appl. Surf. Sci. 2008, 254, 4001–4006. [Google Scholar] [CrossRef]
- Fu, P.; Luan, Y.; Dai, X. Preparation of Activated Carbon Fibers Supported TiO2 Photocatalyst and Evaluation of Its Photocatalytic Reactivity. J. Mol. Catal. Chem. 2004, 221, 81–88. [Google Scholar] [CrossRef]
- Meng, H.; Hou, W.; Xu, X.; Xu, J.; Zhang, X. TiO2-Loaded Activated Carbon Fiber: Hydrothermal Synthesis, Adsorption Properties and Photo Catalytic Activity under Visible Light Irradiation. Particuology 2014, 14, 38–43. [Google Scholar] [CrossRef]
- Luan, J.; Ma, K.; Zhang, L.; Li, M.; Li, Y.; Pan, B. Research on Different Preparation Methods of New Photocatalysts. Curr. Org. Chem. 2010, 14, 683–698. [Google Scholar] [CrossRef]
- Tseng, T.K.; Lin, Y.S.; Chen, Y.J.; Chu, H. A Review of Photocatalysts Prepared by Sol-Gel Method for VOCs Removal. Int. J. Mol. Sci. 2010, 11, 2336–2361. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Lei, L. Preparation of Photocatalytic Fe2O3–TiO2 Coatings in One Step by Metal Organic Chemical Vapor Deposition. Appl. Surf. Sci. 2008, 254, 2406–2412. [Google Scholar] [CrossRef]
- Plakas, K.V.; Taxintari, A.; Karabelas, A.J. Enhanced Photo-Catalytic Performance of Activated Carbon Fibers for Water Treatment. Water 2019, 11, 1794. [Google Scholar] [CrossRef]
- Liu, F.; Gao, X.; Peng, M. A Simple Preparation Method of Graphene and TiO2 Loaded Activated Carbon Fiber and Its Application for Indoor Formaldehyde Degradation. Separations 2022, 9, 31. [Google Scholar] [CrossRef]
- Liu, R.F.; Li, W.B.; Peng, A.Y. A Facile Preparation of TiO2/ACF with CTi Bond and Abundant Hydroxyls and Its Enhanced Photocatalytic Activity for Formaldehyde Removal. Appl. Surf. Sci. 2018, 427, 608–616. [Google Scholar] [CrossRef]
- Yan, W.; Zou, H.; Gong, W.; Pi, D.; Wang, L.; Nie, F. Preparation and Performance Study of Mn-Doped TiO2-Loaded Kapok-Based Activated Carbon Fibers. J. Text. Inst. 2024, 1–10. [Google Scholar] [CrossRef]
- Yuan, R.; Zheng, J.; Guan, R.; Zhao, Y. Surface Characteristics and Photocatalytic Activity of TiO2 Loaded on Activated Carbon Fibers. Colloids Surf. Physicochem. Eng. Asp. 2005, 254, 131–136. [Google Scholar] [CrossRef]
- Jin, P.; Chang, R.; Liu, D.; Zhao, K.; Zhang, L.; Ouyang, Y. Phenol Degradation in an Electrochemical System with TiO2/Activated Carbon Fiber as Electrode. J. Environ. Chem. Eng. 2014, 2, 1040–1047. [Google Scholar] [CrossRef]
- Al-Obaidi, M.A.; Kara-Zaïtri, C.; Mujtaba, I.M. Optimal Reverse Osmosis Network Configuration for the Rejection of Dimethylphenol from Wastewater. J. Environ. Eng. 2018, 144, 04017080. [Google Scholar] [CrossRef]
- Srinivasan, G.; Sundaramoorthy, S.; Murthy, D.V.R. Validation of an Analytical Model for Spiral Wound Reverse Osmosis Membrane Module Using Experimental Data on the Removal of Dimethylphenol. Desalination 2011, 281, 199–208. [Google Scholar] [CrossRef]
- Mnif, A.; Tabassi, D.; Ben Sik Ali, M.; Hamrouni, B. Phenol Removal from Water by AG Reverse Osmosis Membrane. Environ. Prog. Sustain. Energy 2015, 34, 982–989. [Google Scholar] [CrossRef]
- Parwaz Khan, A.A.; Singh, P.; Raizada, P.; Khan, A.; Asiri, A.M.; Alotaibi, M.M. Photo-Fenton Assisted AgCl and P-Doped g-C3N4 Z-Scheme Photocatalyst Coupled with Fe3O4/H2O2 System for 2, 4-Dimethylphenol Degradation. Chemosphere 2023, 316, 137839. [Google Scholar] [CrossRef]
- Li, J.; Zhong, D.; Gan, Y.; Li, Z.; Cao, Y.; Ma, W.; Li, K.; Li, J. Oxygen Vacancy Mediated Ruddlesden-Popper Cu-Based Perovskites Wih a Dual-Reaction-Center for Enhanced Fenton-like Removal of Coal Pyrolysis Wastewater. Sep. Purif. Technol. 2024, 338, 126449. [Google Scholar] [CrossRef]
- Sun, J.; Li, S.; Wang, H.; Zhu, L.; Chen, Y.; Zhu, J.; Ma, H.; Xiao, X.; Liu, T. Nitro-Functionalization on MIL-53(Fe) for PCMX Degradation: Elevating Fenton-like Catalytic Propelled by Abundant Reaction Sites and Iron Cycle. Chemosphere 2024, 362, 142707. [Google Scholar] [CrossRef]
- Zhang, L.; An, Y.; Yuan, H.; Hu, X.; Wang, J.; Zhan, Y.; Li, H. Ti/PANI/PbO2-Ce Anode for 2,3-Dimethylphenol Degradation: Effective Electrocatalytic Performance and Degradation Mechanism. Water. Air. Soil Pollut. 2024, 235, 603. [Google Scholar] [CrossRef]
- Yang, Y.; Song, Z.; Ren, W.; Vongsvivut, J.; Wang, Z.; Ren, N.; Duan, X.; Chen, Y. Sludge Biochar Accelerates Transformative Phenolic Compounds Removal from Wastewater via the Coupling Mechanism. Appl. Catal. B Environ. Energy 2024, 359, 124470. [Google Scholar] [CrossRef]
- Aghamohammadi, N.; Esmaeilzadeh, F.; Mowla, D.; Elhambakhsh, A. Oxidation of 2,6-Dimethyl Phenol in Supercritical Water: Experimental and Molecular Dynamics Simulation Study. Int. J. Environ. Sci. Technol. 2023, 20, 551–564. [Google Scholar] [CrossRef]
- Belaidi, S.; Sangare, S.; Remache, W.; Belattar, S.; Seraghni, N.; Sehili, T. Enhanced Degradation of 2,6-Dimethylphenol by Photocatalytic Systems Using TiO2 Assisted with H2O2 and Fe(III). Environ. Technol. U. K. 2023, 44, 1464–1477. [Google Scholar] [CrossRef]
- Rezaei, A.; Rezaei, M.R. Sayadi Enhanced 3,5-Dimethylphenol Photodegradation via Adsorption-Photocatalysis Synergy Using FSTRG Nanohybrid Catalyst. J. Mol. Liq. 2021, 335, 116546. [Google Scholar] [CrossRef]
- Soori, F.; Nezamzadeh-Ejhieh, A. Synergistic Effects of Copper Oxide-Zeolite Nanoparticles Composite on Photocatalytic Degradation of 2,6-Dimethylphenol Aqueous Solution. J. Mol. Liq. 2018, 255, 250–256. [Google Scholar] [CrossRef]
- Farkas, J.; Náfrádi, M.; Hlogyik, T.; Pravda, B.C.; Schrantz, K.; Hernádi, K.; Alapi, T. Comparison of Advanced Oxidation Processes in the Decomposition of Diuron and Monuron—Efficiency, Intermediates, Electrical Energy per Order and the Effect of Various Matrices. Environ. Sci. Water Res. Technol. 2018, 4, 1345–1360. [Google Scholar] [CrossRef]
- Altaf, F.; Hashmi, M.Z.; Farooq, U.; Rehman, Z.U.; Hmeed, M.U.; Batool, R.; Pongpiachan, S. Chapter 21—Nanotechnology to Treat the Environmental Micropollutants. In Environmental Micropollutants; Hashmi, M.Z., Wang, S., Ahmed, Z., Eds.; Advances in Pollution Research; Elsevier: Amsterdam, The Netherlands, 2022; pp. 407–441. ISBN 978-0-323-90555-8. [Google Scholar]
- Ao, Y.; Xu, J.; Gao, Y.; Wang, P.; Wang, C.; Hou, J.; Qian, J. Preparation of Ag Nanoparticles Loaded TiO2 Nanoplate Arrays on Activated Carbon Fibers with Enhanced Photocatalytic Activity. Catal. Commun. 2014, 53, 21–24. [Google Scholar] [CrossRef]
- Kim, J.; Park, K.; Yang, D.R.; Hong, S. A Comprehensive Review of Energy Consumption of Seawater Reverse Osmosis Desalination Plants. Appl. Energy 2019, 254, 113652. [Google Scholar] [CrossRef]
- Al-Obaidi, M.; Al-Nedawe, B.; Mohammad, A.; Mujtaba, I. Response Surface Methodology for Predicting the Dimethylphenol Removal from Wastewater via Reverse Osmosis Process. Chem. Prod. Process Model. 2021, 16, 193–203. [Google Scholar] [CrossRef]
- Al-Obaidi, M.A.; Ruiz-García, A.; Hassan, G.; Li, J.-P.; Kara-Zaïtri, C.; Nuez, I.; Mujtaba, I.M. Model Based Simulation and Genetic Algorithm Based Optimisation of Spiral Wound Membrane RO Process for Improved Dimethylphenol Rejection from Wastewater. Membranes 2021, 11, 595. [Google Scholar] [CrossRef] [PubMed]
- Al-Obaidi, M.A.; Rashid, F.L.; Ameen, A.; Kadhom, M.; Mujtaba, I.M. Optimizing Reverse Osmosis Feed Spacer Design for Enhanced Dimethylphenol Removal from Wastewater: A Study of Hydrodynamics and Performance Indicators. Water 2024, 16, 895. [Google Scholar] [CrossRef]
- Shi, J.-W.; Cui, H.-J.; Chen, J.-W.; Fu, M.-L.; Xu, B.; Luo, H.-Y.; Ye, Z.-L. TiO2/Activated Carbon Fibers Photocatalyst: Effects of Coating Procedures on the Microstructure, Adhesion Property, and Photocatalytic Ability. J. Colloid Interface Sci. 2012, 388, 201–208. [Google Scholar] [CrossRef]
- Carraro, G.; Gasparotto, A.; Maccato, C.; Bontempi, E.; Barreca, D. Fe2O3-TiO2 Nanocomposites on Activated Carbon Fibers by a Plasma-Assisted Approach. Surf. Coat. Technol. 2016, 307, 352–358. [Google Scholar] [CrossRef]
- Shi, J. Preparation of Fe(III) and Ho(III) Co-Doped TiO2 Films Loaded on Activated Carbon Fibers and Their Photocatalytic Activities. Chem. Eng. J. 2009, 151, 241–246. [Google Scholar] [CrossRef]
- Liu, L.; Chen, F.; Yang, F. Stable Photocatalytic Activity of Immobilized Fe0/TiO2/ACF on Composite Membrane in Degradation of 2,4-Dichlorophenol. Sep. Purif. Technol. 2009, 70, 173–178. [Google Scholar] [CrossRef]
- Ye, S.; Shen, S.; Ye, L.; Song, X.; Luo, S. Enhancement of the Photoelectrocatalytic Activity of TiO2/ACF for Ethylene Removal by Ag Nanoparticles Synthesized by γ-Ray Radiolysis. Mater. Sci. Semicond. Process. 2014, 27, 397–403. [Google Scholar] [CrossRef]
- Nguyen, T.D.; Jitae, K.; Viet, N.M.; Thang, P.Q.; Huong, P.T. Combination of La-TiO2 and Activated Carbon Fiber for Degradation of Toxic Organic Pollutants under the Visible Light. J. Environ. Chem. Eng. 2019, 7, 103180. [Google Scholar] [CrossRef]
- Ma, X.; Zhou, W.; Chen, Y. Structure and Photocatalytic Properties of Mn-Doped TiO2 Loaded on Wood-Based Activated Carbon Fiber Composites. Materials 2017, 10, 631. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, K.; Guo, X.; Shen, G.; Xiang, J. Synthesis and Characterization of N-Doped TiO2 Loaded onto Activated Carbon Fiber with Enhanced Visible-Light Photocatalytic Activity. New J. Chem. 2014, 38, 6139–6146. [Google Scholar] [CrossRef]
- Yang, H.M.; Park, S.-J. A Study on Photocatalytic Behaviors of Activated Carbon Fibers Impregnated with N-Doped Titania. J. Nanosci. Nanotechnol. 2017, 17, 7593–7597. [Google Scholar] [CrossRef]
- Guo, X.; Dai, J.; Zhang, K.; Wang, X.; Cui, Z.; Xiang, J. Fabrication of N-Doped TiO2/Activated Carbon Fiber Composites with Enhanced Photocatalytic Activity. Text. Res. J. 2014, 84, 1891–1900. [Google Scholar] [CrossRef]
- Liao, F.; Chu, L.-F.; Guo, C.-X.; Guo, Y.-J.; Ke, Q.-F.; Guo, Y.-P. Ytterbium Doped TiO2 Nanofibers on Activated Carbon Fibers Enhances Adsorption and Photocatalytic Activities for Toluene Removal. ChemistrySelect 2019, 4, 9222–9231. [Google Scholar] [CrossRef]
- Nguyen, T.N.; Tran, V.V.; Bui, V.K.H.; Kim, M.; Park, D.; Hur, J.; Kim, I.T.; Lee, H.U.; Ko, S.; Lee, Y.-C. A Novel Photocatalyst Composite of Magnesium Aminoclay and TiO2 Immobilized into Activated Carbon Fiber (ACF) Matrix for Pollutant Removal. J. Nanosci. Nanotechnol. 2020, 20, 6844–6849. [Google Scholar] [CrossRef]
Method Used in TIO2/ACF Preparation | Pollutant | Removal Capability | S-BET (m2 s−1) | Pore Volume (cm3 s−1) | Average Pore Diameter (nm) | References | |||
---|---|---|---|---|---|---|---|---|---|
ACF | TIO2/ACF | ACF | TIO2/ACF | ACF | TIO2/ACF | ||||
Sol–gel adsorption | Phenol | 99% (120 min) | 973.2 | 426.3 | 0.503 | 0.338 | 1.816 | 1.906 | [113] |
Molecular adsorption–deposition | Methylene blue | 100% (180 min) | 933.8 | 419.5 | [166] | ||||
Sol–gel adsorption | Methylene blue | 100% (180 min) | 1065 | 845 | 0.457 | 0.375 | 1.718 | 1.872 | [97] |
Steam activation | Wastewater from paper mill | 50% (80 min) | 748.9 | 504.3 | 0.241 | 0.156 | 0.2466 | 0.2901 | [10] |
72% (80 min) | 1230.2 | 698.9 | 0.3236 | 0.1801 | 0.6301 | 0.3351 | |||
75% (80 min) | 1862.6 | 799.4 | 0.5602 | 0.225 | 0.8856 | 0.4485 | |||
77% (80 min) | 2050.4 | 891.6 | 0.5854 | 0.2186 | 1.0836 | 0.5539 | |||
Sol–gel adsorption | Methyl orange | 100% (30 min) | 1276 | 555.1 | 0.6 | 0.31 | 1.9 | 2.2 | [3] |
Sol–gel adsorption | Acid fuchsine | 100% (30 min) | 1276 | 555.1 | 0.6 | 0.31 | 1.9 | 2.2 | |
Dip-coating | Phenol | 90% (120 min) | 1155.2 | 726.67 | 265.39 | 166.93 | [171] | ||
Electrophoretic coating | Phenol | 90% (120 min) | 1155.2 | 1121.16 | 265.39 | 257.55 | [171] | ||
Dipping method | Formaldehyde | 85% (120 min) | 1300 | 893.08 | 0.52 | 0.51 | 2.35 | [172] | |
Impregnation method | Methylene blue | 100% (180 min) | 1450 | 671 | 0.79 | 0.386 | [22] | ||
Deposition-precipitation method | Formaldehyde | 83% (120 min) | 1200 | 941.2 | [173] | ||||
Impregnation method | Methylene blue | 90% (134 min) | 1445 | 0.67 | [111] | ||||
Sol–gel adsorption | Methylene blue | 80% (60 min) | 1245.4 | 897.1 | 0.65 | 0.52 | 2.14 | [174] | |
Hydrothermal synthesis | Rhodamine B | 67.6% (140 min) | 900–1800 | [167] |
Process | Pollutant | Performance (%) | References |
---|---|---|---|
Reverse Osmosis | Dimethylphenol | 99 | [177] |
Reverse Osmosis | Dimethylphenol | 97 | [178] |
Reverse Osmosis | Dimethylphenol | 98 | [105] |
Reverse Osmosis | Dimethylphenol | 90 | [179] |
Photo-Fenton assisted (AgCl/PCN/Fe3O4/H2O2) | Dimethylphenol | 99 | [180] |
Oxidation process (L2CO perovskites—heterogeneous Fenton-like system) | Dimethylphenol | 97 | [181] |
Photo-Fenton MIL-53(Fe)–NO2 | Dimethylphenol | 99 | [182] |
Biological process (bacterial-algae biofilm) | Dimethylphenol | 98 | [103] |
Electrochemical oxidation (Ti/PANI/PbO2-Ce) | Dimethylphenol | 99 | [183] |
Adsorption/Oxidation (sludge biochar/potassium persulfate) | Dimethylphenol | 99 | [184] |
Supercritical water oxidation | Dimethylphenol | 97 | [185] |
Oxidation/Adsorption (ozone with zeolites) | Dimethylphenol | 100 | [9] |
Photocatalysis (UV/TiO2–H2O2) | Dimethylphenol | 100 | [186] |
Photocatalysis/Adsorption (Fe3O4@SnO2-TiO2/rGO) under solar light irradiation | Dimethylphenol | 81 | [187] |
Photocatalysis/Adsorption (CuO/Zeolites) | Dimethylphenol | 70 | [188] |
Photocatalysis (TiO2/UV) | Trichlorophenol | 100 | [110] |
Ozonation/Adsorption (O3/AC) | Dimethylphenol | 100 | [108] |
Composite Material | Pollutant | Performance (%) | Irradiation Source | References |
---|---|---|---|---|
Fe2O3–TiO2/ACF | Methyl orange | 90 | Visible light (>400 nm) | [170] |
Fe(III)-TiO2/ACF | Methyl orange | 100 | UV light (365 nm) | [198] |
Fe0/TiO2/ACF | 2,4-dichlorophenol | 100 | UV light (365 nm) | [199] |
Ag-TiO2/ACF | Ethylene | 100 | UV light (254 nm) | [200] |
Ag-TiO2/ACF | Methylene Blue | 100 | UV light (365 nm) | [191] |
La-TiO2/ACF | Bisphenol A | 85 | Visible light (400–600 nm) | [201] |
La-TiO2/ACF | 2-chlorophenol | 93 | Visible light (400–600 nm) | [201] |
Mn-TiO2/ACF | Methyl bromide | 90 | Visible light | [176] |
Mn-TiO2/ACF | Methylene blue | 96 | Visible light | [202] |
N-TiO2/ACF | Methyl orange | 90 | Visible light (<400 nm) | [203] |
N-TiO2/ACF | Rhodamine B | 100 | Visible light (solar simulator) | [204] |
N-TiO2/ACF | Methylene blue | 88 | Visible light (<400 nm) | [205] |
Yb-TiO2/ACF | Toluene | 100 | Xenon lamp | [206] |
Mg–TiO2/ACF | Methylene blue | 100 | UV light | [207] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quintero-Castañeda, C.Y.; Acevedo, P.A.; Hernández-Angulo, L.R.; Tobón-Vélez, D.; Franco-Leyva, A.; Sierra-Carrillo, M.M. Wastewater Treatment by Coupling Adsorption and Photocatalytic Oxidation: A Review of the Removal of Phenolic Compounds in the Oil Industry. Eng 2024, 5, 2441-2461. https://doi.org/10.3390/eng5040128
Quintero-Castañeda CY, Acevedo PA, Hernández-Angulo LR, Tobón-Vélez D, Franco-Leyva A, Sierra-Carrillo MM. Wastewater Treatment by Coupling Adsorption and Photocatalytic Oxidation: A Review of the Removal of Phenolic Compounds in the Oil Industry. Eng. 2024; 5(4):2441-2461. https://doi.org/10.3390/eng5040128
Chicago/Turabian StyleQuintero-Castañeda, Cristian Yoel, Paola Andrea Acevedo, Luis Roberto Hernández-Angulo, Daniel Tobón-Vélez, Anamaría Franco-Leyva, and María Margarita Sierra-Carrillo. 2024. "Wastewater Treatment by Coupling Adsorption and Photocatalytic Oxidation: A Review of the Removal of Phenolic Compounds in the Oil Industry" Eng 5, no. 4: 2441-2461. https://doi.org/10.3390/eng5040128
APA StyleQuintero-Castañeda, C. Y., Acevedo, P. A., Hernández-Angulo, L. R., Tobón-Vélez, D., Franco-Leyva, A., & Sierra-Carrillo, M. M. (2024). Wastewater Treatment by Coupling Adsorption and Photocatalytic Oxidation: A Review of the Removal of Phenolic Compounds in the Oil Industry. Eng, 5(4), 2441-2461. https://doi.org/10.3390/eng5040128