Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = acid dissolution–alkali leaching

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4829 KiB  
Article
Purification of CaF2 from Fluorine-Containing Sludge: Optimization via Calcium Ion Coexistence Effect
by Danyang Zhu, Xiang Chen, Hui Gong, Xiankai Wang, Xueyuan Qiao and Xiaohu Dai
Processes 2025, 13(2), 552; https://doi.org/10.3390/pr13020552 - 16 Feb 2025
Cited by 1 | Viewed by 1578
Abstract
The rapid development of the photovoltaic industry has significantly increased fluorine-containing sludge production. Calcium fluoride (CaF2), a vital non-renewable raw material used in optics, metallurgy, and chemical synthesis, holds immense significance for ensuring the sustainable supply of fluoride resources. This study [...] Read more.
The rapid development of the photovoltaic industry has significantly increased fluorine-containing sludge production. Calcium fluoride (CaF2), a vital non-renewable raw material used in optics, metallurgy, and chemical synthesis, holds immense significance for ensuring the sustainable supply of fluoride resources. This study focuses on purifying CaF2 from fluorine-containing sludge using a systematic approach. Through characterization techniques such as XRF, SEM-EDS, XRD, FT-IR, and laser granulometry, the sludge’s composition was thoroughly analyzed. An acid-leaching–alkali-leaching method was proposed and validated for CaF2 purification. A key finding during acid leaching was the “calcium ion coexistence effect”, where the dissolution of other calcium salts influences CaF2 dissolution equilibrium, reducing its loss. Leveraging this phenomenon, an optimized strategy was developed by increasing acid concentration while reducing acid volume. This approach effectively addresses two common challenges in traditional acid-leaching processes: high CaF2 dissolution loss and difficulties in impurity removal. Experimental results revealed that under optimized acid-leaching conditions, the purity of CaF2 increased significantly from an initial 36.7 wt% to 76.1 wt% after acid-leaching–alkali-leaching. This study demonstrates a successful method for purifying CaF2 from fluorine-containing sludge, providing a sustainable solution for fluoride resource recovery. Full article
(This article belongs to the Special Issue Circular Economy and Efficient Use of Resources (Volume II))
Show Figures

Figure 1

15 pages, 25223 KiB  
Article
Leaching Characteristics and Mechanisms of Fluorine and Phosphorus from Phosphogypsum
by Wanqiang Dong, Xiangyi Deng, Liqi Chai, Yuefei Zhang, Haodong Chen, Hanjun Wu and Ru’an Chi
Molecules 2025, 30(1), 5; https://doi.org/10.3390/molecules30010005 - 24 Dec 2024
Cited by 3 | Viewed by 1240
Abstract
As a large-volume industrial solid waste generated during the production of wet-process phosphoric acid, the primary disposal method for phosphogypsum (PG) currently involves centralized stockpiling, which requires substantial land use. Additionally, PG contains impurities, such as phosphorus, fluorine, and alkali metals, that may [...] Read more.
As a large-volume industrial solid waste generated during the production of wet-process phosphoric acid, the primary disposal method for phosphogypsum (PG) currently involves centralized stockpiling, which requires substantial land use. Additionally, PG contains impurities, such as phosphorus, fluorine, and alkali metals, that may pose potential pollution risks to the surrounding environment. However, the mechanisms governing the co-release of phosphorus and fluorine impurities alongside valuable metal cations during leaching remain unclear, posing challenges to efficient disposal and utilization. This study compares the leaching characteristics of cations and anions in PG of different particle sizes through static pH leaching experiments. Using Visual MINTEQ simulation combined with XRD, XPS, and FT-IR characterization methods, we analyzed the leaching mechanisms and key controlling factors for various metal elements and inorganic elements, like phosphorus and fluorine, under different pH conditions. The experimental results show that Ca, Al, Fe, Ti, Ba, Sr, Y, and PO43− in PG are more easily released under acidic conditions, while Si, Zn, Co, and F are primarily influenced by the content of soluble components. The dynamic “dissolution–crystallization” reaction of CaSO4·H2O significantly impacts the leaching of fluorine, and the XRD, XPS, and FT-IR characterization results confirm the presence of this reaction during the leaching process. This research provides theoretical guidance for the environmental risk assessment of stockpiled PG and the recovery of phosphorus, fluorine, and valuable metal resources from PG. Full article
(This article belongs to the Section Inorganic Chemistry)
Show Figures

Figure 1

19 pages, 7504 KiB  
Article
Synthesis and Surface Strengthening Modification of Silica Aerogel from Fly Ash
by Lei Zhang, Qi Wang, Haocheng Zhao, Ruikang Song, Ya Chen, Chunjiang Liu and Zhikun Han
Materials 2024, 17(7), 1614; https://doi.org/10.3390/ma17071614 - 1 Apr 2024
Cited by 6 | Viewed by 1941
Abstract
This study focuses on using activated fly ash to preparate silica aerogel by the acid solution–alkali leaching method and ambient pressure drying. Additionally, to improve the performance of silica aerogel, C6H16O3Si (KH-570) and CH3Si(CH3 [...] Read more.
This study focuses on using activated fly ash to preparate silica aerogel by the acid solution–alkali leaching method and ambient pressure drying. Additionally, to improve the performance of silica aerogel, C6H16O3Si (KH-570) and CH3Si(CH3O)3 (MTMS) modifiers were used. Finally, this paper investigated the factors affecting the desilication rate of fly ash and analyzed the structure and performance of silica aerogel. The experimental results show that: (1) The factors affecting the desilication rate are ranked as follows: hydrochloric acid concentration > solid–liquid ratio > reaction temperature > reaction time. (2) KH-570 showed the best performance, and when the volume ratio of the silica solution to it was 10:1, the density of silica aerogel reached a minimum of 183 mg/cm3. (3) The optimal process conditions are a hydrochloric acid concentration of 20 wt%, a solid–liquid ratio of 1:4, a reaction time of two hours, and a reaction temperature of 100 °C. (4) The optimal performance parameters of silica aerogel were the thermal conductivity, specific surface area, pore volume, average pore size, and contact angle values, with 0.0421 W·(m·K)−1, 487.9 m2·g−1, 1.107 cm3·g−1, 9.075 nm, and 123°, respectively. This study not only achieves the high-value utilization of fly ash, but also facilitates the effective recovery and utilization of industrial waste. Full article
Show Figures

Figure 1

15 pages, 7710 KiB  
Article
Rare-Earth Elements Extraction from Low-Alkali Desilicated Coal Fly Ash by (NH4)2SO4 + H2SO4
by Andrei Shoppert, Dmitry Valeev, Julia Napol’skikh, Irina Loginova, Jinhe Pan, Hangchao Chen and Lei Zhang
Materials 2023, 16(1), 6; https://doi.org/10.3390/ma16010006 - 20 Dec 2022
Cited by 16 | Viewed by 3547
Abstract
Coal fly ash (CFA) obtained from pulverized coal furnaces is a highly refractory waste that can be used for alumina and rare-earth elements (REEs) extraction. The REEs in this type of CFA are associated with a mullite and amorphous glassy mass that forms [...] Read more.
Coal fly ash (CFA) obtained from pulverized coal furnaces is a highly refractory waste that can be used for alumina and rare-earth elements (REEs) extraction. The REEs in this type of CFA are associated with a mullite and amorphous glassy mass that forms a core-shell structure. In this research, it was shown that complete dissolution of amorphous aluminosilicates from the mullite surface with the formation of the low-alkali mullite concentrate prior to sulfuric acid leaching with the addition of (NH4)2SO4 helps to accelerate the extraction of REEs. The extraction degree of Sc and other REEs reaches 70–80% after 5 h of leaching at 110 °C and acid concentration of 5 M versus less than 20% for the raw CFA at the same conditions. To study the leaching kinetics of the process, the effects of temperature (90–110 °C), liquid-to-solid ratio (5–10), and leaching time (15–120 min) on the degrees of Al and rare-earth elements (REEs) extraction were evaluated. After 120 min of leaching at 110 °C and L/S ratio = 10, the extraction of Al was found to be lower than 30%. At the same time, total REEs (TREE) and Fe extraction were greater than 60%, which indicates that a part of the TREE was transferred into the acid soluble phase. After leaching, the residues were studied by laser diffraction (LD), X-ray diffraction (XRD), X-ray fluorescence (XRF), and scanning electron microscopy (SEM-EDS) to evaluate the leaching mechanism and the solubility of Al- and Fe-containing minerals, such as mullite, hematite, and amorphous aluminosilicate. Full article
Show Figures

Figure 1

14 pages, 10261 KiB  
Article
Selective Scandium (Sc) Extraction from Bauxite Residue (Red Mud) Obtained by Alkali Fusion-Leaching Method
by Andrei Shoppert, Irina Loginova, Julia Napol’skikh, Aleksey Kyrchikov, Leonid Chaikin, Denis Rogozhnikov and Dmitry Valeev
Materials 2022, 15(2), 433; https://doi.org/10.3390/ma15020433 - 7 Jan 2022
Cited by 23 | Viewed by 4113
Abstract
Bauxite residue, known as “red mud,” is a potential raw material for extracting rare-earth elements (REEs). The main REEs (Sc, Y, La, Ce, Nd, Nb, and Sm) from the raw bauxite are concentrated in RM after the Bayer leaching process. The earlier worldwide [...] Read more.
Bauxite residue, known as “red mud,” is a potential raw material for extracting rare-earth elements (REEs). The main REEs (Sc, Y, La, Ce, Nd, Nb, and Sm) from the raw bauxite are concentrated in RM after the Bayer leaching process. The earlier worldwide studies were focused on the scandium (Sc) extraction from RM by concentrated acids to enhance the extraction degree. This leads to the dissolution of major oxides (Fe2O3 and Al2O3) from RM. This article studies the possibility of selective Sc extraction from alkali fusion red mud (RMF) by diluted nitric acid (HNO3) leaching at pH ≥ 2 to prevent co-dissolution of Fe2O3. RMF samples were analyzed by X-ray fluorescence spectrometry (XRF), X-ray diffraction (XRD), electron probe microanalysis (EPMA), and inductively coupled plasma mass spectrometry (ICP-MS). It was revealed that Sc concentration in RMF can reach up to 140–150 mg kg−1. Sc extraction was 71.2% at RMF leaching by HNO3 at pH 2 and 80 °C during 90 min. The leaching solution contained 8 mg L−1 Sc and a high amount of other REEs in the presence of relatively low concentrations of impurity elements such as Fe, Al, Ti, Ca, etc. The kinetic analysis of experimental data by the shrinking core model showed that Sc leaching process is limited by the interfacial diffusion and the diffusion through the product layer. The apparent activation energy (Ea) was 19.5 kJ/mol. The linear dependence of Sc extraction on magnesium (Mg) extraction was revealed. According to EPMA of RMF, Sc is associated with iron minerals rather than Mg. This allows us to conclude that Mg acts as a leaching agent for the extraction of Sc presented in the RMF in an ion-exchangeable phase. Full article
(This article belongs to the Special Issue Advances in Processing and Characterization of Mineral Materials)
Show Figures

Figure 1

21 pages, 8547 KiB  
Article
The Effect of Fibrous Reinforcement on the Polycondensation Degree of Slag-Based Alkali Activated Composites
by Isabella Lancellotti, Federica Piccolo, Hoang Nguyen, Mohammad Mastali, Mohammad Alzeer, Mirja Illikainen and Cristina Leonelli
Polymers 2021, 13(16), 2664; https://doi.org/10.3390/polym13162664 - 10 Aug 2021
Cited by 8 | Viewed by 2353
Abstract
Alternative cementitious binders, based on industrial side streams, characterized by a low carbon footprint, are profitably proposed to partially replace Portland cement. Among these alternatives, alkali-activated materials have attracted attention as a promising cementitious binder. In this paper, the chemical stability of the [...] Read more.
Alternative cementitious binders, based on industrial side streams, characterized by a low carbon footprint, are profitably proposed to partially replace Portland cement. Among these alternatives, alkali-activated materials have attracted attention as a promising cementitious binder. In this paper, the chemical stability of the matrix, in fiber-reinforced slag-based alkali-activated composites, was studied, in order to assess any possible effect of the presence of the reinforcement on the chemistry of polycondensation. For this purpose, organic fiber, cellulose, and an inorganic fiber, basalt, were chosen, showing a different behavior in the alkaline media that was used to activate the slag fine powders. The novelty of the paper is the study of consolidation by means of chemical measurements, more than from the mechanical point of view. The evaluation of the chemical behavior of the starting slag in NaOH, indeed, was preparatory to the understanding of the consolidation degree in the alkali-activated composites. The reactivity of alkali-activated composites was studied in water (integrity test, normed leaching test, pH and ionic conductivity), and acids (leaching in acetic acid and HCl attack). The presence of fibers does not favor nor hinder the geopolymerization process, even if an increase in the ionic conductivity in samples containing fibers leads to the hypothesis that samples with fibers are less consolidated, or that fiber dissolution contributes to the conductivity values. The amorphous fraction was enriched in silicon after HCl attack, but the structure was not completely dissolved, and the presence of an amorphous phase is confirmed (C–S–H gel). Basalt fibers partly dissolved in the alkaline environment, leading to the formation of a C–N–A–S–H gel surrounding the fibers. In contrast, cellulose fiber remained stable in both acidic and alkaline conditions. Full article
(This article belongs to the Special Issue Geopolymers - Design, Preparation, Applications)
Show Figures

Figure 1

20 pages, 11099 KiB  
Article
Simple Model for Alkali Leaching from Geopolymers: Effects of Raw Materials and Acetic Acid Concentration on Apparent Diffusion Coefficient
by Neven Ukrainczyk
Materials 2021, 14(6), 1425; https://doi.org/10.3390/ma14061425 - 15 Mar 2021
Cited by 19 | Viewed by 2934
Abstract
This paper investigates alkali leaching from geopolymers under various concentrations of acetic acid solutions. The effects of the raw metakaolin purity as well as fly ash-based geopolymer mortars and pastes are considered. A new methodology for (acetic) acid attack is proposed, adapting standard [...] Read more.
This paper investigates alkali leaching from geopolymers under various concentrations of acetic acid solutions. The effects of the raw metakaolin purity as well as fly ash-based geopolymer mortars and pastes are considered. A new methodology for (acetic) acid attack is proposed, adapting standard approaches, where the concentration of the leached alkali in the exposure solution is measured over time. The applicability of a simple diffusion-based mathematical model to determine the apparent diffusion coefficient (Dapp) for geopolymer pastes and mortars was validated. At the end of the paste tests, microstructural alterations of the specimens’ cross-sections were analyzed microscopically, revealing occurrence of degradation across the outermost surface parts and, especially under acid attack, the formation of long cracks that connect the surface with the intact inner zone. Drastically different Dapp are discussed in terms of the differences in the mix designs, principally resulting in different alkali-binding capacities of the geopolymers, while the acid promoted dissolution and increased porosity. As a result of this interpretation, it was concluded that Dapp is governed mainly by the chemistry of the alkali release from the gel, as it overruled the effects of porosity and cracks. Full article
Show Figures

Graphical abstract

16 pages, 1157 KiB  
Article
Stabilization Study of a Contaminated Soil with Metal(loid)s Adding Different Low-Grade MgO Degrees
by Jessica Giro-Paloma, Joan Formosa and Josep M Chimenos
Sustainability 2020, 12(18), 7340; https://doi.org/10.3390/su12187340 - 7 Sep 2020
Cited by 9 | Viewed by 3155
Abstract
Low-grade magnesium oxide (LG-MgO) was proposed as ordinary Portland cement (OPC) or lime substitute (CaO) for metal(loid)s remediation in contaminated soils. Some metal(loid)s precipitate at pH ≈ 9 in insoluble hydroxide form thus avoiding their leaching. LG-MgO avoids the re-dissolution of certain metal(loid)s [...] Read more.
Low-grade magnesium oxide (LG-MgO) was proposed as ordinary Portland cement (OPC) or lime substitute (CaO) for metal(loid)s remediation in contaminated soils. Some metal(loid)s precipitate at pH ≈ 9 in insoluble hydroxide form thus avoiding their leaching. LG-MgO avoids the re-dissolution of certain metal(loid)s at 9.0 < pH < 11.0 (pH-dependents), whose solubility depends on the pH. A highly contaminated soil with heavy metal(loid)s was stabilized using different LG-MgO by-products sources as stabilizing agents. Two of the three studied LG-MgOs were selected for the stabilization, by mixing 5, 10, and 15 wt.%. The effect of using LG-MgO not only depends on the size of the particles, but also on those impurities that are present in the LG-MgO samples. Particle size distribution, X-ray fluorescence (XRF), X-ray diffraction (XRD), thermogravimetric analysis, citric acid test, specific surface, bulk density, acid neutralization capacity, batch leaching tests (BLTs), and percolation column tests (PCTs) were techniques used to deeply characterize the different LG-MgO and the contaminated and remediated soils. The remediation’s results efficacy indicated that when the medium pH was between 9.0 and 11.0, the concentration of pH-dependent metal(loid)s decreases significantly. Although around 15 wt.% of a stabilizing agent was appropriate for the soil remediation to ensure an alkali reservoir that maintains optimal stabilization conditions for a long period, 5 wt.% of LG-MgO was enough to remedy the contaminated soil. When evaluating a polluted and decontaminated soil, both BLTs and PCTs should be complementary procedures. Full article
(This article belongs to the Special Issue Soil Stabilization in Sustainability)
Show Figures

Figure 1

9 pages, 4447 KiB  
Article
Effects of Step-Wise Acid Leaching with HCl on Synthesis of Zeolitic Materials from Paper Sludge Ash
by Takaaki Wajima
Minerals 2020, 10(5), 402; https://doi.org/10.3390/min10050402 - 29 Apr 2020
Cited by 7 | Viewed by 3187
Abstract
Incinerated ash with a relatively high Ca content, paper sludge ash, was converted to zeolitic materials with high cation-exchange capacities (CECs) by aging at 80 °C in NaOH solution via step-wise acid leaching with HCl to reduce the ash Ca content. The extraction [...] Read more.
Incinerated ash with a relatively high Ca content, paper sludge ash, was converted to zeolitic materials with high cation-exchange capacities (CECs) by aging at 80 °C in NaOH solution via step-wise acid leaching with HCl to reduce the ash Ca content. The extraction of Ca, Mg, Si, and Al from the ash into the acid solutions during leaching and the products obtained from the leached ash by reaction with an alkali were examined. The contents of Ca and Mg in the ash were more easily extracted from the ash than those of Si and Al in the initial leaching. The leachant pH decreased with increasing numbers of leaching steps, and the amounts of Si, Al, and Ca extracted from the ash increased as a result of the dissolution of gehlenite (Ca2Al2SiO7), one of the main minerals in the ash. Zeolites A and P were synthesized from the leached ashes, and hydroxysodalite was synthesized from the raw ash. With increasing numbers of leaching steps of the ash, the obtained product contained lower released Ca, whereas the product contained higher released Na and has higher CEC, depending on the zeolite phases in the product. The product with the highest CEC was synthesized from third-leached ash, and its CEC was 1.5 mmol/g, which is about four times higher than that of the raw ash (0.4 mmol/g). Full article
Show Figures

Graphical abstract

18 pages, 5502 KiB  
Article
Acid and Acid-Alkali Treatment Methods of Al-Chloride Solution Obtained by the Leaching of Coal Fly Ash to Produce Sandy Grade Alumina
by Dmitry Valeev, Andrei Shoppert, Alexandra Mikhailova and Alex Kondratiev
Metals 2020, 10(5), 585; https://doi.org/10.3390/met10050585 - 29 Apr 2020
Cited by 26 | Viewed by 6573
Abstract
Sandy grade alumina is a valuable intermediate material that is mainly produced by the Bayer process and used for manufacturing primary metallic aluminum. Coal fly ash is generated in coal-fired power plants as a by-product of coal combustion that consists of submicron ash [...] Read more.
Sandy grade alumina is a valuable intermediate material that is mainly produced by the Bayer process and used for manufacturing primary metallic aluminum. Coal fly ash is generated in coal-fired power plants as a by-product of coal combustion that consists of submicron ash particles and is considered to be a potentially hazardous technogenic waste. The present paper demonstrates that the Al-chloride solution obtained by leaching coal fly ash can be further processed to obtain sandy grade alumina, which is essentially suitable for metallic aluminum production. The novel process developed in the present study involves the production of amorphous alumina via the calcination of aluminium chloride hexahydrate obtained by salting-out from acid Al-Cl liquor. Following this, alkaline treatment with further Al2O3 dissolution and recrystallization as Al(OH)3 particles is applied, and a final calcination step is employed to obtain sandy grade alumina with minimum impurities. The process does not require high-pressure equipment and reutilizes the alkaline liquor and gibbsite particles from the Bayer process, which allows the sandy grade alumina production costs to be to significantly reduced. The present article also discusses the main technological parameters of the acid treatment and the amounts of major impurities in the sandy grade alumina obtained by the different (acid and acid-alkali) methods. Full article
(This article belongs to the Special Issue Advances in Mineral Processing and Hydrometallurgy)
Show Figures

Figure 1

19 pages, 5471 KiB  
Article
Chemical Stability and Leaching Behavior of One-Part Geopolymer from Soil and Coal Fly Ash Mixtures
by April Anne S. Tigue, Roy Alvin J. Malenab, Jonathan R. Dungca, Derrick Ethelbhert C. Yu and Michael Angelo B. Promentilla
Minerals 2018, 8(9), 411; https://doi.org/10.3390/min8090411 - 18 Sep 2018
Cited by 53 | Viewed by 6994
Abstract
Aluminosilicate minerals have become an important resource for an emerging sustainable material for construction known as geopolymer. Geopolymer, an alkali-activated material, is becoming an attractive alternative to Portland cement because of its lower carbon footprint and embodied energy. However, the synthesis process requires [...] Read more.
Aluminosilicate minerals have become an important resource for an emerging sustainable material for construction known as geopolymer. Geopolymer, an alkali-activated material, is becoming an attractive alternative to Portland cement because of its lower carbon footprint and embodied energy. However, the synthesis process requires typically a two-part system for alkali activation wherein the solid geopolymer precursor is mixed with aqueous alkali solutions. These alkali activators are corrosive and may be difficult to handle in the field-scale application. In this study, a one-part geopolymer in which coal fly ash was mixed with solid alkali activators such as sodium hydroxide and sodium silicate to form a powdery cementitious binder was developed. This binder mixed with soil only requires water to form the soil-fly ash (SO-CFA) geopolymer cement, which can be used as stabilized soil for backfill/foundation. This geopolymer product was then evaluated for chemical stability by immersing the material with 5% by weight of sulfuric acid solution for 28 days. Indication suggests that the geopolymer exhibited high resistance against acid attack with an observed increase of unconfined compressive strength even when the immersion time in acidic solution was increased to 56 days. The mineralogical phase, microstructure, and morphology of the material were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX), respectively. Results not only confirmed the formation of gypsum due to acid attack but also indicated the dissolution of anorthite and albite that may have caused the microstructure to be composed of sodium aluminosilicate hydrate (N–A–S–H) and calcium (alumino) silicate hydrate (C(–A)–S–H) with poly(ferro-sialate-siloxo) and poly(ferro-sialate-disiloxo) networks. A column leaching test with deionized water was also performed on the soil-fly ash geopolymer to study the leachability of metals in the material. Results showed that arsenic exhibits higher mobility in the geopolymer as compared to that of cadmium, chromium, and lead. Full article
(This article belongs to the Special Issue Geopolymers)
Show Figures

Figure 1

12 pages, 4597 KiB  
Article
Insights into Alkali-Acid Leaching of Sericite: Dissolution Behavior and Mechanism
by Hao Wang, Qiming Feng, Xuekun Tang, Kesheng Zuo and Kun Liu
Minerals 2017, 7(10), 196; https://doi.org/10.3390/min7100196 - 17 Oct 2017
Cited by 11 | Viewed by 10778
Abstract
Sericite is a typical silicate impurity in microcrystalline graphite ores, and its removal is important in the preparation of high-purity graphite preparations. Alkali-acid leaching is an effective method used to purify graphite and remove silicate minerals. In this study, the dissolution behavior and [...] Read more.
Sericite is a typical silicate impurity in microcrystalline graphite ores, and its removal is important in the preparation of high-purity graphite preparations. Alkali-acid leaching is an effective method used to purify graphite and remove silicate minerals. In this study, the dissolution behavior and mechanism of sericite in alkali-acid leaching were investigated. The dissolution of sericite was mainly affected by alkali leaching temperature, sodium hydroxide concentration, and alkali leaching time. According to the XRD, FTIR, and SEM-EDS analyses, the dissolution mechanism of sericite is a three-stage process: (1) sericite is dissolved in the form of soluble silicate and aluminate; (2) the dissolved silicate and aluminate then react with each other to form aluminosilicate; and (3) finally the aluminosilicate mainly composed of hydroxycancrinite and sodalite is almost completely dissolved in the hydrochloric acid solution. Full article
Show Figures

Figure 1

12 pages, 8342 KiB  
Article
Porous Materials from Thermally Activated Kaolinite: Preparation, Characterization and Application
by Jun Luo, Tao Jiang, Guanghui Li, Zhiwei Peng, Mingjun Rao and Yuanbo Zhang
Materials 2017, 10(6), 647; https://doi.org/10.3390/ma10060647 - 12 Jun 2017
Cited by 15 | Viewed by 4689
Abstract
In the present study, porous alumina/silica materials were prepared by selective leaching of silicon/aluminum constituents from thermal-activated kaolinite in inorganic acid or alkali liquor. The correlations between the characteristics of the prepared porous materials and the dissolution properties of activated kaolinite were also [...] Read more.
In the present study, porous alumina/silica materials were prepared by selective leaching of silicon/aluminum constituents from thermal-activated kaolinite in inorganic acid or alkali liquor. The correlations between the characteristics of the prepared porous materials and the dissolution properties of activated kaolinite were also investigated. The results show that the specific surface area (SSA) of porous alumina/silica increases with silica/alumina dissolution, but without marked change of the BJH pore size. Furthermore, change in pore volume is more dependent on activation temperature. The porous alumina and silica obtained from alkali leaching of kaolinite activated at 1150 °C for 15 min and acid leaching of kaolinite activated at 850 °C for 15 min are mesoporous, with SSAs, BJH pore sizes and pore volumes of 55.8 m2/g and 280.3 m2/g, 6.06 nm and 3.06 nm, 0.1455 mL/g and 0.1945 mL/g, respectively. According to the adsorption tests, porous alumina has superior adsorption capacities for Cu2+, Pb2+ and Cd2+ compared with porous silica and activated carbon. The maximum capacities of porous alumina for Cu2+, Pb2+ and Cd2+ are 134 mg/g, 183 mg/g and 195 mg/g, respectively, at 30 °C. Full article
(This article belongs to the Section Porous Materials)
Show Figures

Figure 1

Back to TopTop