Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = acetovanillone

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1704 KiB  
Systematic Review
Therapeutic Potential of Apocynin: A Promising Antioxidant Strategy for Acute Kidney Injury
by Jelena Nesovic Ostojic, Sanjin Kovacevic, Silvio R. De Luka, Milan Ivanov, Aleksandra Nenadovic and Andrija Vukovic
Antioxidants 2025, 14(8), 1025; https://doi.org/10.3390/antiox14081025 - 21 Aug 2025
Abstract
Acute kidney injury (AKI) is characterized by a sudden rise in serum creatinine levels, a reduction in urine output, or both. Despite its frequent occurrence in clinical settings, AKI remains poorly understood from a pathophysiological standpoint. As a result, management primarily relies on [...] Read more.
Acute kidney injury (AKI) is characterized by a sudden rise in serum creatinine levels, a reduction in urine output, or both. Despite its frequent occurrence in clinical settings, AKI remains poorly understood from a pathophysiological standpoint. As a result, management primarily relies on supportive care rather than targeted treatments. Emerging evidence underscores the pivotal role of oxidative stress in both the initiation and progression of AKI, thereby identifying it as a potential therapeutic target. This review aims to comprehensively examine the pharmacological effects and underlying mechanisms of apocynin (APO) in the context of AKI, with a particular focus on ischemia–reperfusion injury (IRI) and nephrotoxic-induced AKI. Experimental preclinical studies have consistently demonstrated that APO offers protective effects primarily through its inhibition of NADPH oxidase-mediated oxidative stress. In renal IRI and drug-induced nephrotoxicity models, APO has been shown to attenuate oxidative damage, reduce inflammatory responses, and preserve renal structure and function. These results suggest that it may serve as an effective treatment for reducing kidney damage caused by acute ischemia or exposure to nephrotoxic agents. Although the results are encouraging, further investigation is required to establish the optimal dosing strategy and treatment protocol, as well as to confirm the translational relevance of these findings in human clinical settings. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Figure 1

19 pages, 1691 KiB  
Article
Extraction and Depolymerization of Lignin from Different Agricultural and Forestry Wastes to Obtain Building Blocks in a Circular Economy Framework
by María Ángeles Fontecha-Cámara, Irene Delgado-Blanca, María Mañas-Villar, Francisco José Orriach-Fernández and Belén Soriano-Cuadrado
Polymers 2024, 16(14), 1981; https://doi.org/10.3390/polym16141981 - 11 Jul 2024
Cited by 3 | Viewed by 3259
Abstract
Large amounts of agri-food waste are generated and discarded annually, but they have the potential to become highly profitable sources of value-added compounds. Many of these are lignin-rich residues. Lignin, one of the most abundant biopolymers in nature, offers numerous possibilities as a [...] Read more.
Large amounts of agri-food waste are generated and discarded annually, but they have the potential to become highly profitable sources of value-added compounds. Many of these are lignin-rich residues. Lignin, one of the most abundant biopolymers in nature, offers numerous possibilities as a raw material or renewable resource for the production of chemical products. This study aims to explore the potential revalorization of agricultural by-products through the extraction of lignin and subsequent depolymerization. Different residues were studied; river cane, rice husks, broccoli stems, wheat straw, and olive stone are investigated (all local wastes that are typically incinerated). Traditional soda extraction, enhanced by ultrasound, is applied, comparing two different sonication methods. The extraction yields from different residues were as follows: river cane (28.21%), rice husks (24.27%), broccoli (6.48%), wheat straw (17.66%), and olive stones (24.29%). Once lignin is extracted, depolymerization is performed by three different methods: high-pressure reactor, ultrasound-assisted solvent depolymerization, and microwave solvolysis. As a result, a new microwave depolymerization method has been developed and patented, using for the first time graphene nanoplatelets (GNPs) as new promising carbonaceous catalyst, achieving a 90.89% depolymerization rate of river cane lignin and yielding several building blocks, including guaiacol, vanillin, ferulic acid, or acetovanillone. Full article
Show Figures

Graphical abstract

16 pages, 3986 KiB  
Article
Optimization and Validation of a Method to Determine Enolones and Vanillin Derivatives in Wines—Occurrence in Spanish Red Wines and Mistelles
by Mónica Bueno, Julián Zapata, Laura Culleré, Ernesto Franco-Luesma, Arancha de-la-Fuente-Blanco and Vicente Ferreira
Molecules 2023, 28(10), 4228; https://doi.org/10.3390/molecules28104228 - 22 May 2023
Cited by 5 | Viewed by 2273
Abstract
Understanding the chemical nature of wine aroma demands accurate quantitative determinations of different odor-active compounds. Quantitative determinations of enolones (maltol, furaneol, homofuraneol, and sotolon) and vanillin derivatives (vanillin, methyl vanillate, ethyl vanillate, and acetovanillone) at low concentrations are complicated due to their high [...] Read more.
Understanding the chemical nature of wine aroma demands accurate quantitative determinations of different odor-active compounds. Quantitative determinations of enolones (maltol, furaneol, homofuraneol, and sotolon) and vanillin derivatives (vanillin, methyl vanillate, ethyl vanillate, and acetovanillone) at low concentrations are complicated due to their high polarity. For this reason, this paper presents an improved and automated version for the accurate measure of these common trace wine polar compounds (enolones and vanillin derivatives). As a result, a faster and more user-friendly method with a reduction of organic solvents and resins was developed and validated. The optimization of some stages of the solid phase extraction (SPE) process, such as washing with an aqueous solution containing 1% NaHCO3 at pH 8, led to cleaner extracts and solved interference problems. Due to the polarity of these type of compounds, an optimization of the large volume injection was also carried out. Finally, a programmable temperature vaporization (PTV) quartz glass inlet liner without wool was used. The injector temperature was raised to 300 °C in addition to applying a pressure pulse of 180 kPa for 4 min. Matrix effects were solved by the use of adequate internal standards, such as ethyl maltol and 3′,4′-(methylenedioxy)acetophenone. Method figures of merit were highly satisfactory: good linearity (r2 > 0.98), precision (relative standard deviation, RSD < 10%), high recovery (RSD > 89%), and low detection limits (<0.7 μg/L). Enolones and vanillin derivatives are associated with wine aging. For this reason, the methodology was successfully applied to the quantification of these compounds in 16 Spanish red wines and 12 mistelles. Odor activity values (OAV) indicate that furaneol should be considered an aroma impact odorant in red wines and mistelles (OAV > 1) while homofuraneol and sotolon could also produce changes in their aroma perceptions (0.1 < OAV < 1). Full article
Show Figures

Figure 1

19 pages, 3800 KiB  
Review
Vanilla beyond Vanilla planifolia and Vanilla × tahitensis: Taxonomy and Historical Notes, Reproductive Biology, and Metabolites
by Renatha Tavares de Oliveira, Joana Paula da Silva Oliveira and Andrea Furtado Macedo
Plants 2022, 11(23), 3311; https://doi.org/10.3390/plants11233311 - 30 Nov 2022
Cited by 29 | Viewed by 7939
Abstract
Vanilla is a worldwide cherished condiment, and its volatile market is associated with the so-called “vanilla crisis”. Even though only two species (Vanilla planifolia and V. × tahitensis) are cultivated on a large scale for commercial purposes, the Vanilla genus is [...] Read more.
Vanilla is a worldwide cherished condiment, and its volatile market is associated with the so-called “vanilla crisis”. Even though only two species (Vanilla planifolia and V. × tahitensis) are cultivated on a large scale for commercial purposes, the Vanilla genus is comprised of 140 species. The present review article discusses the facets of this crisis, and vanilla crop wild relatives (WRs) are showcased as alternatives to overcome them. Historical, taxonomic, and reproductive biology aspects of the group were covered. Emphasis was given to the metabolic characterization of the vanilla crop WRs, highlighting their main chemical classes and the potential flavor descriptors. Many of these species can produce important flavor compounds such as vanillin, vanillic acid, and acetovanillone, among others. Overall, this review compiles valuable information that can help unravel new chapters of the history of this treasured product by evidencing the biotechnological potential of vanilla crop WRs. Full article
Show Figures

Figure 1

14 pages, 4001 KiB  
Article
Comparative Metabolomics Analysis of Stigmas and Petals in Chinese Saffron (Crocus sativus) by Widely Targeted Metabolomics
by Lin Zhou, Youming Cai, Liuyan Yang, Zhongwei Zou, Jiao Zhu and Yongchun Zhang
Plants 2022, 11(18), 2427; https://doi.org/10.3390/plants11182427 - 17 Sep 2022
Cited by 18 | Viewed by 4187
Abstract
The dried stigmas of Crocus sativus, commonly known as saffron, are consumed largely worldwide because it is highly valuable in foods and has biological activities beneficial for health. Saffron has important economic and medicinal value, and thus, its planting area and global [...] Read more.
The dried stigmas of Crocus sativus, commonly known as saffron, are consumed largely worldwide because it is highly valuable in foods and has biological activities beneficial for health. Saffron has important economic and medicinal value, and thus, its planting area and global production are increasing. Petals, which are a by-product of the stigmas, have not been fully utilized at present. We compared the metabolites between the stigmas and petals of C. sativus using a non-targeted metabolomics method. In total, over 800 metabolites were detected and categorized into 35 classes, including alkaloids, flavonoids, amino acids and derivatives, phenols and phenol esters, phenylpropanoids, fatty acyls, steroids and steroid derivatives, vitamins, and other metabolites. The metabolite composition in the petals and stigmas was basically similar. The results of the study showed that the petals contained flavonoids, alkaloids, coumarins, and other medicinal components, as well as amino acids, carbohydrates, vitamins, and other nutritional components. A principal components analysis (PCA) and an orthogonal partial least-squares discriminant analysis (OPLS-DA) were performed to screen the different metabolic components. A total of 339 differential metabolites were identified, with 55 metabolites up-regulated and 284 down-regulated. The up-regulated metabolites, including rutin, delphinidin-3-O-glucoside, isoquercitrin, syringaresinol-di-O-glucoside, dihydrorobinetin, quercetin, and gallocatechin, were detected in the petals. The down-regulated metabolites were mainly glucofrangulin B, acetovanillone, daidzein, guaiazulene, hypaphorine, indolin-2-one, and pseudouridine. KEGG annotation and enrichment analyses of the differential metabolites revealed that flavonoid biosynthesis, amino acids biosynthesis, and arginine and proline metabolism were the main differentially regulated pathways. In conclusion, the petals of C. sativus are valuable for medicine and foods and have potential utility in multiple areas such as the natural spice, cosmetic, health drink, and natural health product industries. Full article
(This article belongs to the Section Horticultural Science and Ornamental Plants)
Show Figures

Figure 1

4 pages, 518 KiB  
Short Note
2-(5-Acetyl-7-methoxy-2-(4-methoxyphenyl)benzofuran-3-yl)acetic Acid
by Boris V. Lichitsky, Andrey N. Komogortsev and Valeriya G. Melekhina
Molbank 2022, 2022(2), M1357; https://doi.org/10.3390/M1357 - 1 Apr 2022
Cited by 4 | Viewed by 2576
Abstract
We elaborated a convenient one-step approach for the synthesis of previously unknown 2-(5-acetyl-7-methoxy-2-(4-methoxyphenyl)benzofuran-3-yl)acetic acid. The suggested protocol includes the multicomponent reaction of acetovanillone, 4-methoxyphenylglyoxal and Meldrum’s acid. We have demonstrated that the considered reaction is a one-pot telescoped process including the preliminary condensation [...] Read more.
We elaborated a convenient one-step approach for the synthesis of previously unknown 2-(5-acetyl-7-methoxy-2-(4-methoxyphenyl)benzofuran-3-yl)acetic acid. The suggested protocol includes the multicomponent reaction of acetovanillone, 4-methoxyphenylglyoxal and Meldrum’s acid. We have demonstrated that the considered reaction is a one-pot telescoped process including the preliminary condensation of the components in MeCN followed by acid-catalyzed cyclization. The structure of the synthesized product was confirmed by 1H, 13C-NMR spectroscopy and high-resolution mass-spectrometry. Full article
(This article belongs to the Section Organic Synthesis and Biosynthesis)
Show Figures

Graphical abstract

24 pages, 7343 KiB  
Article
Lignin-Derived Syringol and Acetosyringone from Palm Bunch Using Heterogeneous Oxidative Depolymerization over Mixed Metal Oxide Catalysts under Microwave Heating
by Rangsalid Panyadee, Aphinan Saengsrichan, Pattaraporn Posoknistakul, Navadol Laosiripojana, Sakhon Ratchahat, Babasaheb M. Matsagar, Kevin C.-W. Wu and Chularat Sakdaronnarong
Molecules 2021, 26(24), 7444; https://doi.org/10.3390/molecules26247444 - 8 Dec 2021
Cited by 20 | Viewed by 4143
Abstract
Biomass valorization to building block chemicals in food and pharmaceutical industries has tremendously gained attention. To produce monophenolic compounds from palm empty fruit bunch (EFB), EFB was subjected to alkaline hydrothermal extraction using NaOH or K2CO3 as a promotor. Subsequently, [...] Read more.
Biomass valorization to building block chemicals in food and pharmaceutical industries has tremendously gained attention. To produce monophenolic compounds from palm empty fruit bunch (EFB), EFB was subjected to alkaline hydrothermal extraction using NaOH or K2CO3 as a promotor. Subsequently, EFB-derived lignin was subjected to an oxidative depolymerization using Cu(II) and Fe(III) mixed metal oxides catalyst supported on γ-Al2O3 or SiO2 as the catalyst in the presence of hydrogen peroxide. The highest percentage of total phenolic compounds of 63.87 wt% was obtained from microwave-induced oxidative degradation of K2CO3 extracted lignin catalyzed by Cu-Fe/SiO2 catalyst. Main products from the aforementioned condition included 27.29 wt% of 2,4-di-tert-butylphenol, 19.21 wt% of syringol, 9.36 wt% of acetosyringone, 3.69 wt% of acetovanillone, 2.16 wt% of syringaldehyde, and 2.16 wt% of vanillin. Although the total phenolic compound from Cu-Fe/Al2O3 catalyst was lower (49.52 wt%) compared with that from Cu-Fe/SiO2 catalyst (63.87 wt%), Cu-Fe/Al2O3 catalyst provided the greater selectivity of main two value-added products, syringol and acetosyrigone, at 54.64% and 23.65%, respectively (78.29% total selectivity of two products) from the NaOH extracted lignin. The findings suggested a promising method for syringol and acetosyringone production from the oxidative heterogeneous lignin depolymerization under low power intensity microwave heating within a short reaction time of 30 min. Full article
Show Figures

Figure 1

20 pages, 5223 KiB  
Article
Investigating (Pseudo)-Heterogeneous Pd-Catalysts for Kraft Lignin Depolymerization under Mild Aqueous Basic Conditions
by Dolorès Bourbiaux, Yu Xu, Laurence Burel, Firat Goc, Pascal Fongarland, Régis Philippe, Guillaume Aubert, Cyril Aymonier, Franck Rataboul and Laurent Djakovitch
Catalysts 2021, 11(11), 1311; https://doi.org/10.3390/catal11111311 - 29 Oct 2021
Cited by 13 | Viewed by 2540
Abstract
Lignin is one of the main components of lignocellulosic biomass and corresponds to the first renewable source of aromatic compounds. It is obtained as a by-product in 100 million tons per year, mainly from the paper industry, from which only 2–3% is upgraded [...] Read more.
Lignin is one of the main components of lignocellulosic biomass and corresponds to the first renewable source of aromatic compounds. It is obtained as a by-product in 100 million tons per year, mainly from the paper industry, from which only 2–3% is upgraded for chemistry purposes, with the rest being used as an energy source. The richness of the functional groups in lignin makes it an attractive precursor for a wide variety of aromatic compounds. With this aim, we investigated the Pd-catalyzed depolymerization of lignin under mild oxidizing conditions (air, 150 °C, and aqueous NaOH) producing oxygenated aromatic compounds, such as vanillin, vanillic acid, and acetovanillone. Palladium catalysts were implemented following different strategies, involving nanoparticles stabilized in water, and nanoparticles were supported on TiO2. Significant conversion of lignin was observed in all cases; however, depending on the catalyst nature and the synthetic methods, differences were observed in terms of selectivity in aromatic monomers, mainly vanillin. All these aspects are discussed in detail in this report, which also provides new insights into the role that Pd-catalysts can play for the lignin depolymerization mechanism. Full article
(This article belongs to the Special Issue Heterogeneous Catalysts for Lignin Upgrading)
Show Figures

Graphical abstract

13 pages, 2080 KiB  
Article
Laccase-Mediator System Using a Natural Mediator as a Whitening Agent for the Decolorization of Melanin
by Saerom Park, Dahun Jung, Hyejin Do, Jonghyeon Yun, Dongjun Lee, Soeun Hwang and Sang Hyun Lee
Polymers 2021, 13(21), 3671; https://doi.org/10.3390/polym13213671 - 25 Oct 2021
Cited by 16 | Viewed by 3956
Abstract
In this study, a laccase-mediator system (LMS) using a natural mediator was developed as a whitening agent for melanin decolorization. Seven natural mediators were used to replace synthetic mediators and successfully overcome the low redox potential of laccase and limited access of melanin [...] Read more.
In this study, a laccase-mediator system (LMS) using a natural mediator was developed as a whitening agent for melanin decolorization. Seven natural mediators were used to replace synthetic mediators and successfully overcome the low redox potential of laccase and limited access of melanin to the active site of laccase. The melanin decolorization activity of laccases from Trametes versicolor (lacT) and Myceliophthora thermophila (lacM) was significantly enhanced using natural mediators including acetosyringone, syringaldehyde, and acetovanillone, which showed low cytotoxicity. The methoxy and ketone groups of natural mediators play an important role in melanin decolorization. The specificity constants of lacT and lacM for melanin decolorization were enhanced by 247 and 334, respectively, when acetosyringone was used as a mediator. LMS using lacM and acetosyringone could also decolorize the melanin present in the cellulose hydrogel film, which mimics the skin condition. Furthermore, LMS could decolorize not only synthetic eumelanin analogs prepared by the oxidation of tyrosine but also natural melanin produced by melanoma cells. Full article
(This article belongs to the Special Issue Functional Natural-Based Polymers)
Show Figures

Figure 1

17 pages, 1352 KiB  
Article
Influence of Oak Chips and Oak Barrel Ageing on Volatile Profile in Chardonnay Wine of Romania
by Diana Ionela Stegăruș, Anamaria Călugăr, Corneliu Tanase, Adriana Muscă, Oana Romina Botoran, Mihail Manolache, Anca Cristina Babeș, Claudiu Bunea, Emese Gál, Andrea Bunea and Teodora Emilia Coldea
Appl. Sci. 2021, 11(8), 3691; https://doi.org/10.3390/app11083691 - 19 Apr 2021
Cited by 16 | Viewed by 4526
Abstract
The influence of the addition of oak chips and barrel ageing on basic wine parameters and volatile compounds of Chardonnay wines has been studied. Chardonnay wines were obtained by the traditional wine-making process. Oak chips (4 g/L—non-toasted and light toasted) were added at [...] Read more.
The influence of the addition of oak chips and barrel ageing on basic wine parameters and volatile compounds of Chardonnay wines has been studied. Chardonnay wines were obtained by the traditional wine-making process. Oak chips (4 g/L—non-toasted and light toasted) were added at the final stage of the winemaking process for ageing 1, 2 and 3 months, respectively. Also, the control wine was aged in non-toasted barrels for the same period of time. Following Liquid-liquid extraction-gas chromatography-mass spectrometry analysis, alcohols, esters, fatty acids, lactones, and phenolic compounds were identified and quantified. The light toasted wine was clearly separated by phenolic compounds (vanillin, p-vinyl guaiacol and acetovanillone). The floral aroma supplied by 2-phenylethanol was slowly increased by ageing with odor activity values (OAV) higher in aged samples than control wine (1.07). The vanilla scent could be easily perceived in all aged samples, mainly for light toasted chip-treated samples with OAV values between 2.30 and 2.37. After 3 months, the volatile compounds of wine from non-toasted medium (chips and barrels) were almost similar from the volatile profile point of view. This could have economic and vinification management implications since oak barrels are expensive and the wine oak barrel aging is a long process. All wines studied in this research can provide a viable alternative to young varietal wines. Full article
(This article belongs to the Special Issue Wine Chemistry)
Show Figures

Figure 1

18 pages, 487 KiB  
Article
Evaluation of Volatile Compounds during Ageing with Oak Chips and Oak Barrel of Muscat Ottonel Wine
by Anamaria Călugăr, Teodora Emilia Coldea, Carmen Rodica Pop, Tiberia Ioana Pop, Anca Cristina Babeș, Claudiu Ioan Bunea, Mihail Manolache and Emese Gal
Processes 2020, 8(8), 1000; https://doi.org/10.3390/pr8081000 - 17 Aug 2020
Cited by 25 | Viewed by 5502
Abstract
The aim of this work was to compare the variations of alcohols compounds in white wine Muscat Ottonel variety aged in the presence of untoasted oak chips, toasted oak chips and untoasted barrel, considering three ageing periods—30, 60, and 90 days. The liquid-liquid [...] Read more.
The aim of this work was to compare the variations of alcohols compounds in white wine Muscat Ottonel variety aged in the presence of untoasted oak chips, toasted oak chips and untoasted barrel, considering three ageing periods—30, 60, and 90 days. The liquid-liquid extraction and gas chromatography coupled to mass spectrometry were used to compare the concentrations of the volatile constituents of Muscat Ottonel wines. A total of 51 volatile compounds were quantified. Alcohols, terpenic and carboxylic acids decreased with ageing time, whereas esters, lactones, and phenolic compounds increased due esterification processes. The chips toast level, method, and duration of ageing, significantly influenced the content of aromatic compounds. Partial least squares regression (PLS-R) clearly discriminated the initial wine and also the wines aged with toasted and untoasted medium. The compounds (alcohols and terpenes) that impart distinctive aroma of Muscat Ottonel were enhanced by untoasted medium. Light toasted oak chips enhanced wood volatile components (acetovanillone and p-vinyl guaiacol). This study provides important scientific results on the ageing of Muscat Ottonel wines with practical economic benefits to winemakers. Alternative less expensive ageing methods and improved control on the wood components extraction process, may contribute to obtaining high-quality wines. Full article
Show Figures

Figure 1

16 pages, 4219 KiB  
Article
Membrane Separation of the Base-Catalyzed Depolymerization of Black Liquor Retentate for Low-Molecular-Mass Compound Production
by Kena Li, Basel Al-Rudainy, Mingzhe Sun, Ola Wallberg, Christian Hulteberg and Per Tunå
Membranes 2019, 9(8), 102; https://doi.org/10.3390/membranes9080102 - 16 Aug 2019
Cited by 24 | Viewed by 5636
Abstract
One way of valorizing the lignin waste stream from the pulp and paper industries is depolymerizing it into low-molecular-mass compounds (LMMC). However, a common problem in the depolymerization of Kraft lignin is the low yields of small aromatic molecules obtained. In the present [...] Read more.
One way of valorizing the lignin waste stream from the pulp and paper industries is depolymerizing it into low-molecular-mass compounds (LMMC). However, a common problem in the depolymerization of Kraft lignin is the low yields of small aromatic molecules obtained. In the present work, the combination of the repeated depolymerization of lignin and the separation of LMMC from depolymerized lignin to upgrade them into value-added chemicals was studied. In so doing, we investigated the possibility of depolymerizing black liquor retentate (BLR). The base-catalyzed depolymerization of BLR was performed using a continuous flow reactor at 170–210 °C, with a 2 min residence time. The results obtained indicate that BLR can be depolymerized effectively under the experimental conditions. Depolymerized lignin LMMC can be successfully separated by a GR95PP membrane, and thus be protected from repolymerization. Through combining membrane filtration with base-catalyzed depolymerization, more than half of the lignin could be depolymerized into LMMC. Around 46 mg/g of lignin monomers (guaiacol, vanillin, acetovanillone, and acetosyringone), which can potentially be upgraded to high-valued chemicals, were produced. On the basis of our results, we suggest use of a recycling Kraft lignin depolymerization and filtration process for maximizing the production of LMMC under mild alkaline conditions. Full article
(This article belongs to the Section Membrane Processing and Engineering)
Show Figures

Graphical abstract

15 pages, 1936 KiB  
Article
Inhibition of NADPH Oxidase Activation by Apocynin Rescues Seizure-Induced Reduction of Adult Hippocampal Neurogenesis
by Song Hee Lee, Bo Young Choi, A Ra Kho, Jeong Hyun Jeong, Dae Ki Hong, Dong Hyeon Kang, Beom Seok Kang, Hong Ki Song, Hui Chul Choi and Sang Won Suh
Int. J. Mol. Sci. 2018, 19(10), 3087; https://doi.org/10.3390/ijms19103087 - 9 Oct 2018
Cited by 33 | Viewed by 4824
Abstract
Apocynin, also known as acetovanillone, is a natural organic compound structurally related to vanillin. Apocynin is known to be an inhibitor of NADPH (Nicotinamide adenine dinucleotide phosphate) oxidase activity and is highly effective in suppressing the production of superoxide. The neuroprotective effects of [...] Read more.
Apocynin, also known as acetovanillone, is a natural organic compound structurally related to vanillin. Apocynin is known to be an inhibitor of NADPH (Nicotinamide adenine dinucleotide phosphate) oxidase activity and is highly effective in suppressing the production of superoxide. The neuroprotective effects of apocynin have been investigated in numerous brain injury settings, such as stroke, traumatic brain injury (TBI), and epilepsy. Our lab has demonstrated that TBI or seizure-induced oxidative injury and neuronal death were reduced by apocynin treatment. Several studies have also demonstrated that neuroblast production is transiently increased in the hippocampus after seizures. Here, we provide evidence confirming the hypothesis that long-term treatment with apocynin may enhance newly generated hippocampal neuronal survival by reduction of superoxide production after seizures. A seizure was induced by pilocarpine [(25 mg/kg intraperitoneal (i.p.)] injection. Apocynin was continuously injected for 4 weeks after seizures (once per day) into the intraperitoneal space. We evaluated neuronal nuclear antigen (NeuN), bromodeoxyuridine (BrdU), and doublecortin (DCX) immunostaining to determine whether treatment with apocynin increased neuronal survival and neurogenesis in the hippocampus after seizures. The present study indicates that long-term treatment of apocynin increased the number of NeuN+ and DCX+ cells in the hippocampus after seizures. Therefore, this study suggests that apocynin treatment increased neuronal survival and neuroblast production by reduction of hippocampal oxidative injury after seizures. Full article
(This article belongs to the Special Issue Role of NADPH Oxidase on Neuron Death or on Neurogenesis)
Show Figures

Graphical abstract

14 pages, 1784 KiB  
Article
The Effect of Phenol Composition on the Sensory Profile of Smoke Affected Wines
by David Kelly and Ayalsew Zerihun
Molecules 2015, 20(6), 9536-9549; https://doi.org/10.3390/molecules20069536 - 26 May 2015
Cited by 19 | Viewed by 7939
Abstract
Vineyards exposed to wildfire generated smoke can produce wines with elevated levels of lignin derived phenols that have acrid, metallic and smoky aromas and flavour attributes. While a large number of phenols are present in smoke affected wines, the effect of smoke vegetation [...] Read more.
Vineyards exposed to wildfire generated smoke can produce wines with elevated levels of lignin derived phenols that have acrid, metallic and smoky aromas and flavour attributes. While a large number of phenols are present in smoke affected wines, the effect of smoke vegetation source on the sensory descriptors has not been reported. Here we report on a descriptive sensory analysis of wines made from grapes exposed to different vegetation sources of smoke to examine: (1) the effect vegetation source has on wine sensory attribute ratings and; (2) associations between volatile and glycoconjugated phenol composition and sensory attributes. Sensory attribute ratings were determined by a trained sensory panel and phenol concentrations determined by gas chromatography-mass spectroscopy. Analysis of variance, principal component analysis and partial least squares regressions were used to evaluate the interrelationships between the phenol composition and sensory attributes. The results showed that vegetation source of smoke significantly affected sensory attribute intensity, especially the taste descriptors. Differences in aroma and taste from smoke exposure were not limited to an elevation in a range of detractive descriptors but also a masking of positive fruit descriptors. Sensory differences due to vegetation type were driven by phenol composition and concentration. In particular, the glycoconjugates of 4-hydroxy-3-methoxybenzaldehyde (vanillin), 1-(4-hydroxy-3-methoxyphenyl)ethanone (acetovanillone), 4-hydroxy-3,5-dimethoxybenzaldehyde (syringaldehyde) and 1-(4-hydroxy-3,5-dimethoxyphenyl)ethanone (acetosyringone) concentrations were influential in separating the vegetation sources of smoke. It is concluded that the detractive aroma attributes of smoke affected wine, especially of smoke and ash, were associated with volatile phenols while the detractive flavour descriptors were correlated with glycoconjugated phenols. Full article
(This article belongs to the Collection Wine Chemistry)
Show Figures

Figure 1

12 pages, 286 KiB  
Article
Anti-Inflammatory Components from the Root of Solanum erianthum
by Yu-Chang Chen, Hong-Zin Lee, Hsin-Chun Chen, Chi-Luan Wen, Yueh-Hsiung Kuo and Guei-Jane Wang
Int. J. Mol. Sci. 2013, 14(6), 12581-12592; https://doi.org/10.3390/ijms140612581 - 14 Jun 2013
Cited by 29 | Viewed by 9347
Abstract
Two new norsesquiterpenoids, solanerianones A and B (12), together with nine known compounds, including four sesquiterpenoids, (−)-solavetivone (3), (+)-anhydro-β-rotunol (4), solafuranone (5), lycifuranone A (6); one alkaloid, N-trans-feruloyltyramine [...] Read more.
Two new norsesquiterpenoids, solanerianones A and B (12), together with nine known compounds, including four sesquiterpenoids, (−)-solavetivone (3), (+)-anhydro-β-rotunol (4), solafuranone (5), lycifuranone A (6); one alkaloid, N-trans-feruloyltyramine (7); one fatty acid, palmitic acid (8); one phenylalkanoid, acetovanillone (9), and two steroids, β-sitosterol (10) and stigmasterol (11) were isolated from the n-hexane-soluble part of the roots of Solanum erianthum. Their structures were elucidated on the basis of physical and spectroscopic data analyses. The anti-inflammatory activity of these isolates was monitored by nitric oxide (NO) production in lipopolysaccharide (LPS)-activated murine macrophage RAW264.7 cells. The cytotoxicity towards human lung squamous carcinoma (CH27), human hepatocellular carcinoma (Hep 3B), human oral squamous carcinoma (HSC-3) and human melanoma (M21) cell lines was also screened by using an MTT assay. Of the compounds tested, 3 exhibited the strongest NO inhibition with the average maximum inhibition (Emax) at 100 μM and median inhibitory concentration (IC50) values of 98.23% ± 0.08% and 65.54 ± 0.18 μM, respectively. None of compounds (19) was found to possess cytotoxic activity against human cancer cell lines at concentrations up to 30 μM. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Graphical abstract

Back to TopTop