Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (83)

Search Parameters:
Keywords = acceleration response spectra

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2990 KiB  
Article
Examination of Interrupted Lighting Schedule in Indoor Vertical Farms
by Dafni D. Avgoustaki, Vasilis Vevelakis, Katerina Akrivopoulou, Stavros Kalogeropoulos and Thomas Bartzanas
AgriEngineering 2025, 7(8), 242; https://doi.org/10.3390/agriengineering7080242 - 1 Aug 2025
Viewed by 77
Abstract
Indoor horticulture requires a substantial quantity of electricity to meet crops extended photoperiodic requirements for optimal photosynthetic rate. Simultaneously, global electricity costs have grown dramatically in recent years, endangering the sustainability and profitability of indoor vertical farms and/or modern greenhouses that use artificial [...] Read more.
Indoor horticulture requires a substantial quantity of electricity to meet crops extended photoperiodic requirements for optimal photosynthetic rate. Simultaneously, global electricity costs have grown dramatically in recent years, endangering the sustainability and profitability of indoor vertical farms and/or modern greenhouses that use artificial lighting systems to accelerate crop development and growth. This study investigates the growth rate and physiological development of cherry tomato plants cultivated in a pilot indoor vertical farm at the Agricultural University of Athens’ Laboratory of Farm Structures (AUA) under continuous and disruptive lighting. The leaf physiological traits from multiple photoperiodic stress treatments were analyzed and utilized to estimate the plant’s tolerance rate under varied illumination conditions. Four different photoperiodic treatments were examined and compared, firstly plants grew under 14 h of continuous light (C-14L10D/control), secondly plants grew under a normalized photoperiod of 14 h with intermittent light intervals of 10 min of light followed by 50 min of dark (NI-14L10D/stress), the third treatment where plants grew under 14 h of a load-shifted energy demand response intermittent lighting schedule (LSI-14L10D/stress) and finally plants grew under 13 h photoperiod following of a load-shifted energy demand response intermittent lighting schedule (LSI-13L11D/stress). Plants were subjected also under two different light spectra for all the treatments, specifically WHITE and Blue/Red/Far-red light composition. The aim was to develop flexible, energy-efficient lighting protocols that maintain crop productivity while reducing electricity consumption in indoor settings. Results indicated that short periods of disruptive light did not negatively impact physiological responses, and plants exhibited tolerance to abiotic stress induced by intermittent lighting. Post-harvest data indicated that intermittent lighting regimes maintained or enhanced growth compared to continuous lighting, with spectral composition further influencing productivity. Plants under LSI-14L10D and B/R/FR spectra produced up to 93 g fresh fruit per plant and 30.4 g dry mass, while consuming up to 16 kWh less energy than continuous lighting—highlighting the potential of flexible lighting strategies for improved energy-use efficiency. Full article
(This article belongs to the Topic Digital Agriculture, Smart Farming and Crop Monitoring)
Show Figures

Figure 1

17 pages, 7508 KiB  
Article
Supramolecular Graphene Quantum Dots/Porphyrin Complex as Fluorescence Probe for Metal Ion Sensing
by Mariachiara Sarà, Andrea Romeo, Gabriele Lando, Maria Angela Castriciano, Roberto Zagami, Giovanni Neri and Luigi Monsù Scolaro
Int. J. Mol. Sci. 2025, 26(15), 7295; https://doi.org/10.3390/ijms26157295 - 28 Jul 2025
Viewed by 218
Abstract
Graphene quantum dots (GQDs) obtained by microwave-induced pyrolysis of glutamic acid and triethylenetetramine (trien) are fairly stable, emissive, water-soluble, and positively charged nano-systems able to interact with negatively charged meso-tetrakis(4-sulfonatophenyl) porphyrin (TPPS4). The stoichiometric control during the preparation affords a [...] Read more.
Graphene quantum dots (GQDs) obtained by microwave-induced pyrolysis of glutamic acid and triethylenetetramine (trien) are fairly stable, emissive, water-soluble, and positively charged nano-systems able to interact with negatively charged meso-tetrakis(4-sulfonatophenyl) porphyrin (TPPS4). The stoichiometric control during the preparation affords a supramolecular adduct, GQDs@TPPS4, that exhibits a double fluorescence emission from both the GQDs and the TPPS4 fluorophores. These supramolecular aggregates have an overall negative charge that is responsible for the condensation of cations in the nearby aqueous layer, and a three-fold acceleration of the metalation rates of Cu2+ ions has been observed with respect to the parent porphyrin. Addition of various metal ions leads to some changes in the UV/Vis spectra and has a different impact on the fluorescence emission of GQDs and TPPS4. The quenching efficiency of the TPPS4 emission follows the order Cu2+ > Hg2+ > Cd2+ > Pb2+ ~ Zn2+ ~ Co2+ ~ Ni2+ > Mn2+ ~ Cr3+ >> Mg2+ ~ Ca2+ ~ Ba2+, and it has been related to literature data and to the sitting-atop mechanism that large transition metal ions (e.g., Hg2+ and Cd2+) exhibit in their interaction with the macrocyclic nitrogen atoms of the porphyrin, inducing distortion and accelerating the insertion of smaller metal ions, such as Zn2+. For the most relevant metal ions, emission quenching of the porphyrin evidences a linear behavior in the micromolar range, with the emission of the GQDs being moderately affected through a filter effect. Deliberate pollution of the samples with Zn2+ reveals the ability of the GQDs@TPPS4 adduct to detect sensitively Cu2+, Hg2+, and Cd2+ ions. Full article
Show Figures

Figure 1

24 pages, 8612 KiB  
Article
Experimental Investigation of the Seismic Behavior of a Multi-Story Steel Modular Building Using Shaking Table Tests
by Xinxin Zhang, Yucong Nie, Kehao Qian, Xinyu Xie, Mengyang Zhao, Zhan Zhao and Xiang Yuan Zheng
Buildings 2025, 15(15), 2661; https://doi.org/10.3390/buildings15152661 - 28 Jul 2025
Viewed by 242
Abstract
A steel modular building is a highly prefabricated form of steel construction. It offers rapid assembly, a high degree of industrialization, and an environmentally friendly construction site. To promote the application of multi-story steel modular buildings in earthquake fortification zones, it is imperative [...] Read more.
A steel modular building is a highly prefabricated form of steel construction. It offers rapid assembly, a high degree of industrialization, and an environmentally friendly construction site. To promote the application of multi-story steel modular buildings in earthquake fortification zones, it is imperative to conduct in-depth research on their seismic behavior. In this study, a seven-story modular steel building is investigated using shaking table tests. Three seismic waves (artificial ground motion, Tohoku wave, and Tianjin wave) are selected and scaled to four intensity levels (PGA = 0.035 g, 0.1 g, 0.22 g, 0.31 g). It is found that no residual deformation of the structure is observed after tests, and its stiffness degradation ratio is 7.65%. The largest strains observed during the tests are 540 × 10−6 in beams, 1538 × 10−6 in columns, and 669 × 10−6 in joint regions, all remaining below a threshold value of 1690 × 10−6. Amplitudes and frequency characteristics of the acceleration responses are significantly affected by the characteristics of the seismic waves. However, the acceleration responses at higher floors are predominantly governed by the structure’s low-order modes (first-mode and second-mode), with the corresponding spectra containing only a single peak. When the predominant frequency of the input ground motion is close to the fundamental natural frequency of the modular steel structure, the acceleration responses will be significantly amplified. Overall, the structure demonstrates favorable seismic resistance. Full article
Show Figures

Figure 1

28 pages, 6582 KiB  
Article
Experimental Study on Dynamic Response Characteristics of Rural Residential Buildings Subjected to Blast-Induced Vibrations
by Jingmin Pan, Dongli Zhang, Zhenghua Zhou, Jiacong He, Long Zhang, Yi Han, Cheng Peng and Sishun Wang
Buildings 2025, 15(14), 2511; https://doi.org/10.3390/buildings15142511 - 17 Jul 2025
Viewed by 213
Abstract
Numerous rural residential buildings exhibit inadequate seismic performance when subjected to blast-induced vibrations, which poses potential threats to their overall stability and structural integrity when in proximity to blasting project sites. The investigation conducted in conjunction with the Qianshi Mountain blasting operations along [...] Read more.
Numerous rural residential buildings exhibit inadequate seismic performance when subjected to blast-induced vibrations, which poses potential threats to their overall stability and structural integrity when in proximity to blasting project sites. The investigation conducted in conjunction with the Qianshi Mountain blasting operations along the Wenzhou segment of the Hangzhou–Wenzhou High-Speed Railway integrates household field surveys and empirical measurements to perform modal analysis of rural residential buildings through finite element simulation. Adhering to the principle of stratified arrangement and composite measurement point configuration, an effective and reasonable experimental observation framework was established. In this investigation, the seven-story rural residential building in adjacent villages was selected as the research object. Strong-motion seismographs were strategically positioned adjacent to frame columns on critical stories (ground, fourth, seventh, and top floors) within the observational system to acquire test data. Methodical signal processing techniques, including effective signal extraction, baseline correction, and schedule conversion, were employed to derive temporal dynamic characteristics for each story. Combined with the Fourier transform, the frequency–domain distribution patterns of different floors are subsequently obtained. Leveraging the structural dynamic theory, time–domain records were mathematically converted to establish the structure’s maximum response spectra under blast-induced loading conditions. Through the analysis of characteristic curves, including floor acceleration response spectra, dynamic amplification coefficients, and spectral ratios, the dynamic response patterns of rural residential buildings subjected to blast-induced vibrations have been elucidated. Following the normalization of peak acceleration and velocity parameters, the mechanisms underlying differential floor-specific dynamic responses were examined, and the layout principles of measurement points were subsequently formulated and summarized. These findings offer valuable insights for enhancing the seismic resilience and structural safety of rural residential buildings exposed to blast-induced vibrations, with implications for both theoretical advancements and practical engineering applications. Full article
(This article belongs to the Special Issue Seismic Analysis and Design of Building Structures)
Show Figures

Figure 1

24 pages, 5817 KiB  
Article
Shaking Table Test of a Subway Station–Soil–Aboveground Structures Interaction System: Structural Impact on the Field
by Na Hong, Yan Ling, Zixiong Yang, Xiaochun Ha and Bin Xu
Buildings 2025, 15(13), 2223; https://doi.org/10.3390/buildings15132223 - 25 Jun 2025
Viewed by 401
Abstract
The seismic design of underground or aboveground structures is commonly based on the free-field assumption, which neglects the interaction between underground structures–soil–aboveground structures (USSI). This simplification may lead to unsafe or overly conservative, cost-intensive designs. To address this limitation, a series of shaking [...] Read more.
The seismic design of underground or aboveground structures is commonly based on the free-field assumption, which neglects the interaction between underground structures–soil–aboveground structures (USSI). This simplification may lead to unsafe or overly conservative, cost-intensive designs. To address this limitation, a series of shaking table tests were conducted on a coupled USSI system, in which the underground component consisted of a subway station connected to tunnels through structural joints to investigate the “city effect” on-site seismic response, particularly under long-period horizontal seismic excitations. Five test configurations were developed, including combinations of one or two aboveground structures, with or without a subway station. These were compared to a free-field case to evaluate differences in dynamic characteristics, acceleration amplification factors (AMFs), frequency content, and response spectra. The results confirm that boundary effects were negligible in the experimental setup. Notably, long-period seismic inputs had a detrimental impact on the field response when structures were present, with the interaction effects significantly altering surface motion characteristics. The findings demonstrate that the presence of a subway station and/or aboveground structure alters the seismic response of the soil domain, with clear dependence on the input motion characteristics and relative structural positioning. Specifically, structural systems lead to de-amplification under high-frequency excitations, while under long-period inputs, they suppress short-period responses and amplify long-period components. These insights emphasize the need to account for USSI effects in seismic design and retrofitting strategies, particularly in urban environments, to achieve safer and more cost-effective solutions. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

25 pages, 4696 KiB  
Article
Enhancing Photocatalytic Activity with the Substantial Optical Absorption of Bi2S3-SiO2-TiO2/TiO2 Nanotube Arrays for Azo Dye Wastewater Treatment
by Amal Abdulrahman, Zaina Algarni, Nejib Ghazouani, Saad Sh. Sammen, Abdelfattah Amari and Miklas Scholz
Water 2025, 17(13), 1875; https://doi.org/10.3390/w17131875 - 24 Jun 2025
Viewed by 697
Abstract
One-dimensional TiO2 nanotube arrays (TNAs) were vertically aligned and obtained via the electrochemical anodization method. In this study, Bi2S3-TiO2-SiO2/TNA heterojunction photocatalysts were successfully prepared with different amounts of Bismuth(III) sulfide (Bi2S3 [...] Read more.
One-dimensional TiO2 nanotube arrays (TNAs) were vertically aligned and obtained via the electrochemical anodization method. In this study, Bi2S3-TiO2-SiO2/TNA heterojunction photocatalysts were successfully prepared with different amounts of Bismuth(III) sulfide (Bi2S3) loading on the TNAs by the successive ionic layer adsorption and reaction (SILAR) method and characterized by X-ray diffraction (XRD) patterns, field-emission scanning electron microscope–energy-dispersive spectroscopy (FESEM-EDS), Fourier transform infrared (FTIR) spectra, ultraviolet-visible diffuse reflectance spectra (UV–Vis/DRS), and electrochemical impedance spectroscopy (EIS) techniques. The photocatalytic performances of the samples were investigated by degrading Basic Yellow 28 (BY 28) under visible-light irradiation. Optimization of the condition using the response surface methodology (RSM) and central composite rotatable design (CCRD) technique resulted in the degradation of BY 28 dye, showing that the catalyst with 9.6 mg/cm2 (designated as Bi2S3(9.6)-TiO2-SiO2/TNA) showed the maximum yield in the degradation process. The crystallite size of about 17.03 nm was estimated using the Williamson–Hall method. The band gap energies of TiO2-SiO2/TNA and Bi2S3(9.6)-TiO2-SiO2/TNA were determined at 3.27 and 1.87 eV for the direct electronic transitions, respectively. The EIS of the ternary system exhibited the smallest arc diameter, indicating an accelerated charge transfer rate that favors photocatalytic activity. Full article
(This article belongs to the Special Issue Global Water Resources Management)
Show Figures

Figure 1

13 pages, 2803 KiB  
Article
Monte Carlo Analysis of the Intensification Factor of Design Response Spectra for Hoisted Loads
by Carlo Zanoni
Appl. Sci. 2025, 15(11), 6304; https://doi.org/10.3390/app15116304 - 4 Jun 2025
Viewed by 354
Abstract
Seismic requirements play a crucial role in the design of mechanical systems for infrastructures located in earthquake-prone regions. This process becomes significantly more complex when non-linearities are present, making system-specific analyses necessary. The evaluation of earthquake effects, as mandated by national regulations, is [...] Read more.
Seismic requirements play a crucial role in the design of mechanical systems for infrastructures located in earthquake-prone regions. This process becomes significantly more complex when non-linearities are present, making system-specific analyses necessary. The evaluation of earthquake effects, as mandated by national regulations, is typically based on linear response spectra, which describe the peak response of a harmonic oscillator with a given natural frequency to external vibrations. However, for non-linear systems, computationally intensive transient simulations are required. Developing simplified methods to extend design loads without relying on such complex simulations would be highly beneficial, particularly for commonly encountered non-linear systems. One such system is a hoisted load manipulated by an overhead crane. Strong earthquakes can induce oscillations that cause periodic slack rope conditions—where the rope loses tension and the load temporarily enters free fall—resulting in peak accelerations that exceed those predicted by linear models. This study focuses on quantifying these amplified accelerations in hoisted loads subjected to non-linear dynamics. Using a Monte Carlo approach, it establishes intensification factors—expressed as a function of key physical parameters—relative to a given design response spectrum. Full article
(This article belongs to the Special Issue Recent Research and Applications of Vibration Isolation and Control)
Show Figures

Figure 1

27 pages, 5047 KiB  
Article
Inertial Subrange Optimization in Eddy Dissipation Rate Estimation and Aircraft-Dependent Bumpiness Estimation
by Zhenxing Gao, Qilin Zhang and Kai Qi
Aerospace 2025, 12(4), 293; https://doi.org/10.3390/aerospace12040293 - 30 Mar 2025
Viewed by 354
Abstract
Atmospheric turbulence leads to aircraft bumpiness. In current vertical wind-based eddy dissipation rate (EDR) estimation algorithms based on flight data, the inertial subrange is determined empirically. In application, specific aircraft bumpiness can only be described by an EDR indicator. In this study, the [...] Read more.
Atmospheric turbulence leads to aircraft bumpiness. In current vertical wind-based eddy dissipation rate (EDR) estimation algorithms based on flight data, the inertial subrange is determined empirically. In application, specific aircraft bumpiness can only be described by an EDR indicator. In this study, the objective turbulence severity and aircraft-related bumpiness estimation were explored with an optimized inertial subrange. To obtain the inertial subrange, the minimum series length to estimate EDR was determined under different flight data sampling rate. In addition, the basic series length to estimate the inertial subrange was determined according to Blackman–Tukey spectra estimation theory. In aircraft-dependent bumpiness estimation, the unsteady vortex lattice method (UVLM) was designed to obtain an accurate aircraft acceleration response to turbulence. An in situ aircraft bumpiness estimation and bumpiness prediction method were further proposed. Simulation and experiments on real flight data testified the optimized aircraft-independent EDR estimation and aircraft-dependent bumpiness estimation successively. This study can be further applied to estimate the turbulence severity on a particular airway, while the bumpiness of specific aircraft can be predicted. Full article
(This article belongs to the Special Issue Advanced Aircraft Technology (2nd Edition))
Show Figures

Figure 1

21 pages, 19562 KiB  
Article
Investigation the Effects of Different Earthquake Scaling Methods on Nonlinear Site-Amplification Analyzes
by Ersin Güler and Kamil Bekir Afacan
Appl. Sci. 2025, 15(7), 3566; https://doi.org/10.3390/app15073566 - 25 Mar 2025
Cited by 1 | Viewed by 562
Abstract
The behavior of the soils under dynamic loads is of great importance for the structures to be built in earthquake zones. As a result of the determination of the site-specific dynamic parameters of the soils and the analyzes to be made with these [...] Read more.
The behavior of the soils under dynamic loads is of great importance for the structures to be built in earthquake zones. As a result of the determination of the site-specific dynamic parameters of the soils and the analyzes to be made with these parameters, the ground response that will occur on the surface during the earthquake will be determined. Turkey is located in one of the important earthquake belts of Europe. Studies are carried out on the North Anatolian Fault Zone (NAFZ), which is one of the important and active fault lines here. In this study, as a result of 4 drilling studies on NAFZ, firstly, dynamic triaxial (TRX) and resonant column (RC) test systems were used to obtain site-specific shear modulus and damping curves depending on depth. 11 earthquake acceleration records reflecting the seismic characteristics of the region were selected and scaled in both time-history and frequency-time domains. Two different scaling methods were compared with the nonlinear soil amplification analysis. In addition, surface response spectra were examined according to the Turkish Building Earthquake Code (TEC 2018). Although there is not a big difference in amplification values in two different scaling methods, it has been determined that the design spectrum values are very different. Full article
Show Figures

Figure 1

24 pages, 14889 KiB  
Article
A New Ground-Motion Prediction Model for Shallow Crustal Earthquakes in Türkiye
by Ulubey Çeken, Fadime Sertçelik and Abdullah İçen
Appl. Sci. 2025, 15(7), 3442; https://doi.org/10.3390/app15073442 - 21 Mar 2025
Viewed by 505
Abstract
The recent expansion of the strong-motion observation network, along with the increase in data obtained during major earthquakes and efforts to create consistent metadata for source, path, and site effects for both old and new records, has significantly improved the quality of data [...] Read more.
The recent expansion of the strong-motion observation network, along with the increase in data obtained during major earthquakes and efforts to create consistent metadata for source, path, and site effects for both old and new records, has significantly improved the quality of data and the level of modeling in Türkiye. The mainshock and aftershock records of the 6 February 2023 Kahramanmaraş earthquake doublet (MW 7.8 and 7.7), which are among the most destructive earthquakes in world history, constitute an up-to-date and important data source for this study. In this study, we present new ground-motion prediction models (GMPMs) for shallow crustal earthquakes using strong-motion data recorded in Türkiye. Our GMPMs are calibrated using 20,173 strong-motion records from 1565 shallow crustal earthquakes with depths of less than 35 km that occurred in Türkiye and its vicinity between 1976 and 2023. Our model is valid for magnitudes ranging from 4.0 to 7.8 (MW), and for the time-averaged 30 m shear wave velocity (VS30) values of 975 stations, which ranged from 131 to 1862 m/s. In the analyses performed, using the recently developed site amplification model, we calculated the model coefficients using the mixed-effects regression algorithms used by the GMPM developers. Additionally, a heteroscedastic model was created for aleatory variability as a function of MW. The closest distance to the surface projection of the fault plane (RJB) is between 0 and 350 km. Using the metadata prepared according to these criteria, we derived up-to-date ground-motion prediction models for horizontal-component peak ground velocity (PGV), peak ground acceleration (PGA), and 5% damped pseudo-spectral acceleration (PSA) response spectra, at 36 periods ranging from 0.01 to 10 s. The variability in the predictions was decomposed into within-event, between-event, and site-to-site deviations to determine the total standard deviations (σ). Compared to previous models, the proposed GMPMs were developed using a much richer database with recent major earthquakes, and the consistent estimates and lower residuals in the comparisons support the reliability of the models. Full article
(This article belongs to the Special Issue Soil Dynamics and Earthquake Engineering)
Show Figures

Figure 1

22 pages, 3952 KiB  
Article
Seismic Site Amplification Characteristics of Makran Subduction Zone Using 1D Non-Linear Ground Response Analysis
by Hammad Raza, Naveed Ahmad, Muhammad Aaqib, Turab H. Jafri and Mohsin Usman Qureshi
Appl. Sci. 2025, 15(4), 1775; https://doi.org/10.3390/app15041775 - 10 Feb 2025
Viewed by 1077
Abstract
The Makran Subduction Zone (MSZ) is a tectonic plate boundary where the Arabian Plate is subducting beneath the Eurasian Plate. This study investigated the dynamic response in the Gwadar region, located in the eastern part of the MSZ. A suite of seismic records [...] Read more.
The Makran Subduction Zone (MSZ) is a tectonic plate boundary where the Arabian Plate is subducting beneath the Eurasian Plate. This study investigated the dynamic response in the Gwadar region, located in the eastern part of the MSZ. A suite of seismic records compatible with the Building Code of Pakistan (BCP:2021) rock design spectrum was used as the input ground motions at the bedrock. The amplification characteristics were assessed through a series of one-dimensional (1D) site response analyses utilizing a non-linear (NL) approach. The results revealed significant de-amplification in soft soils at short spectral periods. A general depth-wise decrease in the shear stress ratio and peak ground acceleration values was observed, influenced by shear-strain-induced effects and shear wave velocity reversals within the site profiles. The code spectra, compared to the proposed design spectra, underestimated the site amplification for stiff soils (i.e., Site Class D) for periods of less than 0.32 s and overestimated it for soft soils (i.e., Site Class E) across all periods. These findings underscore the necessity for site-specific ground response analyses, particularly within the framework of the China–Pakistan Economic Corridor (CPEC). Full article
Show Figures

Figure 1

25 pages, 9826 KiB  
Article
Parametric Estimation of Directional Wave Spectra from Moored FPSO Motion Data Using Optimized Artificial Neural Networks
by Do-Soo Kwon, Sung-Jae Kim, Chungkuk Jin and MooHyun Kim
J. Mar. Sci. Eng. 2025, 13(1), 69; https://doi.org/10.3390/jmse13010069 - 3 Jan 2025
Cited by 3 | Viewed by 1356
Abstract
This paper introduces a comprehensive, data-driven framework for parametrically estimating directional ocean wave spectra from numerically simulated FPSO (Floating Production Storage and Offloading) vessel motions. Leveraging a mid-fidelity digital twin of a spread-moored FPSO vessel in the Guyana Sea, this approach integrates a [...] Read more.
This paper introduces a comprehensive, data-driven framework for parametrically estimating directional ocean wave spectra from numerically simulated FPSO (Floating Production Storage and Offloading) vessel motions. Leveraging a mid-fidelity digital twin of a spread-moored FPSO vessel in the Guyana Sea, this approach integrates a wide range of statistical values calculated from the time histories of vessel responses—displacements, angular velocities, and translational accelerations. Artificial neural networks (ANNs), trained and optimized through hyperparameter tuning and feature selection, are employed to estimate wave parameters including the significant wave height, peak period, main wave direction, enhancement parameter, and directional-spreading factor. A systematic correlation analysis ensures that informative input features are retained, while extensive sensitivity tests confirm that richer input sets notably improve predictive accuracy. In addition, comparisons against other machine learning (ML) methods—such as Support Vector Machines, Random Forest, Gradient Boosting, and Ridge Regression—demonstrate the present ANN model’s superior ability to capture intricate nonlinear interdependencies between vessel motions and environmental conditions. Full article
(This article belongs to the Special Issue Advances in Storm Tide and Wave Simulations and Assessment)
Show Figures

Figure 1

17 pages, 3714 KiB  
Article
Estimating VS30 at South Korean Seismic Observatory Stations Through Horizontal and Vertical Ground Motions
by Eric Yee and Chang-kyu Lee
Appl. Sci. 2025, 15(1), 214; https://doi.org/10.3390/app15010214 - 30 Dec 2024
Viewed by 823
Abstract
This investigation attempts to estimate time-averaged shear wave velocity in the upper 30 m of surficial material, VS30, from the horizontal-to-vertical spectral ratios, HVSRs, of seismic observatory stations in the South Korean region. From 2016 to 2023, a collection of 783 [...] Read more.
This investigation attempts to estimate time-averaged shear wave velocity in the upper 30 m of surficial material, VS30, from the horizontal-to-vertical spectral ratios, HVSRs, of seismic observatory stations in the South Korean region. From 2016 to 2023, a collection of 783 three-component ground motions were obtained from 19 stations operated by the Korea Institute of Geoscience and Mineral Resources. HVSRs were extracted from 5% damped acceleration and velocity RotD50 response spectra at each site. Peak HVSR frequencies and amplitudes were extracted and regressed to field-measured VS30s at available sites. An evaluation of different frequency and amplitude conditions was made to ascertain any effects on the regression. Findings included confirmation on minimum frequency and having amplitude conditions were unnecessary. Additionally, another peak frequency to VS30 relationship derived from Central and Eastern North America captured most of the behavior found in the Korean dataset. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

18 pages, 4972 KiB  
Article
The Dynamic Soil–Foundation–Structure Interaction Problem in the Time Domain Using a Discrete Element Model
by Gülçin Tekin and Soner Gencer
Appl. Sci. 2024, 14(23), 10994; https://doi.org/10.3390/app142310994 - 26 Nov 2024
Viewed by 885
Abstract
This study investigates the influence of the soil–structure interaction (SSI) on the seismic performance of structures, focusing on the effects of foundation size, soil type, and superstructure height. While the importance of SSI is well recognized, its impact on structural behavior under seismic [...] Read more.
This study investigates the influence of the soil–structure interaction (SSI) on the seismic performance of structures, focusing on the effects of foundation size, soil type, and superstructure height. While the importance of SSI is well recognized, its impact on structural behavior under seismic loads remains uncertain, particularly in terms of whether it reduces or amplifies structural demands. A simplified dynamic model, incorporating both the mechanical behavior of the soil and structural responses, is developed and validated to analyze these effects. Using a discrete element approach and the 1940 El Centro earthquake for validation, the study quantitatively compares the response of soil-interacting structures to those with fixed bases. The numerical results show that larger foundation blocks (20 m × 20 m and 30 m × 30 m) increase the seismic response values across all soil types, causing the structure to behave more like a fixed-base system. In contrast, reducing the foundation size to 10 m × 10 m increases the flexibility of structures, particularly buildings built on soft soils, which affects the displacement and acceleration response spectra. Softer soils also increase natural vibration periods and extend the plateau region in regard to spectral acceleration. This study further finds that foundation thickness has a minimal impact on spectral displacement, but structures on soft soils show more than a 15% reduction in spectral displacement (SD) compared to those on hard soils, indicating a dampening effect. Additionally, increasing the building height from 7 to 21 m results in a more than 20% decrease in SD for superstructures with natural vibration periods exceeding 2.4 s, while taller buildings with longer natural vibration periods exhibit opposite trends. Structures built on soft soils experience larger foundation-level displacements, absorbing more seismic energy and reducing earthquake accelerations, which mitigates structural damage. These results highlight the importance of considering SSI effects in seismic design scenarios to achieve more accurate performance predictions. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

23 pages, 7096 KiB  
Article
Kohonen Mapping of the Space of Vibration Parameters of an Intact and Damaged Wheel Rim Structure
by Arkadiusz Rychlik, Oleksandr Vrublevskyi and Daria Skonieczna
Appl. Sci. 2024, 14(23), 10937; https://doi.org/10.3390/app142310937 - 25 Nov 2024
Cited by 1 | Viewed by 721
Abstract
The research presented in this paper takes another step towards developing methods for automatic condition verification to detect structural damage to vehicle wheel rims. This study presents the utilisation of vibration spectra via Fast Fourier Transform (FFT) and a neural network’s learning capabilities [...] Read more.
The research presented in this paper takes another step towards developing methods for automatic condition verification to detect structural damage to vehicle wheel rims. This study presents the utilisation of vibration spectra via Fast Fourier Transform (FFT) and a neural network’s learning capabilities for evaluating structural damage. Amplitude and time cycles of acceleration were analyzed as the structural response. These cycles underwent FFT analysis, leading to the identification of four diagnostic symptoms described by 20 features of the diagnostic signal, which in turn defined a condition vector. In the subsequent stage, the amplitude and frequency cycles served as input data for the neural network, and based on them, self-organizing maps (SOM) were generated. From these maps, a condition vector was defined for each of the four positions of the rim. Therefore, the technical condition of the wheel rim was determined based on the variance in condition parameter features, using reference frequencies of vibration spectra and SOM visualisations. The outcome of this work is a unique synergetic diagnostic system with innovative features, identifying the condition of a wheel rim through vibration and acoustic analysis along with neural network techniques in the form of Kohonen maps. Full article
(This article belongs to the Section Acoustics and Vibrations)
Show Figures

Figure 1

Back to TopTop