Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (24)

Search Parameters:
Keywords = abnormal gait recognition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3591 KB  
Article
Abnormal Gait Phase Recognition and Limb Angle Prediction in Lower-Limb Exoskeletons
by Sheng Wang, Chunjie Chen and Xiaojun Wu
Biomimetics 2025, 10(9), 623; https://doi.org/10.3390/biomimetics10090623 - 16 Sep 2025
Viewed by 595
Abstract
The phase detection of abnormal gait and the prediction of lower-limb angles are key challenges in controlling lower-limb exoskeletons. This study simulated three types of abnormal gaits: scissor gait, foot-drop gait, and staggering gait. To enhance the recognition capability for abnormal gait phases, [...] Read more.
The phase detection of abnormal gait and the prediction of lower-limb angles are key challenges in controlling lower-limb exoskeletons. This study simulated three types of abnormal gaits: scissor gait, foot-drop gait, and staggering gait. To enhance the recognition capability for abnormal gait phases, a four-discrete-phase division for a single leg is proposed: pre-swing, swing, swing termination, and stance phases. The four phases of both legs further constitute four stages of walking. Using the Euler angles of the ankle joints as inputs, the capabilities of a Convolutional Neural Network and a Support Vector Machine in recognizing discrete gait phases are verified. Based on these discrete gait phases, a continuous phase estimation is further performed using an adaptive frequency oscillator. For predicting the lower-limb motion angle, this study innovatively proposes an input scheme that integrates three-axis ankle joint angles and continuous gait phases. Comparative experiments confirmed that this information fusion scheme improved the limb angle prediction accuracy, with the Convolutional Neural Network–Long Short-Term Memory network yielding the best prediction results. Full article
(This article belongs to the Section Locomotion and Bioinspired Robotics)
Show Figures

Graphical abstract

18 pages, 2398 KB  
Article
Real-Time Detection of Distracted Walking Using Smartphone IMU Sensors with Personalized and Emotion-Aware Modeling
by Ha-Eun Kim, Da-Hyeon Park, Chan-Ho An, Myeong-Yoon Choi, Dongil Kim and Youn-Sik Hong
Sensors 2025, 25(16), 5047; https://doi.org/10.3390/s25165047 - 14 Aug 2025
Viewed by 968
Abstract
This study introduces GaitX, a real-time pedestrian behavior recognition system that leverages only the built-in sensors of a smartphone eliminating the need for external hardware. The system is capable of detecting abnormal walking behavior, such as using a smartphone while walking, regardless of [...] Read more.
This study introduces GaitX, a real-time pedestrian behavior recognition system that leverages only the built-in sensors of a smartphone eliminating the need for external hardware. The system is capable of detecting abnormal walking behavior, such as using a smartphone while walking, regardless of whether the device is handheld or pocketed. GaitX applies multivariate time-series features derived from accelerometer data, using ensemble machine learning models like XGBoost and Random Forest for classification. Experimental validation across 21 subjects demonstrated an average classification accuracy of 92.3%, with notably high precision (97.1%) in identifying distracted walking. In addition to real-time detection, the system explores the link between gait variability and psychological traits by integrating MBTI personality profiling, revealing the potential for emotion-aware mobility analytics. Our findings offer a scalable, cost-effective solution for mobile safety applications and personalized health monitoring. Full article
(This article belongs to the Special Issue AI in Sensor-Based E-Health, Wearables and Assisted Technologies)
Show Figures

Figure 1

17 pages, 11684 KB  
Article
Wi-FiAG: Fine-Grained Abnormal Gait Recognition via CNN-BiGRU with Attention Mechanism from Wi-Fi CSI
by Anming Dong, Jiahao Zhang, Wendong Xu, Jia Jia, Shanshan Yun and Jiguo Yu
Mathematics 2025, 13(8), 1227; https://doi.org/10.3390/math13081227 - 9 Apr 2025
Viewed by 815
Abstract
Abnormal gait recognition, which aims to detect and identify deviations from normal walking patterns indicative of various health conditions or impairments, holds promising applications in healthcare and many other related fields. Currently, Wi-Fi-based abnormal gait recognition methods in the literature mainly distinguish the [...] Read more.
Abnormal gait recognition, which aims to detect and identify deviations from normal walking patterns indicative of various health conditions or impairments, holds promising applications in healthcare and many other related fields. Currently, Wi-Fi-based abnormal gait recognition methods in the literature mainly distinguish the normal and abnormal gaits, which belongs to coarse-grained classification. In this work, we explore fine-grained gait rectification methods for distinguishing multiple classes of abnormal gaits. Specifically, we propose a deep learning-based framework for multi-class abnormal gait recognition, comprising three key modules: data collection, data preprocessing, and gait classification. For the gait classification module, we design a hybrid deep learning architecture that integrates convolutional neural networks (CNNs), bidirectional gated recurrent units (BiGRUs), and an attention mechanism to enhance performance. Compared to traditional CNNs, which rely solely on spatial features, or recurrent neural networks like long short-term memory (LSTM) and gated recurrent units (GRUs), which primarily capture temporal dependencies, the proposed CNN-BiGRU network integrates both spatial and temporal features concurrently. This dual-feature extraction capability positions the proposed CNN-BiGRU architecture as a promising approach for enhancing classification accuracy in scenarios involving multiple gaits with subtle differences in their characteristics. Moreover, the attention mechanism is employed to selectively focus on critical spatiotemporal features for fine-grained abnormal gait detection, enhancing the model’s sensitivity to subtle anomalies. We construct an abnormal gait dataset comprising seven distinct gait classes to train and evaluate the proposed network. Experimental results demonstrate that the proposed method achieves an average recognition accuracy of 95%, surpassing classical baseline models by at least 2%. Full article
(This article belongs to the Special Issue Data-Driven Decentralized Learning for Future Communication Networks)
Show Figures

Figure 1

17 pages, 4059 KB  
Article
A Deep Learning-Based Framework Oriented to Pathological Gait Recognition with Inertial Sensors
by Lucia Palazzo, Vladimiro Suglia, Sabrina Grieco, Domenico Buongiorno, Antonio Brunetti, Leonarda Carnimeo, Federica Amitrano, Armando Coccia, Gaetano Pagano, Giovanni D’Addio and Vitoantonio Bevilacqua
Sensors 2025, 25(1), 260; https://doi.org/10.3390/s25010260 - 5 Jan 2025
Cited by 3 | Viewed by 2625
Abstract
Abnormal locomotor patterns may occur in case of either motor damages or neurological conditions, thus potentially jeopardizing an individual’s safety. Pathological gait recognition (PGR) is a research field that aims to discriminate among different walking patterns. A PGR-oriented system may benefit from the [...] Read more.
Abnormal locomotor patterns may occur in case of either motor damages or neurological conditions, thus potentially jeopardizing an individual’s safety. Pathological gait recognition (PGR) is a research field that aims to discriminate among different walking patterns. A PGR-oriented system may benefit from the simulation of gait disorders by healthy subjects, since the acquisition of actual pathological gaits would require either a higher experimental time or a larger sample size. Only a few works have exploited abnormal walking patterns, emulated by unimpaired individuals, to perform PGR with Deep Learning-based models. In this article, the authors present a workflow based on convolutional neural networks to recognize normal and pathological locomotor behaviors by means of inertial data related to nineteen healthy subjects. Although this is a preliminary feasibility study, its promising performance in terms of accuracy and computational time pave the way for a more realistic validation on actual pathological data. In light of this, classification outcomes could support clinicians in the early detection of gait disorders and the tracking of rehabilitation advances in real time. Full article
Show Figures

Figure 1

9 pages, 877 KB  
Proceeding Paper
Gait-Driven Pose Tracking and Movement Captioning Using OpenCV and MediaPipe Machine Learning Framework
by Malathi Janapati, Leela Priya Allamsetty, Tarun Teja Potluri and Kavya Vijay Mogili
Eng. Proc. 2024, 82(1), 4; https://doi.org/10.3390/ecsa-11-20470 - 26 Nov 2024
Cited by 1 | Viewed by 2094
Abstract
Pose tracking and captioning are extensively employed for motion capturing and activity description in daylight vision scenarios. Activity detection through camera systems presents a complex challenge, necessitating the refinement of numerous algorithms to ensure accurate functionality. Even though there are notable characteristics, IP [...] Read more.
Pose tracking and captioning are extensively employed for motion capturing and activity description in daylight vision scenarios. Activity detection through camera systems presents a complex challenge, necessitating the refinement of numerous algorithms to ensure accurate functionality. Even though there are notable characteristics, IP cameras lack integrated models for effective human activity detection. With this motivation, this paper presents a gait-driven OpenCV and MediaPipe machine learning framework for human pose and movement captioning. This is implemented by incorporating the Generative 3D Human Shape (GHUM 3D) model which can classify human bones, while Python can classify the human movements as either usual or unusual. This model is fed into a website equipped with camera input, activity detection, and gait posture analysis for pose tracking and movement captioning. The proposed approach comprises four modules, two for pose tracking and the remaining two for generating natural language descriptions of movements. The implementation is carried out on two publicly available datasets, CASIA-A and CASIA-B. The proposed methodology emphasizes the diagnostic ability of video analysis by dividing video data available in the datasets into 15-frame segments for detailed examination, where each segment represents a time frame with detailed scrutiny of human movement. Features such as spatial-temporal descriptors, motion characteristics, or key point coordinates are derived from each frame to detect key pose landmarks, focusing on the left shoulder, elbow, and wrist. By calculating the angle between these landmarks, the proposed method classifies the activities as “Walking” (angle between −45 and 45 degrees), “Clapping” (angles below −120 or above 120 degrees), and “Running” (angles below −150 or above 150 degrees). Angles outside these ranges are categorized as “Abnormal”, indicating abnormal activities. The experimental results show that the proposed method is robust for individual activity recognition. Full article
Show Figures

Figure 1

18 pages, 1642 KB  
Article
Crouch Gait Recognition in the Anatomical Space Using Synthetic Gait Data
by Juan-Carlos Gonzalez-Islas, Omar Arturo Dominguez-Ramirez, Omar Lopez-Ortega and Jonatan Pena Ramirez
Appl. Sci. 2024, 14(22), 10574; https://doi.org/10.3390/app142210574 - 16 Nov 2024
Cited by 1 | Viewed by 1589
Abstract
Crouch gait, also referred to as flexed knee gait, is an abnormal walking pattern, characterized by an excessive flexion of the knee, and sometimes also with anomalous flexion in the hip and/or the ankle, during the stance phase of gait. Due to the [...] Read more.
Crouch gait, also referred to as flexed knee gait, is an abnormal walking pattern, characterized by an excessive flexion of the knee, and sometimes also with anomalous flexion in the hip and/or the ankle, during the stance phase of gait. Due to the fact that the amount of clinical data related to crouch gait are scarce, it is difficult to find studies addressing this problem from a data-based perspective. Consequently, in this paper we propose a gait recognition strategy using synthetic data that have been obtained using a polynomial based-generator. Furthermore, though this study, we consider datasets that correspond to different levels of crouch gait severity. The classification of the elements of the datasets into the different levels of abnormality is achieved by using different algorithms like k-nearest neighbors (KNN) and Naive Bayes (NB), among others. On the other hand, to evaluate the classification performance we consider different metrics, including accuracy (Acc) and F measure (FM). The obtained results show that the proposed strategy is able to recognize crouch gait with an accuracy of more than 92%. Thus, it is our belief that this recognition strategy may be useful during the diagnosis phase of crouch gait disease. Finally, the crouch gait recognition approach introduced here may be extended to identify other gait abnormalities. Full article
(This article belongs to the Section Biomedical Engineering)
Show Figures

Figure 1

20 pages, 3825 KB  
Article
A Lightweight Pathological Gait Recognition Approach Based on a New Gait Template in Side-View and Improved Attention Mechanism
by Congcong Li, Bin Wang, Yifan Li and Bo Liu
Sensors 2024, 24(17), 5574; https://doi.org/10.3390/s24175574 - 28 Aug 2024
Cited by 3 | Viewed by 1692
Abstract
As people age, abnormal gait recognition becomes a critical problem in the field of healthcare. Currently, some algorithms can classify gaits with different pathologies, but they cannot guarantee high accuracy while keeping the model lightweight. To address these issues, this paper proposes a [...] Read more.
As people age, abnormal gait recognition becomes a critical problem in the field of healthcare. Currently, some algorithms can classify gaits with different pathologies, but they cannot guarantee high accuracy while keeping the model lightweight. To address these issues, this paper proposes a lightweight network (NSVGT-ICBAM-FACN) based on the new side-view gait template (NSVGT), improved convolutional block attention module (ICBAM), and transfer learning that fuses convolutional features containing high-level information and attention features containing semantic information of interest to achieve robust pathological gait recognition. The NSVGT contains different levels of information such as gait shape, gait dynamics, and energy distribution at different parts of the body, which integrates and compensates for the strengths and limitations of each feature, making gait characterization more robust. The ICBAM employs parallel concatenation and depthwise separable convolution (DSC). The former strengthens the interaction between features. The latter improves the efficiency of processing gait information. In the classification head, we choose to employ DSC instead of global average pooling. This method preserves the spatial information and learns the weights of different locations, which solves the problem that the corner points and center points in the feature map have the same weight. The classification accuracies for this paper’s model on the self-constructed dataset and GAIT-IST dataset are 98.43% and 98.69%, which are 0.77% and 0.59% higher than that of the SOTA model, respectively. The experiments demonstrate that the method achieves good balance between lightweightness and performance. Full article
(This article belongs to the Special Issue Multi-Sensor Data Fusion)
Show Figures

Figure 1

16 pages, 15204 KB  
Article
E-BDL: Enhanced Band-Dependent Learning Framework for Augmented Radar Sensing
by Fulin Cai, Teresa Wu and Fleming Y. M. Lure
Sensors 2024, 24(14), 4620; https://doi.org/10.3390/s24144620 - 17 Jul 2024
Cited by 4 | Viewed by 1540
Abstract
Radar sensors, leveraging the Doppler effect, enable the nonintrusive capture of kinetic and physiological motions while preserving privacy. Deep learning (DL) facilitates radar sensing for healthcare applications such as gait recognition and vital-sign measurement. However, band-dependent patterns, indicating variations in patterns and power [...] Read more.
Radar sensors, leveraging the Doppler effect, enable the nonintrusive capture of kinetic and physiological motions while preserving privacy. Deep learning (DL) facilitates radar sensing for healthcare applications such as gait recognition and vital-sign measurement. However, band-dependent patterns, indicating variations in patterns and power scales associated with frequencies in time–frequency representation (TFR), challenge radar sensing applications using DL. Frequency-dependent characteristics and features with lower power scales may be overlooked during representation learning. This paper proposes an Enhanced Band-Dependent Learning framework (E-BDL) comprising an adaptive sub-band filtering module, a representation learning module, and a sub-view contrastive module to fully detect band-dependent features in sub-frequency bands and leverage them for classification. Experimental validation is conducted on two radar datasets, including gait abnormality recognition for Alzheimer’s disease (AD) and AD-related dementia (ADRD) risk evaluation and vital-sign monitoring for hemodynamics scenario classification. For hemodynamics scenario classification, E-BDL-ResNet achieves competitive performance in overall accuracy and class-wise evaluations compared to recent methods. For ADRD risk evaluation, the results demonstrate E-BDL-ResNet’s superior performance across all candidate models, highlighting its potential as a clinical tool. E-BDL effectively detects salient sub-bands in TFRs, enhancing representation learning and improving the performance and interpretability of DL-based models. Full article
(This article belongs to the Section Radar Sensors)
Show Figures

Figure 1

25 pages, 12688 KB  
Article
Gait Impairment Analysis Using Silhouette Sinogram Signals and Assisted Knowledge Learning
by Mohammed A. Al-masni, Eman N. Marzban, Abobakr Khalil Al-Shamiri, Mugahed A. Al-antari, Maali Ibrahim Alabdulhafith, Noha F. Mahmoud, Nagwan Abdel Samee and Yasser M. Kadah
Bioengineering 2024, 11(5), 477; https://doi.org/10.3390/bioengineering11050477 - 10 May 2024
Cited by 3 | Viewed by 2275
Abstract
The analysis of body motion is a valuable tool in the assessment and diagnosis of gait impairments, particularly those related to neurological disorders. In this study, we propose a novel automated system leveraging artificial intelligence for efficiently analyzing gait impairment from video-recorded images. [...] Read more.
The analysis of body motion is a valuable tool in the assessment and diagnosis of gait impairments, particularly those related to neurological disorders. In this study, we propose a novel automated system leveraging artificial intelligence for efficiently analyzing gait impairment from video-recorded images. The proposed methodology encompasses three key aspects. First, we generate a novel one-dimensional representation of each silhouette image, termed a silhouette sinogram, by computing the distance and angle between the centroid and each detected boundary points. This process enables us to effectively utilize relative variations in motion at different angles to detect gait patterns. Second, a one-dimensional convolutional neural network (1D CNN) model is developed and trained by incorporating the consecutive silhouette sinogram signals of silhouette frames to capture spatiotemporal information via assisted knowledge learning. This process allows the network to capture a broader context and temporal dependencies within the gait cycle, enabling a more accurate diagnosis of gait abnormalities. This study conducts training and an evaluation utilizing the publicly accessible INIT GAIT database. Finally, two evaluation schemes are employed: one leveraging individual silhouette frames and the other operating at the subject level, utilizing a majority voting technique. The outcomes of the proposed method showed superior enhancements in gait impairment recognition, with overall F1-scores of 100%, 90.62%, and 77.32% when evaluated based on sinogram signals, and 100%, 100%, and 83.33% when evaluated based on the subject level, for cases involving two, four, and six gait abnormalities, respectively. In conclusion, by comparing the observed locomotor function to a conventional gait pattern often seen in healthy individuals, the recommended approach allows for a quantitative and non-invasive evaluation of locomotion. Full article
Show Figures

Figure 1

17 pages, 1554 KB  
Article
A Hybrid Protection Scheme for the Gait Analysis in Early Dementia Recognition
by Francesco Castro, Donato Impedovo and Giuseppe Pirlo
Sensors 2024, 24(1), 24; https://doi.org/10.3390/s24010024 - 19 Dec 2023
Cited by 3 | Viewed by 2148
Abstract
Human activity recognition (HAR) through gait analysis is a very promising research area for early detection of neurodegenerative diseases because gait abnormalities are typical symptoms of some neurodegenerative diseases, such as early dementia. While working with such biometric data, the performance parameters must [...] Read more.
Human activity recognition (HAR) through gait analysis is a very promising research area for early detection of neurodegenerative diseases because gait abnormalities are typical symptoms of some neurodegenerative diseases, such as early dementia. While working with such biometric data, the performance parameters must be considered along with privacy and security issues. In other words, such biometric data should be processed under specific security and privacy requirements. This work proposes an innovative hybrid protection scheme combining a partially homomorphic encryption scheme and a cancelable biometric technique based on random projection to protect gait features, ensuring patient privacy according to ISO/IEC 24745. The proposed hybrid protection scheme has been implemented along a long short-term memory (LSTM) neural network to realize a secure early dementia diagnosis system. The proposed protection scheme is scalable and implementable with any type of neural network because it is independent of the network’s architecture. The conducted experiments demonstrate that the proposed protection scheme enables a high trade-off between safety and performance. The accuracy degradation is at most 1.20% compared with the early dementia recognition system without the protection scheme. Moreover, security and computational analyses of the proposed scheme have been conducted and reported. Full article
(This article belongs to the Special Issue Human Activity Recognition in Smart Sensing Environment)
Show Figures

Figure 1

24 pages, 10247 KB  
Article
Multimodal Gait Abnormality Recognition Using a Convolutional Neural Network–Bidirectional Long Short-Term Memory (CNN-BiLSTM) Network Based on Multi-Sensor Data Fusion
by Jing Li, Weisheng Liang, Xiyan Yin, Jun Li and Weizheng Guan
Sensors 2023, 23(22), 9101; https://doi.org/10.3390/s23229101 - 10 Nov 2023
Cited by 14 | Viewed by 4132
Abstract
Global aging leads to a surge in neurological diseases. Quantitative gait analysis for the early detection of neurological diseases can effectively reduce the impact of the diseases. Recently, extensive research has focused on gait-abnormality-recognition algorithms using a single type of portable sensor. However, [...] Read more.
Global aging leads to a surge in neurological diseases. Quantitative gait analysis for the early detection of neurological diseases can effectively reduce the impact of the diseases. Recently, extensive research has focused on gait-abnormality-recognition algorithms using a single type of portable sensor. However, these studies are limited by the sensor’s type and the task specificity, constraining the widespread application of quantitative gait recognition. In this study, we propose a multimodal gait-abnormality-recognition framework based on a Convolutional Neural Network-Bidirectional Long Short-Term Memory (CNN-BiLSTM) network. The as-established framework effectively addresses the challenges arising from smooth data interference and lengthy time series by employing an adaptive sliding window technique. Then, we convert the time series into time–frequency plots to capture the characteristic variations in different abnormality gaits and achieve a unified representation of the multiple data types. This makes our signal processing method adaptable to several types of sensors. Additionally, we use a pre-trained Deep Convolutional Neural Network (DCNN) for feature extraction, and the consequently established CNN-BiLSTM network can achieve high-accuracy recognition by fusing and classifying the multi-sensor input data. To validate the proposed method, we conducted diversified experiments to recognize the gait abnormalities caused by different neuropathic diseases, such as amyotrophic lateral sclerosis (ALS), Parkinson’s disease (PD), and Huntington’s disease (HD). In the PDgait dataset, the framework achieved an accuracy of 98.89% in the classification of Parkinson’s disease severity, surpassing DCLSTM’s 96.71%. Moreover, the recognition accuracy of ALS, PD, and HD on the PDgait dataset was 100%, 96.97%, and 95.43% respectively, surpassing the majority of previously reported methods. These experimental results strongly demonstrate the potential of the proposed multimodal framework for gait abnormality identification. Due to the advantages of the framework, such as its suitability for different types of sensors and fewer training parameters, it is more suitable for gait monitoring in daily life and the customization of medical rehabilitation schedules, which will help more patients alleviate the harm caused by their diseases. Full article
(This article belongs to the Special Issue Advanced Sensors for Health Monitoring in Older Adults)
Show Figures

Figure 1

20 pages, 7919 KB  
Article
WM–STGCN: A Novel Spatiotemporal Modeling Method for Parkinsonian Gait Recognition
by Jieming Zhang, Jongmin Lim, Moon-Hyun Kim, Sungwook Hur and Tai-Myoung Chung
Sensors 2023, 23(10), 4980; https://doi.org/10.3390/s23104980 - 22 May 2023
Cited by 18 | Viewed by 3732
Abstract
Parkinson’s disease (PD) is a neurodegenerative disorder that causes gait abnormalities. Early and accurate recognition of PD gait is crucial for effective treatment. Recently, deep learning techniques have shown promising results in PD gait analysis. However, most existing methods focus on severity estimation [...] Read more.
Parkinson’s disease (PD) is a neurodegenerative disorder that causes gait abnormalities. Early and accurate recognition of PD gait is crucial for effective treatment. Recently, deep learning techniques have shown promising results in PD gait analysis. However, most existing methods focus on severity estimation and frozen gait detection, while the recognition of Parkinsonian gait and normal gait from the forward video has not been reported. In this paper, we propose a novel spatiotemporal modeling method for PD gait recognition, named WM–STGCN, which utilizes a Weighted adjacency matrix with virtual connection and Multi-scale temporal convolution in a Spatiotemporal Graph Convolution Network. The weighted matrix enables different intensities to be assigned to different spatial features, including virtual connections, while the multi-scale temporal convolution helps to effectively capture the temporal features at different scales. Moreover, we employ various approaches to augment skeleton data. Experimental results show that our proposed method achieved the best accuracy of 87.1% and an F1 score of 92.85%, outperforming Long short-term memory (LSTM), K-nearest neighbors (KNN), Decision tree, AdaBoost, and ST–GCN models. Our proposed WM–STGCN provides an effective spatiotemporal modeling method for PD gait recognition that outperforms existing methods. It has the potential for clinical application in PD diagnosis and treatment. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

13 pages, 2597 KB  
Article
STJA-GCN: A Multi-Branch Spatial–Temporal Joint Attention Graph Convolutional Network for Abnormal Gait Recognition
by Ziming Yin, Yi Jiang, Jianli Zheng and Hongliu Yu
Appl. Sci. 2023, 13(7), 4205; https://doi.org/10.3390/app13074205 - 26 Mar 2023
Cited by 10 | Viewed by 3070
Abstract
Early recognition of abnormal gait enables physicians to determine a prompt rehabilitation plan for patients for the most effective treatment and care. The Kinect depth sensor can easily collect skeleton data describing the position of joints in the human body. However, the default [...] Read more.
Early recognition of abnormal gait enables physicians to determine a prompt rehabilitation plan for patients for the most effective treatment and care. The Kinect depth sensor can easily collect skeleton data describing the position of joints in the human body. However, the default human skeleton model of Kinect includes an excessive number of many joints, which limits the accuracy of the gait recognition methods and increases the computational resources required. In this study, we propose an optimized human skeleton model for the Kinect system and streamline the joints using a center-of-mass calculation. We integrate several techniques to propose an end-to-end, spatial–temporal, joint attention graph convolutional network (STJA-GCN) architecture. We conducted experiments with a fivefold cross-validation on two common datasets of information on abnormal gaits to evaluate the performance of the proposed method. The results show that the STJA-GCN achieved 93.17 and 92.08% accuracy on the two datasets, and compared to the original spatial–temporal graph convolutional network (ST-GCN), the recognition accuracy increases by 9.22 and 20.65%, respectively. Overall, the results demonstrate that the STJA-GCN can accurately recognize abnormal gaits and, thus, can support low-cost rehabilitation assessments at community hospitals or in patients’ homes. Full article
(This article belongs to the Section Biomedical Engineering)
Show Figures

Figure 1

14 pages, 13103 KB  
Article
Empirical Mode Decomposition and Hilbert Spectrum for Abnormality Detection in Normal and Abnormal Walking Transitions
by Bayu Erfianto, Achmad Rizal and Sugondo Hadiyoso
Int. J. Environ. Res. Public Health 2023, 20(5), 3879; https://doi.org/10.3390/ijerph20053879 - 22 Feb 2023
Cited by 9 | Viewed by 2412
Abstract
Sensor-based human activity recognition (HAR) is a method for observing a person’s activity in an environment. With this method, it is possible to monitor remotely. HAR can analyze a person’s gait, whether normal or abnormal. Some of its applications may use several sensors [...] Read more.
Sensor-based human activity recognition (HAR) is a method for observing a person’s activity in an environment. With this method, it is possible to monitor remotely. HAR can analyze a person’s gait, whether normal or abnormal. Some of its applications may use several sensors mounted on the body, but this method tends to be complex and inconvenient. One alternative to wearable sensors is using video. One of the most commonly used HAR platforms is PoseNET. PoseNET is a sophisticated platform that can detect the skeleton and joints of the body, which are then known as joints. However, a method is still needed to process the raw data from PoseNET to detect subject activity. Therefore, this research proposes a way to detect abnormalities in gait using empirical mode decomposition and the Hilbert spectrum and transforming keys-joints, and skeletons from vision-based pose detection into the angular displacement of walking gait patterns (signals). Joint change information is extracted using the Hilbert Huang Transform to study how the subject behaves in the turning position. Furthermore, it is determined whether the transition goes from normal to abnormal subjects by calculating the energy in the time-frequency domain signal. The test results show that during the transition period, the energy of the gait signal tends to be higher than during the walking period. Full article
Show Figures

Figure 1

22 pages, 4903 KB  
Article
Computer Vision and Machine Learning-Based Gait Pattern Recognition for Flat Fall Prediction
by Biao Chen, Chaoyang Chen, Jie Hu, Zain Sayeed, Jin Qi, Hussein F. Darwiche, Bryan E. Little, Shenna Lou, Muhammad Darwish, Christopher Foote and Carlos Palacio-Lascano
Sensors 2022, 22(20), 7960; https://doi.org/10.3390/s22207960 - 19 Oct 2022
Cited by 60 | Viewed by 11294
Abstract
Background: Gait recognition has been applied in the prediction of the probability of elderly flat ground fall, functional evaluation during rehabilitation, and the training of patients with lower extremity motor dysfunction. Gait distinguishing between seemingly similar kinematic patterns associated with different pathological entities [...] Read more.
Background: Gait recognition has been applied in the prediction of the probability of elderly flat ground fall, functional evaluation during rehabilitation, and the training of patients with lower extremity motor dysfunction. Gait distinguishing between seemingly similar kinematic patterns associated with different pathological entities is a challenge for the clinician. How to realize automatic identification and judgment of abnormal gait is a significant challenge in clinical practice. The long-term goal of our study is to develop a gait recognition computer vision system using artificial intelligence (AI) and machine learning (ML) computing. This study aims to find an optimal ML algorithm using computer vision techniques and measure variables from lower limbs to classify gait patterns in healthy people. The purpose of this study is to determine the feasibility of computer vision and machine learning (ML) computing in discriminating different gait patterns associated with flat-ground falls. Methods: We used the Kinect® Motion system to capture the spatiotemporal gait data from seven healthy subjects in three walking trials, including normal gait, pelvic-obliquity-gait, and knee-hyperextension-gait walking. Four different classification methods including convolutional neural network (CNN), support vector machine (SVM), K-nearest neighbors (KNN), and long short-term memory (LSTM) neural networks were used to automatically classify three gait patterns. Overall, 750 sets of data were collected, and the dataset was divided into 80% for algorithm training and 20% for evaluation. Results: The SVM and KNN had a higher accuracy than CNN and LSTM. The SVM (94.9 ± 3.36%) had the highest accuracy in the classification of gait patterns, followed by KNN (94.0 ± 4.22%). The accuracy of CNN was 87.6 ± 7.50% and that of LSTM 83.6 ± 5.35%. Conclusions: This study revealed that the proposed AI machine learning (ML) techniques can be used to design gait biometric systems and machine vision for gait pattern recognition. Potentially, this method can be used to remotely evaluate elderly patients and help clinicians make decisions regarding disposition, follow-up, and treatment. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

Back to TopTop