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Abstract: Parkinson’s disease (PD) is a neurodegenerative disorder that causes gait abnormalities.
Early and accurate recognition of PD gait is crucial for effective treatment. Recently, deep learning
techniques have shown promising results in PD gait analysis. However, most existing methods
focus on severity estimation and frozen gait detection, while the recognition of Parkinsonian gait
and normal gait from the forward video has not been reported. In this paper, we propose a novel
spatiotemporal modeling method for PD gait recognition, named WM–STGCN, which utilizes
a Weighted adjacency matrix with virtual connection and Multi-scale temporal convolution in a
Spatiotemporal Graph Convolution Network. The weighted matrix enables different intensities to be
assigned to different spatial features, including virtual connections, while the multi-scale temporal
convolution helps to effectively capture the temporal features at different scales. Moreover, we
employ various approaches to augment skeleton data. Experimental results show that our proposed
method achieved the best accuracy of 87.1% and an F1 score of 92.85%, outperforming Long short-
term memory (LSTM), K-nearest neighbors (KNN), Decision tree, AdaBoost, and ST–GCN models.
Our proposed WM–STGCN provides an effective spatiotemporal modeling method for PD gait
recognition that outperforms existing methods. It has the potential for clinical application in PD
diagnosis and treatment.

Keywords: gait recognition; graph convolution network; Parkinson’s disease

1. Introduction

With the increase in the aging population, age-related cognitive disorders have become
more prevalent in recent years. Parkinson’s disease (PD), a common progressive degenera-
tive disease of the central nervous system, is characterized by movement disorders such
as muscle stiffness, hand tremor, and slow movement. Early detection of PD is crucial for
timely treatment and proper medication.

Gait is an important indicator of health status, and the detection of gait abnormalities
can serve as an indication to obtain further medical assessment and treatment. Reference [1]
observes that analyzing a patient’s gait could be utilized as a clinical diagnostic tool to
help doctors recognize two dementia subtypes, Alzheimer’s disease (AD) and Lewy body
disease (LBD). This study distinguished LBD and AD using four key gait features: step
time variability, step length variability, step time asymmetry, and swing time asymmetry.
Beauchet et al. [2] found that a high mean and coefficient of variation of stride length were
characteristic of moderate dementia, while an increased coefficient of variation of stride
duration was associated with mild cognitive impairment status. Mirelman A. et al. [3]
studied the effect of Parkinson’s disease on gait. They highlighted the gait features unique
to Parkinson’s disease. In the early stages of Parkinson’s disease, patients have a slower
gait and shorter stride length compared to healthy individuals. These gait changes are
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common in patients with Parkinson’s disease but are not unique, as many diseases reduce
gait speed. However, decreased arm swing and smoothness of movement and increased
interlimb asymmetry are more specific to Parkinson’s disease and are usually the first
motor symptoms. Gait stiffness and staggering may also occur in later stages.

Clinical gait assessment is a commonly used method for performing gait analysis,
which is an assessment performed by a clinician. Specifically, the physician needs to
observe the patient’s walking performance and then give a score based on criteria of the
Unified Parkinson’s Disease Rating Scale (UPDRS) [4] and Simpson–Angus Scale (SAS) [5].
Moreover, utilizing different types of sensors is a popular method. For example, sensors
are embedded in the shoe insoles to measure the pressure of the foot against the ground
while walking [6]; inertial measurement units and goniometers are fixed to joints, such as
the waist and elbow, to measure the walking speed and acceleration [7]. Moreover, some
studies have proposed video-based methods [8–10]. For example, reflective markers are
attached to diverse locations on the human body. The location and trajectory of the markers
are analyzed to provide kinematic information by recording with a digital camera. The
Vicon Vantage system [10] requires about 8–14 high-precision cameras to provide accurate
3D motion data for gait analysis.

These existing gait analysis methods either require specialist assessment or particular
sensors and equipment. It is too costly to deploy such systems. Furthermore, constructing
a specific testing environment and training a team to calibrate the system and manage
complex data necessitate substantial investment.

To solve this issue, a convenient, low-cost, and clinically practical method is needed to
recognize Parkinsonian gait. In clinical practice, Parkinson’s disease screening, follow-up,
regular examination, and evaluation of treatment efficacy can be performed in a way that is
easily implemented in a clinical setting and is both feasible and effective for patients. With
advancements in computer vision, advanced techniques, such as human pose estimation
algorithms, have made remarkable progress. Pose estimation is a process that involves
localizing a person’s joints in an image or video, and it has been applied to vision-based
gait analysis. Previous work on vision-based gait assessment explored the use of the
Microsoft Kinect sensor, thus using the 3D joint position provided by the system to analyze
Parkinson’s disease gait [11,12]. However, due to the technical limitations of the Kinect
depth sensor, 3D joint positions can only be accurately extracted when the participant is
located between (0.5 and 4.5) meters from the sensor, which limits the scenarios that can be
widely used [13,14].

Recently, there has been an upsurge of interest amongst researchers in conducting
gait analysis on conventional color video, which eliminates the requirement for depth
sensors and enables the analysis of whole walking durations using a solitary camera. The
emergence of novel computer vision techniques and machine learning algorithms has
enabled more robust and automated analysis of video data captured by consumer-grade
devices. In particular, advanced human pose estimation libraries, such as OpenPose,
Detectron, and AlphaPose, have demonstrated their proficiency in extracting precise 2D
joint pixel coordinates from video recordings [15–17]. Prior research has investigated the
utilization of 2D joint trajectories to compute domain-specific features for the identification
of Parkinsonian gait and dyskinesia rating from color videos, as highlighted in Refs. [18–21].
Moreover, the study conducted by Lu et al. [22] delved into the utilization of 3D joint
trajectories extracted from video for predicting gait scores related to Parkinson’s syndrome.

Model training in deep learning requires an extensive amount of data. However, there
are various restrictions on medical sample acquisition: video collection is restricted by
laws and patient privacy, while clinicians are not sufficiently motivated to record patients
walking data. The lack of data hinders the application of deep learning. An alternative
approach to obtaining real data is to generate synthetic data [23,24]. For example, random
noise can be added to existing data, thus extending the available real data and training
deep learning models [25]. Hence, data augmentation may be a valuable tool to overcome
the inaccessibility of real data in the medical field [26].
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Moreover, the input data in the spatial domain is skeletal data, which can be rep-
resented in graphical form, while convolution functions on the time axis can be used to
capture temporal features such as joint dynamics (frequency, velocity). Naturally, the
spatiotemporal graph convolutional network (ST–GCN) [27] is a well-suited model, as it
leverages the inherent graph structure of human skeletons, providing an efficient mech-
anism for learning directly from joint trajectories. The advantage is that it is no longer
necessary to develop and compute engineered gait features from joint trajectories, as ST–
GCN can learn to utilize the most significant aspects of gait patterns directly from joint
trajectories. ST–GCNs have been effectively combined with human pose estimation li-
braries to score Parkinsonian leg agility [28]. However, the use of these models to recognize
Parkinsonian gait directly on a forward video remains unexplored.

In this paper, we hypothesize that Parkinson’s patients have unique gait features that
reflect disease-specific cognitive features and underlying pathology. We focus on devel-
oping a novel video-based Parkinsonian gait recognition method, using the skeleton and
joint location from pose estimation to extract gait features and detect PD gait. The correct
identification of brain damage diseases is very useful for clinicians to design appropriate
treatment methods.

The present work offers major contributions in three aspects: (1) We propose to use a
novel spatiotemporal modeling method based on skeleton data to recognize Parkinsonian
gait; in addition, we construct a graph neural network to capture the topological properties
of the human skeleton; (2) We design the weighted matrix with virtual connections to meet
the specific demands in gait skeleton modeling and propose a multi-scale temporal convo-
lution network to improve the temporal aggregation capability; and (3) An experiment on
the dataset shows that compared to other machine learning methods, the proposed model
achieves superior performance.

2. Related Work

This section provides a review of related works from two perspectives: gait patterns
analysis and Parkinson’s gait analysis using machine learning.

2.1. Gait Patterns Analysis

In the gait analysis domain, two main data modalities are commonly employed: sensor-
based and vision-based approaches. The promising performance of sensors has drawn
interest in their application to gait analysis. Lou et al. [29] developed an in-shoe wireless
plantar pressure measurement system with a flexible pressure sensor embedded to capture
plantar pressure distribution for quantitative gait analysis. Camps et al. [30] proposed to
detect the freezing of gait in Parkinson’s disease patients by using a waist-worn inertial
measurement unit (IMU). Seifert et al. [31] used radar micro-Doppler signatures to classify
different walking styles. Although the sensor-based approach has demonstrated the ability
to reflect human kinematics, the need for specific sensors or devices and their requirement
to be worn on the human body have limited their convenience in some applications. The
vision-based approaches are more convenient and only require cameras for data collection.
Prakash et al. [32] utilized an RGB camera to capture joint coordinates from five reflective
markers attached to the body during walking, while Seifallahi et al. [33] employed a marker-
less system using Kinect cameras to capture RGB–D data to detect Alzheimer’s disease
from gait.

Recently, skeleton data have become a popular choice in gait analysis. Some studies
have utilized the Microsoft Kinect camera and its camera SDK to generate 3D skeleton
data. For example, Nguyen et al. [34] proposed an approach to predict the gait abnormality
index by using the joint coordinates of the 3D skeleton as inputs for auto-encoders and then
distinguishing abnormal gaits based on reconstruction errors. Elsewhere, Jun et al. [35]
proposed a two-recurrent neural network-based autoencoder to extract features from 3D
skeleton data for abnormal gait recognition and assessed the performance of discriminative



Sensors 2023, 23, 4980 4 of 20

models with these features. In our study, we propose to extract gait features using the
skeleton and joint locations obtained from pose estimation.

2.2. Parkinson’s Gait Analysis Using Machine Learning

Researchers have experimented with data collected by various sensors for Parkinson’s
disease gait analysis. Shalin et al. [36] utilized LSTM to detect freezing of gait (FOG) in
PD from plantar pressure data. The experiment required participants with PD to wear
pressure-sensitive insole sensors while walking a predefined, provoking path. Labeling
was then performed, and 16 features were manually extracted. The best FOG detection
model had an average sensitivity of 82.1% and an average specificity of 89.5%. However,
these particular sensors and devices are too costly to deploy. In addition, they need to be
operated on in a specific place under the guidance of a professional doctor.

Due to the advances in action recognition [27,37–41], a growing number of researchers
have applied it to gait recognition [42–44], and several studies have used video-based
methods to automatically analyze dyskinesia symptoms in PD patients. Mandy Lu et al. [21]
proposed a novel temporal convolutional neural network model to assess PD severity from
gait videos, which extracts the 3D body skeleton of the participant and estimates the MDS–
UPDRS score. Li et al. [20] extracted human joint sequences from videos recorded by PD
patients and calculated motion features using a pose estimation method. Then, they applied
random forest for multiclass classification and assessed clinical scores based on the UPDRS
and Unified Dyskinesia Rating Scale (UDysRS) [45]. Sabo et al. [19] proposed the utilization
of a spatiotemporal graph convolutional network (ST–GCN) architecture and training
procedure to predict clinical scores of Parkinson’s disease gait from videos of dementia
patients. K. Hu et al. [46] proposed a graph convolutional neural network architecture
that represents each video as a directed graph to detect PD frozen gait. The experimental
results based on the analysis of over 100 videos collected from 45 patients during clinical
evaluation have indicated that the proposed method performs well, achieving an AUC
of 0.887.

Based on our literature survey, although several studies have evaluated gait videos of
Parkinsonian patients, their focus has primarily been on estimating Parkinson’s severity
and detecting frozen gait, while recognizing PD gait versus normal gait from the for-
ward video has yet to be reported. Additionally, traditional engineering solutions have
proven insufficient to accurately assess motor function based on videos. To address this
limitation, we have developed a novel deep-learning based framework to extract skeletal
sequence features from forward videos of PD patients, with the ultimate goal of recognizing
Parkinson’s gait.

3. Materials and Methods

This part explains our dataset and how the data was preprocessed, and then the model
is explained clearly. Figure 1 shows our methodology framework. Our method consists of
two phases: feature extraction and gait recognition. Firstly, we augmented the video and
then used OpenPose to extract skeleton data. In addition, we augmented the joint coordi-
nation space. Secondly, the skeleton data was constructed into a spatiotemporal graph and
input to WM–STGCN, and the information in both temporal and spatial dimensions was
aggregated by the spatiotemporal graph convolution operation to perform Parkinsonian
gait recognition.

3.1. Dataset

We collected the data in an enclosed room for the normal walking video. The wall
color was white, with no other colors. The space was 8 m long and 3 m wide, so the cameras
could be located. Figure 2 shows the data collection environment. We used two Samsung
mobile phones as our recording devices. The video parameters were 1080× 1920 pixels at
30 Hz. As depicted in Figure 3, the cameras should be placed in forward of the patient’s
walking direction.
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Figure 3. Walking trajectory and camera locations.

Participants wear their comfortable clothes (recommended wear: pants and sweatshirt
or T-shirt) and walk straight from beginning to end, then turn around and walk back.
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During the walk, participants should walk at a normal speed, and for each sequence, the
time length is kept to approximately (10 to 20) seconds.

After that, we processed the data to make sure the content was only the frontal view
walking. Table 1 lists the collected data details.

Table 1. Details of the collected data.

Type Normal

Number of Participants 50

Mean height 174.6 cm

Resolution 1080 × 1920 pxl

Frame rate 30 fps

Length of sample video 10–20 s

Steps of sample video 6–8 steps

We obtained six videos from YouTube for Parkinsonian walking data [47–52]. To
ensure clarity, their resolution was at least 652× 894 pixels, and the frame rate was 30 fps.
The video clips of a Parkinson’s patient walking toward the camera without the assistance
of others were selected as the data used in our study.

3.2. Data Augmentation

The difficulty in obtaining videos of PD patients walking resulted in a low amount of
data. To reduce the class imbalance, we needed to perform data augmentation. Additionally,
augmentation can increase the generalization capability of the system. There are two
approaches: video augmentation and joint coordinate space augmentation; Figure 4 shows
the augmentation pipeline.
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Figure 4. Data augmentation pipeline.

We first used temporal partition to crop the original videos, then flipped the video
horizontally. After extracting skeleton data, we made joint coordinates space augmentation
by translating and adding Gaussian noise.

3.2.1. Video Augmentation

In the video augmentation field, temporal partition and horizontal flipping are two
effective tools to augment data on videos.
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We used temporal cropping to implement partition: each video sequence of length l
was temporally cropped to a fixed new sequence length k, where k = 90 frames, as shown
in Figure 5. This allowed a video sequence to be partitioned with an interval of 20 frames.
For horizontal flipping, we flipped the entire video to obtain a new video sequence.
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3.2.2. Joint Coordinate Space Augmentation

After we extracted skeleton data from videos, a natural idea to augment data is to
directly focus on the joint coordinates space. The skeleton data are stored as a dictionary
data structure (JSON format files) to allow key and value search to modify the joint value.

We performed the coordinate space augmentation processing in the following
two ways:

1. Joint coordinates were translated in the horizontal direction to a new position to allow
change in the viewing angle. As shown in Figure 6a, we set the offset ∆ =(−0.1, 0.15, 0.2),
which means we translated the coordinates of the skeleton data with ∆.

2. Gaussian noise was added to the joint coordinate. Figure 6b shows that the addition
of appropriate noise perturbs the skeletal data within a certain range, which allows
errors in joint coordinate calculation—for example, interference with the environment,
such as background color or cloth texture. We set three Gaussian parameter groups
for the experiment for ϕ(µ, σ), µ = 0, σ = (0.01, 0.05, 0.1).
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Figure 6. Joint coordinate space augmentation. (a) Joint coordinate translation; (b) Addition of
Gaussian noise to the skeleton data.
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3.3. Data Preprocessing
3.3.1. Skeleton Data Extraction

The video sequences are processed to extract 2D skeleton features, where each frame
is analyzed using OpenPose, owing to its proficient and robust detection capabilities for 2D
joint landmarks in upright individuals. We extract 25 landmarks in the OpenPose-skeleton
format, which encompass 2D coordinate values (x, y) and an associated confidence score c
that indicates the level of estimation reliability.

The key points roughly correspond to body parts: 0: Nose, 1: Neck, 2: RShoulder, 3:
RElbow, 4: RWrist, 5: LShoulder, 6: LElbow, 7: LWrist, 8: MidHip, 9: RHip, 10: RKnee,
11: RAnkle, 12: LHip, 13: LKnee, 14: LAnkle, 15: REye, 16: LEye, 17: REar, 18: LEar, 19:
LBigToe, 20: LSmallToe, 21: LHeel, 22: RBigToe, 23: RSmallToe, 24: RHeel (L, left; R, right;
Mid, middle).

To obtain sequential key-point coordinate data for each gait sequence, we performed
2D real-time 25-key point body estimation on every image using OpenPose. Figure 7
illustrates the resulting skeleton sequence for a typical normal participant.
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3.3.2. Graph Structure Construction

To construct a spatiotemporal graph structure from a sequence comprising N nodes
and T frames [27], we employed a pose graph G = (V, E). The node set
V =

{
vi

t
∣∣ t = 1, . . . T, i = 1, . . . N

}
denotes the joint positions, where vi

t represents the
i-th joint at the t-th frame. The feature vector of vi

t consists of the two-dimensional coordi-
nate of this joint and the confidence score.

The edge set E includes: (a) the intra-skeleton connections, which connect the nodes
of each frame according to the connections of human joints, where these edges form spatial
edge; Figure 8a shows that we notate it as Es =

{
vi

tv
j
t

∣∣∣(i, j) ∈ H
}

, where H is a set of
naturally connected human joints. (b) The inter-frame connections that connect the same
joints (nodes) in two consecutive frames, where these edges form temporal edges. Figure 8b
shows that we notate it as

{
vi

tv
i
t+1
}

.

3.4. WM–STGCN
3.4.1. WM–STGCN Structure

Figure 9 shows the proposed WM–STGCN model architecture, which takes a sequence
of human joint coordinates extracted from gait videos as input and predicts the gait category.
Figure 9a provides an overall depiction of the proposed structure, whereas Figure 9b depicts
the spatial module, and Figure 9c shows the temporal module.

The whole network comprises N GCN blocks (N = 9), with output channels of 64, 64,
64, 128, 128, 128, 256, 256, and 256, respectively. A global average pooling layer is added to
the back end of the network, and the final output is sent to a SoftMax classifier to obtain the
ultimate prediction result. To ensure training stability, residual connections are included in
each basic block.
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Each GCN block F comprises a spatial module G and a temporal module T . The
spatial module G combines the features of different joints using sparse matrices derived
from the adjacency matrix A, as illustrated in Figure 10a. The output of G is subsequently
processed by T to extract temporal features. The computations of F can be summarized
as follows:

F (X) = T (G(X, A)) + X (1)
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Figure 10b illustrates the input feature map of the first GCN block, wherein a skeleton
feature X ∈ RT×V×C is given as input, where T denotes temporal length, V represents the
number of skeleton joints, and C signifies the number of channels. Notably, the C input to
the first GCN block equals 3.

3.4.2. Spatial Module G: Graph Convolution in the Spatial Domain

In the spatial domain, the convolution of the graph on a certain node vi is defined
as follows:

fout(vi) = ∑vj∈Bi

1
Zij

fin
(
vj
)
·ω
(
li
(
vj
))

(2)

where fin and fout represent the input and output feature maps, respectively; vi represents a
particular node in the spatial dimension; Bi represents the sampling area for the convolution
of that node (in this work, Bi is the 1-neighbor set of vi); Z is the normalizing term, which
equals the cardinality of the corresponding subset; and w represents the weight function
that provides the weight matrix.

We divided the neighborhood B into three subsets of self-connection, physical connec-
tion, and virtual connection, and different labels can be assigned to each subset. We discuss
the virtual connection in Section 3.4.3. Here, li is a mapping function:
li
(
vj
)
→ {0, . . . , K, (K = 3)} , which maps a node in the neighborhood to its subset label.

Figure 11a shows a graph of the input skeleton sequence, and x1 represents the root
node itself (orange), x2 represents the physically connected node (blue), and x3 represents
the virtually connected node (green). We use node 1 as the root node of this convolutional
computation to explain the mapping strategy. Nodes 2, 4, 9 are its sampled neighboring
nodes, which form the neighborhood B, where node 9 provides a virtual connection.
Accordingly, as shown in Figure 11b, the adjacency matrix of node 3 is divided into three
submatrices Ak, but ensure that where A = ∑

k
Ak, k = 1, 2, 3.

Simplifying and transforming Equation (2), the spatial graph convolution can be
implemented using the following:
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in Ak), k = 3 (3)

Ak = Λ−
1
2

k AkΛ−
1
2

k (4)

where, k in Equation (3) represents the amount of convolutional kernel, which is 3 according

to the mapping strategy; Ak is an N×N normalized adjacency matrix; Λ−
1
2

k is a normalized
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diagonal matrix. ω is a 1 × 1 convolution operation, which represents the weight function
in Equation (2).
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In the spatial domain, the input is represented as Gin ∈ RT×V×Cin ; upon applying the
spatial graph convolution, the resulting output feature map is denoted Gout ∈ RT×V×Cout .

3.4.3. Weighted Adjacency Matrix with Virtual Connection

The spatial structure of the skeleton is represented by an artificial, predefined
adjacency matrix, which represents the a priori knowledge of the connections of the
human skeleton. However, it cannot generate new connections between non-adjacent
joints during training, which means that the learning ability of the graph convolutional
network is limited and that such an adjacency matrix is not an optimal choice.

To address the above problems, we design a novel adjacency matrix, which has the
following two features:

Virtual connection. We combined some unique features of Parkinson’s gait com-
pared to normal gait (including small amplitude of arm swing, fast frequency and small
stride length of foot movement, and random little steps) and introduced some virtual
connections, i.e., unnaturally connected joints.

Weighted adjacent matrix. We used a scalar to multiply with the original adja-
cency matrix to get a new adjacency matrix, which makes distinct kinds of joints with
different weights.
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With these new designs, we make it possible to generate connections between non-
adjacent joints, and give different weights for physical connections, virtual connections
and self-connections. We design a new adjacency matrix and obtain a skeletal space
structure that is more suitable for describing the Parkinson samples, thus enabling better
gait recognition. Specifically, aij is a scalar:

aij =


α, i f i = j
β, i f joint i and joint j are connected physically
γ, i f joint i and joint j are connected virtually

(5)

If we set the value of aii = 0, this indicates that we eliminate the self-connection
of each joint. Additionally, we distinguish between physical and virtual dependencies
between joints. The physical dependency, represented by β and depicted as blue solid lines
in Figure 12a, captures the intrinsic connection between joints. The virtual dependency,
depicted as orange dashed lines in Figure 12a, represents the extrinsic connection between
two joints, which is also crucial for gait recognition. We use the parameter γ to model
this virtual relationship. For example, although the left hip and left hand are physically
disconnected, their relationship is essential in identifying Parkinsonian gait.
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After adding weights, the graph convolution formula in spatial dimension can be
transformed from Equation (3) to the following:
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in(Ak·a) (6)

Figure 12b shows the process of weight addition, where the adjacency matrix of each
layer consists of Ak and weight a together, k denotes the number of subsets, and the dashed
line indicates that the residual convolution operation is required only when Cin is different
from Cout.

For the experiment, we tested 4 cases: 1© α = 1, β = 1, γ = 0; 2© α = 1, β = 1,
γ = 0.5; 3© α = 0, β = 1, γ = 0.5; 4© α = 0.2, β = 1, γ = 0.5. This means that we
tested the performance of the model with self-connection, 0.5 weight virtual connection,
without self-connection and 0.2 weight self-connection and 0.5 weight virtual connection.
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Figure 13 shows the corresponding weighted adjacency matrixes. The red box marks the
representation of the virtual connection in the matrix.
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3.4.4. Temporal Module T : Graph Convolution in Temporal Domain

G captures the spatial dependencies between adjacent joints, and to model the tempo-
ral changes of these features, we employed a multi-scale temporal convolution network
(MS–TCN). Unlike many existing works that employ temporal convolution networks
with fixed kernel sizes kt × 1 throughout the architecture, we designed a MS–TCN, as
shown in Figure 14, to promote the flexibility and temporal modeling capability by using
multi-group convolution.
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The adopted multi-scale TCN contains five branches: a 1 × 1 convolution branch, a
Max-pooling branch, and three temporal convolutions with kernel size 5 and dilations
from (1 to 3). Every branch contains a 1 × 1 convolution, which is used to reduce channel
dimension before the expensive convolution 3 × 1. Additionally, the 1 × 1 convolution
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introduces additional nonlinearity via a nonlinear activation function, thereby increasing
the network’s complexity, and enabling it to be deeper. This output continues to be fed into
the spatial graph convolution, as shown in Figure 9, and it is fed into the fully connected
layer only in the last GCN block.

The MS–TCN enhances vanilla temporal convolution layer’s receptive fields, and
improves the temporal aggregation capability. At the same time, it reduces computational
cost and parameters through reduced channel width for each branch.

4. Experiments
4.1. Implementation Details

We used NVIDIA GeForce RTX 2080Ti GPU with 12 GB memory, Intel(R) Core(TM) i9-
10900 CPU with 2.80 GHz 64 GB RAM to build the deep learning framework using PyTorch
in Windows 10 environment. We used CUDA, Cudnn, OpenCV, and other required libraries
to train and test the Parkinsonian gait recognition model. The batch size during training
and testing was 16. The base learning rate was 0.1. We chose SGD as optimizer with
step [20,30,40,50]. Following data preprocessing, we obtained 160 normal samples, and
150 Parkinsonian samples. We split our dataset into a training set and a test set, with
a ratio of 80% and 20%, respectively. The test set comprised 32 normal samples and
30 Parkinsonian samples.

4.2. Evaluation Metric

In this study, we defined Parkinsonian gait samples as positive and normal gait
samples as negative. We utilized widely accepted evaluation metrics, including True
Positive (TP), False Negative (FN), False Positive (FP), and True Negative (TN), to accurately
classify samples into these categories. To evaluate the performance of our method, we
selected accuracy, precision, sensitivity, specificity, false alarm, miss rate, and F1 score as
our evaluation metrics. A higher value for accuracy, precision, sensitivity, specificity, and
F1 score indicates better model performance. In contrast, a smaller value for false alarm
and miss rate indicates better performance.

Accuracy reflects the ability of the model to correctly judge the overall sample, i.e.,
the ability to correctly classify Parkinsonian samples as positive, and normal samples
as negative.

Precision reflects the ability of the model to correctly predict the positive samples, i.e.,
how many of the predicted Parkinsonian samples are true Parkinsonian samples.

Sensitivity is defined as the proportion of Parkinsonian samples predicted to be
Parkinsonian samples to the total number of Parkinsonian samples. Specificity reflects
the proportion of normal samples that are predicted as normal samples to the total
normal samples.

accuracy =
TP + TN

TP + TN + FP + FN
(7)

precision =
TP

TP + FP
(8)

sensitivity = TPR =
TP

TP + FN
(9)

speci f icity = TNR =
TN

FP + TN
(10)

False alarm, also known as false positive rate or false detection rate, is obtained by
calculating the proportion of normal samples predicted as Parkinsonian samples to the
total normal samples. Miss rate is obtained by calculating the proportion of Parkinsonian
samples that are predicted as normal samples to the total Parkinsonian samples.

f alse alarm = FPR =
FP

FP + TN
(11)
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miss rate = FNR =
FN

TP + FN
(12)

Furthermore, F1 score is widely used in model evaluation. This is the harmonic
mean of the precision and recall, which can reflect the performance of the model in a
balanced way.

F1 score = 2× Precision× Recall
Precision + Recall

(13)

4.3. Results and Discussion

We experimented with different parameters of Gaussian noise augmentation with
µ = 0, and σ = (0.01, 0.05, 0.1). In Table 2 and Figure 15, the experimental results show
that the model had the highest accuracy of 85.48% for σ = 0.1. Although the precision was
4.87% lower compared to the group with σ = 0.01, the sensitivity increased from 60% to
80%, improving the performance of predicting Parkinsonian samples as positive, which
was the best of the three experimental groups. Meanwhile, the miss rate was only 20%,
which was much lower than the 40% at σ = 0.05. Overall, the model showed the best
performance for detecting Parkinson’s samples at σ = 0.1. Figure 16 shows the accuracy
during training based on several groups of Gaussian noise.

Table 2. Different parameter results.

Group Accuracy Precision Sensitivity Specificity False
Alarm/FPR

Miss Rate
/FNR

Gaussian noise
(µ = 0, σ = 0.01) 74.19% 93.75% 50.0% 96.87% 3.12% 50.0%

Gaussian noise
(µ = 0, σ = 0.05) 75.81% 85.71% 60.0% 90.62% 9.37% 40.0%

Gaussian noise
(µ = 0, σ = 0.1) 85.48% 88.88% 80.0% 90.62% 9.37% 20.0%Sensors 2023, 23, x FOR PEER REVIEW 16 of 21 
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For the different weight adjacencies, we tested four cases. When α = 1, β = 1, γ = 0,
which is the original matrix containing only self-connections and physical connections.
In Table 3, the experimental results showed that the accuracy reached 72.58%, and the
recognition miss rate of Parkinson’s gait was 46.67%, the lowest among the four groups.
When adding γ = 0.5, i.e., 0.5 weight of virtual connections, we found that although
the accuracy rate decreased slightly from 72.58% to 70.97%, the sensitivity and miss
rate increased.

Table 3. Results of different weight parameters.

Weight Parameters Accuracy Precision Sensitivity Specificity False
Alarm/FPR

Miss Rate
/FNR

Original
(α = 1, β = 1, γ = 0) 72.58% 84.21% 53.33% 90.62% 9.38% 46.67%

α = 1, β = 1, γ = 0.5 70.97% 77.27% 56.67% 84.38% 15.63% 43.33%
α = 0, β = 1, γ = 0.5 85.48% 88.88% 80.0% 90.62% 9.38% 20.0%
α = 0.2, β = 1, γ = 0.5 87.10% 86.67% 86.67% 87.50% 12.50% 13.33%

After removing the self-connection, we found that the accuracy increased by 14.51%
and sensitivity increased by 23.33%, while the miss rate decreased from 43.33% to 20%.
This indicates that removing the effect of joint self-connection aids the correct recognition
of gait.

Finally, we achieved the best results with 0.2 weight of the joint self-connections and
0.5 weight of the virtual joint, where the accuracy was 87.10%, the sensitivity was 86.67%,
and the miss rate was the smallest, at 13.33%. Figures 17a and 17b show the confusion
matrix and loss function, respectively.

Through our experiments, our best result showed an accuracy of 87.10%. Table 4
compares the performance with the other well-known machine learning models of LSTM,
KNN, Decision Tree, AdaBoost, and ST–GCN. In particular, Lstm-layer1 means a one-layer
network, layer2 means a two-layer network, and the weak learner model in the AdaBoost
classifier is 50 decision trees of depth 1.
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Table 4. Comparison with other models.

Methods Accuracy Precision Sensitivity F1 Score Specificity False Alarm
/FPR

Miss Rate
/FNR

Lstm-layer1 82.25% 85.19% 76.67% 0.8679 87.5% 12.5% 23.33%
Lstm-layer2 69.35% 100% 63.33% 0.7755 100% 0% 36.67%

KNN 83.87% 85.71% 80% 0.8276 87.5% 12.5% 20%
Decision tree 79.03% 81.48% 73.33% 0.8461 84.38% 15.63% 26.67%

AdaBoost 75.81% 85.71% 60% 0.7059 90.63% 9.38% 40%
ST–GCN 77.42% 90% 56.25% 0.72 93.75% 6.25% 40%

Proposed method 87.10% 86.67% 86.67% 0.9285 87.5% 12.5% 13.33%

We conducted an analysis to investigate the superior performance of WM-STGCN in
comparison to other models based on the following factors. The first factor is the utilization
of a weighted adjacent matrix with virtual connections. The weighted adjacency matrix with
virtual connections plays a crucial role in WM–STGCN. While an adjacency matrix without
weights can be used to represent adjacency information, a weighted adjacency matrix allows
for a more sophisticated representation of adjacency information. Moreover, weights can
reflect the structure of the graph in a more granular way, for example, by adjusting weights
based on the connection types to emphasize relationships with physical connections or
virtual connections. Therefore, using a weighted adjacency matrix enables WM–STGCN
models to reflect more detailed graph structures and make better predictions. The second
factor is the integration of a multi-scale temporal convolutional network. The multi-scale
temporal convolutional network used in this study can enhance the receptive field of
temporal convolution, improve time aggregation ability, and extract features from various
time intervals. At the same time, it can reduce the computational cost and parameters by
reducing the channel width of each branch. Finally, we use a separately designed data
augmentation method for both raw video and skeletal data, which also effectively improves
the performance of the model.

These advantages enable effective recognition of Parkinson’s disease from gait data.
However, there are also some shortcomings. For example, due to equipment limitations,
we focused on the RGB color video of the front view, but users cannot guarantee to record
high-quality video when using it, which will affect the recognition accuracy. At the same
time, our model performance can be further improved by using multi-modal analysis
methods, such as adding sensor data. In the future, our WM–STCGN model is expected to
be applied to research on gait-related diseases in the elderly, including not only Parkinson’s
disease but also dementia, stroke, and other related conditions.
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5. Conclusions

In this paper, we proposed a novel spatiotemporal modeling approach, known as
WM–STGCN, which employs a weighted adjacent matrix with virtual connections and
multi-scale temporal convolutional networks to recognize Parkinsonian gait from forward
walking videos. Our experimental results demonstrated the effectiveness of the proposed
method, which outperformed the machine learning-based methods such as LSTM, KNN,
Decision Tree, AdaBoost, and ST–GCN. This method could provide a promising solution
for PD gait recognition, which is crucial for the early and accurate diagnosis of PD. We
believe that our method can be further improved by integrating it with other advanced
deep learning techniques and can be extended to the fields of healthcare and biomedicine.
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