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Abstract: Early recognition of abnormal gait enables physicians to determine a prompt rehabilitation
plan for patients for the most effective treatment and care. The Kinect depth sensor can easily
collect skeleton data describing the position of joints in the human body. However, the default
human skeleton model of Kinect includes an excessive number of many joints, which limits the
accuracy of the gait recognition methods and increases the computational resources required. In
this study, we propose an optimized human skeleton model for the Kinect system and streamline
the joints using a center-of-mass calculation. We integrate several techniques to propose an end-to-
end, spatial–temporal, joint attention graph convolutional network (STJA-GCN) architecture. We
conducted experiments with a fivefold cross-validation on two common datasets of information
on abnormal gaits to evaluate the performance of the proposed method. The results show that the
STJA-GCN achieved 93.17 and 92.08% accuracy on the two datasets, and compared to the original
spatial–temporal graph convolutional network (ST-GCN), the recognition accuracy increases by
9.22 and 20.65%, respectively. Overall, the results demonstrate that the STJA-GCN can accurately
recognize abnormal gaits and, thus, can support low-cost rehabilitation assessments at community
hospitals or in patients’ homes.

Keywords: spatial temporal graph convolution; abnormal gait recognition; early multi-branch fusion;
attention mechanism

1. Introduction

Abnormal gaits can seriously affect patients’ daily living and behavior. The most
common causes of abnormal gaits include degenerative, neurological, and musculoskeletal
diseases among older people [1]. The classification and diagnosis of abnormal gaits can help
physicians identify underlying diseases and conditions to realize their early treatment, thus
reducing their impacts on patients and their families. However, traditional gait analysis
methods [2,3] tend to be highly subjective and inefficient because they mainly rely on
clinicians’ individual experience. Moreover, some gait analysis and measurement devices
are relatively expensive and cumbersome to use. Such systems cannot be widely adopted
in community hospitals or used by families at home, which limits the early detection of
related diseases. This calls for a low-cost, easy-to-operate, and reliable method to enable
community hospitals and families to accurately identify abnormal gaits.

Two types of sensors are commonly used for human gait analysis, including wear-
able [4,5] and non-wearable sensors [6,7]. Compared to wearable sensors, non-wearable
sensors provide a convenient way to collect gait data from subjects in their most realistic
state as a non-invasive measurement tool. Microsoft has launched two home-oriented phys-
ical gaming devices, called Kinect v2 and Azure Kinect DK. These typical non-wearable
sensors are suitable for abnormal gait analysis. Using a depth camera, the Kinect can
acquire both the RGB data of images and depth data of each pixel. The Kinect system
can be used to easily capture three-dimensional (3D) data on human body poses without
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attaching sensors to the body. The accuracy of data captured by the Kinect sensor has
been shown in several studies [8–10]. The Azure Kinect DK is more accurate than the
Kinect v2 and Kinect v1 [11]. A software development kit (SDK) is also provided for Kinect,
which can be used to obtain a digital skeleton to represent information on human poses.
In combination with the rapid development of artificial intelligence algorithms, this SDK
provides a robust technical basis with suitable hardware and software for vision-based gait
analysis and abnormal gait recognition.

The emergence of depth sensors like those used in the Kinect system considerably
facilitates the acquisition of 3D skeleton data on the human body and has enabled the
development of many gait analysis methods based on digital skeletons. In very early
research, Bayesian classifiers [12,13] and artificial neural network (ANN) models [14]
were used to extract skeleton data from Kinect V1 and compute gait features to identify
Parkinson’s disease. Subsequently, Guo et al. [15] compared the accuracy of support-
vector machine (SVM) classifiers and a long short-term memory (LSTM) architecture in
abnormal gait recognition. They found that gaits can be more accurately classified by
directly importing skeleton data into the LSTM. Chen et al. [16] fused manual and depth
features extracted by a convolutional neural network (CNN)-LSTM network, and classified
gaits using an SVM model. Using an autoencoder based on a recurrent neural network
(RNN), Jun et al. [17] extracted features from 3D skeleton data and identified abnormal
gaits using a classifier.

Because the human skeleton can be modeled as a series of non-Euclidean graphs, these
methods cannot effectively learn the underlying spatial relationships between skeleton
joints. The advancement of graph convolutional networks (GCNs) allows for a more rea-
sonable interpretation of the natural graph structure of the human skeleton. Consequently,
skeleton-based action recognition algorithms have been studied more intensively from
the perspective of spatial–temporal graph convolution. As shown in Table 1, the spatial–
temporal graph convolutional network (ST-GCN) proposed by Yan et al. [18] provided
the earliest feature extraction model for skeleton series in time and space, providing a
skeleton-based action recognition model. ST-GCN models have inspired many spatial–
temporal graph convolutional networks. Shi et al. [19] added an attention mechanism to
the ST-GCN, and adopted a two-stream adaptive GCN (2s-AGCN) to capture richer action
features. However, the two-stream framework inevitably increased the computing load of
the network. Chen et al. [20] proposed a multiscale spatial–temporal GCN (MST-GCN) de-
signed to capture the relationship between short- and long-range joints while enriching the
perceptual field of the model in time and space. Similarly, Cheng et al. [21] proposed a Shift
Graph Convolution Network (Shift-GCN) by adding the shift operation to graph convolu-
tion, which not only expanded the perceptual field of the model, but also greatly reduced
the computational complexity of the algorithm. Liu et al. [22] combined multiscale graph
deconvolution with G3D, a unified spatial–temporal graph convolutional operator, into a
deconvolution-unification GCN. Their network was shown to promote the direct exchange
of action information across space and time and to learn features effectively. Song et al. [23]
created a residual GCN (ResGCN), which replaced the fusion of multiple models with early
fusion between the inputs of multiple branches to minimize the computational resources
required. All these studies considered the recognition of whole-body actions, without
focusing on lower limb gait. Thus, these methods cannot be directly applied to recognize
abnormal gaits. Moreover, most of the existing GCNs require a long period of training,
because multiple streams are fused in the later stage of modeling, and the sub-models of
different streams need to be trained separately before fusion is performed.

Aiming to address these problems, this paper proposes a method of abnormal gait
recognition based on a multi-branch, spatial–temporal, joint attention graph convolution
network (STJA-GCN). In order to enhance the extraction of key features in walking gait,
the connection between human skeleton joints is simplified, and the multi-branch joint
motion features are fused in the early stage to form an end-to-end single-stream model
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architecture, which not only preserves the multiple motion characteristics of the human
skeleton, but also avoids the complex calculation of multi-stream model fusion.

Table 1. Summary of Existing GCN Models.

Model Year Number of Streams Description

ST-GCN [18] 2018 1 s
Firstly constructed a spatial–temporal
graph. The parameters of each layer

are fixed.

2s-AGCN [19] 2019 2 s
Added adaptive graph convolutional

layers. The network has a large amount
of calculation.

Shift-GCN [21] 2020 4 s
Proposed non-local shift graph

convolution. High computational
complexity due to shift operations.

MS-G3D [22] 2020 2 s
Redefined the k-order adjacency matrix.

Designed a unified spatio-temporal
graph convolution operator.

Res-GCN [23] 2020 1 s
Introduced a residual GCN with

bottleneck structure and part-wise
attention module.

MST-GCN [20] 2021 4 s Proposed a multi-scale spatial and
temporal graph convolution module.

2. Materials and Methods
2.1. Human Skeleton Model for Abnormal Gait Recognition

The human skeleton reflects the important features of body motions. The coordinates
of the main joints can be effectively extracted with a depth sensor, as in the Kinect system.
The classification accuracy of human behaviors improves as more joints are recognized. As
for the abnormal gait recognition, more attention should be paid to the motion of lower
limbs. Since pathological gaits may often manifest with abnormal bending of the legs, the
body joints extracted by the depth sensor must be winnowed to some extent to improve
the feature extraction of limb joints and enhance the efficiency of the training process.

As shown in Figure 1, the Kinect V2 can acquire the coordinates of 25 body joints,
including 8 joints of the hands; Azure Kinect DK can acquire the coordinates of 32 body
joints, including 8 joints of the hands and 6 of the head. In abnormal gait recognition,
adding this many joints on the hands and head does not substantially help. Thus, the
8 hand joints were simplified as a single center-of-mass key point for each of the left and
right hands, and the 6 head joints were simplified to a single key point. The coordinates of
each key point are the mean coordinates of the joints on that side of the body.

ComHandx,y,z =
∑ Ix,y,z

4 ,

ComHeadx,y,z =
∑ Ix,y,z

5 ,
(1)

where ComHandx,y,z is the x, y, and z three-dimensional space coordinates of the center-of-
mass key point for the hand, and ComHeadx,y,z is the x, y, and z three-dimensional space
coordinates of the center-of-mass key point for the head; these new keypoints are shown as
red dots in Figure 1. Ix,y,z is the x, y, and z three-dimensional space coordinates of the joint
in the corresponding part, as shown by the yellow dots in Figure 1.

Thus, any human skeleton graph can be represented as G = {V, E}, where V is the set of
joints in the streamlined skeleton, and E is the set of edges corresponding to the physical con-
nections between the joints. For any spatial–temporal series T = {1, 2, . . . M}, the correspond-
ing spatial–temporal graph of the skeleton can be represented as STG =

{
Gt|t ∈ [1, 2, . . . M]

}
,

where M is the number of consecutive frames of the skeleton series, and Gt is the corre-
sponding skeleton graph at time t.
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Figure 2, three types of motion features are obtained by processing the data of the real 
skeleton series, including joint positions, motion velocities, and skeleton features. There-
after, the three types of features are fused with the corresponding implicit features of the 
lower limbs, and then imported through the spatial–temporal joint attention graph con-
volutional modules. The spatial–temporal joint attention graph convolutional layer con-
sists of multiple temporal and spatial convolutions. In addition, we also introduce a spa-
tial–temporal joint attention module here, and the classification results are output through 
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Figure 2. STJA-GCN model structure (The two numbers in each block denote input and output 
channels, and /2 represents a stride of 2. BN: BatchNorm, SGC: Spatial Graph Convolution, TC: 
Temporal Convolution, GAP: Global Average Pool, FC: Fully Connected Layer). 

  

Figure 1. Schematic of the joint reconstruction. (a) Kinect V2 Joint reconstruction, (b) Azure Kinect
Joint reconstruction. Both of these simplifications are based on decreasing the number of joints on the
head and the hands.

2.2. Early Multi-Branch Fusion of Spatial–Temporal Joint Attention GCN

The proposed STJA-GCN mainly combines an early multi-branch fusion strategy
with multiple spatial–temporal joint attention graph convolutional modules. As shown
in Figure 2, three types of motion features are obtained by processing the data of the
real skeleton series, including joint positions, motion velocities, and skeleton features.
Thereafter, the three types of features are fused with the corresponding implicit features
of the lower limbs, and then imported through the spatial–temporal joint attention graph
convolutional modules. The spatial–temporal joint attention graph convolutional layer
consists of multiple temporal and spatial convolutions. In addition, we also introduce
a spatial–temporal joint attention module here, and the classification results are output
through the fully connected layer.
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Figure 2. STJA-GCN model structure (The two numbers in each block denote input and output chan-
nels, and /2 represents a stride of 2. BN: BatchNorm, SGC: Spatial Graph Convolution, TC: Temporal
Convolution, GAP: Global Average Pool, FC: Fully Connected Layer).

2.2.1. Multi-Branch Input Features and Fusion

The 2 s-AGCN model was the first model to fuse multiple streams at the decision
layer. Subsequently, many multi-stream models have been developed for skeleton-based
action recognition. However, the decision-layer fusion approach needs to handle various
data inputs by independently training multiple models, which significantly increases the
complexity of the model. Consequently, this approach cannot be applied to end-to-end
training processes. In this study, we developed an architecture for early multi-branch
fusion, in which temporal and spatial convolution are performed on each branch to extract
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the respective features, which are then fused and imported to the spatial–temporal graph
convolutional layer. This process both diversifies input features and simplifies the required
computations. Therefore, the proposed architecture can process more input data and
exhibits improved performance.

Let X =
{

x ∈ RCin×Tin×Vin
}

be the set of the 3D body joint coordinate series corre-
sponding to the input spatial–temporal graph of the skeleton STG, where Cin, Tin, and
Vin are the input coordinates, number of frames, and number of joints, respectively. The
corresponding set of joint positions can be expressed as R = {ri|i = 1, 2, . . . Vin }, where

ri = x[:, :, i]− x[:, :, c], (2)

with c being the index of the central spinal joint. Thus, the input of the joint position feature
consists of both X and R.

The set of motion velocity features is composed of fast motions F = { ft|t = 1, 2, . . . Tin }
and slow motions S = {st|t = 1, 2, . . . Tin }, where

ft = x[:, t + 2, :]− x[:, t, :],

st = x[:, t + 1, :]− x[:, t, :]
(3)

The set of skeleton features contains the joint length L = {li|i = 1, 2, . . . Vin } and
joint angle A = {ai|i = 1, 2, . . . Vin }. The length (li) and angle (ai,w) of each joint can be
calculated as

li = x[:, :, i]− x
[
:, :, iadj

]
,

ai,w = arccos

(
li,w√

l2
i,x+l2

i,y+l2
i,z

) (4)

where iadj is the joint adjacent to the i-th joint, and w ∈ {x, y, z} is the 3D coordinates of
the joint.

2.2.2. Spatial–Temporal Graph Convolutional Attention Module

According to the definition of ST-GCN, the convolution of the graph with any frame t
can be written as

fout(vti) = ∑
vtj∈N(vti)

fin
(
vtj
)
· w
(
lti
(
vtj
))

Zti
(
vtj
) , (5)

where vti is the i-th joint of the t-th frame; fin and fout are the input and output features of
the corresponding joint, respectively; N(vti) is the set of joints adjacent to joint vti; Zti is the
normalization term to balance the contributions of different adjacency sets; and w(·) is a
weight function that assigns weights indexed by the label function lti(·), which constructs
multiple adjacency sets N(vti) by assigning different labels to different graph nodes.

In the proposed approach, we adopt a distance-based division method to define the
label assignment. Specifically, we define that lti

(
vtj
)
= d

(
vti, vtj

)
, where d

(
vti, vtj

)
denotes

the graph distance between vti and vtj. The joints with the same distance comprise a subset
and share a learnable weight function w(·). By the adjacency matrix A, Equation (5) above
can be transformed into the form given below:

fout = ∑D
d=0 Wd fin

(
Λ−

1
2

d AdΛ−
1
2

d �Md

)
, (6)

where D is the preset maximum graph distance; fin and fout are the input and output
feature maps, respectively; � is a point-by-point convolution; Ad is a d-order adjacency
matrix that labels joint pairs with graph distance d; Λd is the normalization operator of Ad,
Wd, and Md, which are learnable parameters for implementing the convolution operation
and tuning the importance of each edge.
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In this study, we introduce a spatial–temporal joint attention mechanism. The pro-
posed approach includes an added attention module after the spatial–temporal graph con-
volution to form a new spatial–temporal convolutional layer. In the field of skeleton-based
action recognition, previous attention mechanisms were mainly realized by multilayer
perceptron (MLP) models, in which each channel or spatial dimension was independently
processed, while the other dimensions were equally distributed to individual units. Given
that temporal and spatial information may be correlated with each other in a spatial–
temporal skeleton series, in the proposed model, we included a spatial–temporal joint
attention mechanism (ST-JointAtt) to distinguish between the most informative joints in a
particular frame and the whole skeleton series together. The mechanism helps to identify
the most critical gait regions and joints in the entire walking process.

Figure 3 illustrates the ST-JointAtt module. First, the skeleton series is temporally and
spatially pooled for frames and joints, respectively. Next, the two eigenvectors are stitched
together, and the information is compressed by a fully connected layer. Subsequently,
two independent fully connected layers are used to obtain the inter-frame and inter-joint
attention scores. Finally, the frame score and joint score are multiplied by the outer product
of channels. The result can be regarded as the attention score of the entire skeleton series.
This process can be expressed as follows.

finner = θ(( poolt( fin)⊕ poolv( fin))·W),

fout = fin � (σ( finner·Wt)⊗ σ( finner·Wv)),
(7)

where fin and fout are the input and output feature maps, respectively; ⊕ is the splicing
operation; ⊗ and � are the out-of-frequency-domain product operation and element
product operation, respectively; poolt(·) and poolv(·) are the average pooling operations
in the frame dimension and joint dimension, respectively; θ(·) and σ(·) are the Sigmoid
and Hard Swish activation functions, respectively; and W is the training parameters.
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3. Results

Herein, we conducted experiments to evaluate the performance of the proposed model
on two common datasets with the same abnormal gait type and data format [24]. The
two datasets were collected by different versions of depth sensors, namely, the Kinect
v2 and Azure Kinect DK. The body joints captured by the two depth sensors are shown
in Figure 4. For convenience, the two datasets are abbreviated as Kinect25 and Azure32,
indicating the number of joints.

In this study, we first conducted several ablation experiments using the Kinect25 data
to verify the gait classification effectiveness of each operation in the STJA-GCN model.
Then, the performance of the STJA-GCN on each of the two datasets was compared with
that of typical existing graph convolution methods.
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3.1. Datasets

(1) Kinect25

A total of 6 sensors were placed on each side of a 10 m by 3 m walkway. The sensors
on the same side were separated by a distance of 2.2 m. The skeleton data were generated
by each sensor individually. The data acquisition was terminated when the subject was less
than 1 m from the sensor. Ten healthy subjects participated in the experiment. According
to the guidelines, each subject was asked to simulate five pathological gaits, including
analgesic, stiff-legged, staggering, striding, and Trendelenburg gaits. In total, each subject
walked in each gait 20 times. Thus, the final dataset contained 7200 samples of gait data.

(2) Azure32

A 4 m-long walkway was set up with an Azure Kinect DK sensor placed at the end.
Twelve healthy males participated in the data acquisition. After watching a video of
pathological gaits, each subject was trained and then simulated five pathological gaits,
including analgesic, stiff-legged, staggering, striding, and Trendelenburg gaits. In total,
each subject walked in each gait 20 times. Thus, the final dataset contained 1440 samples of
gait data.

Figure 5 shows the types of pathological gaits in the datasets. For the division method
of the dataset, we randomly select the data of seven subjects in the kinect25 dataset as the
training sets, and the data of the remaining three subjects as the testing sets. In the azure32
dataset, the data of eight subjects are randomly selected as the training sets, and the data of
the remaining three subjects are used as the testing sets.

3.2. Experimental Setup

All experiments were conducted on a 64-bit Windows operating system with an
NVIDIA GeForce RTX 3090 (24 G) graphics card, using the Python 3.7 programming
language and the PyTorch 1.12.1 library. The stochastic gradient descent (SGD) optimizer
was called to train the model from end to end. Each experiment was run for 80 epochs. The
learning rate was initialized as 0.1 and reduced by 0.1 times at the 10th and 50th epochs.
The batch size was set to 32 and the weight decay to 0.001. Each input consisted of a
continuous skeleton of 200 frames, and less than 200 frames of the skeleton series were
padded by zeros.
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The main stream of the proposed STJA-GCN comprised four stacked spatial–temporal
graph convolutional layers. The ResNet mechanism was introduced to each layer. Each
layer included 9 spatial–temporal convolutional kernels with a dropout of 0.5. The output
size of the first 2 layers was set to 128, and that of the last 2 layers to 256. In the first and
third layers, the step size was set to 2 to reduce the time dimension by half of the number
of frames and improve the computational efficiency.

To obtain more convincing results, a fivefold cross-validation was performed on each
dataset. The performance of the models were measured by the cross-validated average top-
1 accuracy, FLOPs, and the number of model parameters (#Params). FLOPs represents the
number of operations performed by the model and indicates its computational complexity.

3.3. Ablation Experiments

To verify the effectiveness of the proposed method in joint streamlining and the
individual components of the proposed model, we conducted separate contrastive technical
ablation experiments using the Kinect25 system with ST-GCN as a baseline model. Each
experiment was performed 10 times, and the contrastive models were compared in terms
of the average accuracy.

3.3.1. Effectiveness of Joint Streamlining

Previous studies based on the human skeleton have usually been performed on the
original skeleton connections. To verify the effectiveness of joint streamlining for gait
recognition, we conducted experiments using the Kinect25 data. Out of the original
25 joints, the hand joints were averaged to obtain 19 body joints, which were then trained
on the ST-GCN. According to the experimental results in Table 2, the accuracy of the model
is not considerably affected and even slightly improved after the redundant hand joints are
reduced from the original Kinect dataset. Hence, the proposed joint streamlining operation
does not reduce the accuracy of the model for abnormal gait recognition. Therefore, the
removal of the joints does not hinder the ability of the model to recognize abnormal gaits.
Moreover, the number of floating-point operations per second (FLOPs) during model
training was reduced by 24.08%. Thus, joint streamlining simplified the model and sped
up the training process.

Therefore, streamlining the hand joints is computationally helpful for abnormal gait
recognition. In the subsequent experiments, the models were trained based on the stream-
lined data.
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Table 2. Comparison of different numbers of joints.

Number of Joints Top-1
(%)

FLOPs
(×109)

25 83.2 ± 7.88 5.44
19 83.95 ± 4.05 4.13

3.3.2. Effectiveness of Attention Mechanisms

To enhance the ability to extract skeleton features, the attention module was embedded
in the spatial–temporal convolutional layers of the STJA-GCN. The effectiveness of the
module was verified by embedding the ST-JointAtt module in each convolutional layer of
the ST-GCN and comparing the embedded module with other graph convolution-based
attention modules. According to the experimental results shown in Table 3, the accuracy of
the model is improved compared with ST-GCN, and the FLOPs and model parameters are
increased by the inclusion of the attention mechanism. Compared with STCAtt [25] and
PartAtt [23], the addition of the ST-JointAtt module yielded the largest improvement in
the model accuracy. This demonstrates the effectiveness of ST-JointAtt in capturing key
features in the spatial–temporal skeleton series.

Table 3. Comparison of different attention modules.

Model Top-1
(%)

FLOPs
(×109)

#Params
(×106)

STGCN 83.95 ± 4.05 4.13 3.07
+STCAtt 86.42 ± 2.69 4.14 3.37
+PartAtt 84.47 ± 10.87 4.15 3.47

+ST-JointAtt 88.81 ± 6.55 4.16 3.47

3.4. Comparison of Accuracy between Diffent Models

Many studies [18–20] have shown that graph neural networks are more effective
than traditional deep learning methods in the study of the human skeleton. Thus, we
chose to compare the ST-GCN with several typical ST-GCN-based multi-stream graph
convolutional networks, such as RA-GCNv1 [26], RA-GCNv2 [27], and 2s-AGCN on
Kinect25 and Azure32. The results of the comparative analysis are shown in Tables 4 and 5.

Table 4. Comparison of results on Kinect25.

Model Top-1
(%)

FLOPs
(×109)

#Params
(×106)

ST-GCN 83.95 ± 4.05 5.44 3.07
RA-GCNv1(3s) 91.21 ± 5.97 8.29 6.05
RA-GCNv2(3s) 91.23 ± 3.78 8.29 6.05

2s-AGCN 91.06 ± 3.93 9.46 6.94
STJA-GCN 93.17 ± 2.76 2.44 2.18

Table 5. Comparison of results on Azure32.

Model Top-1
(%)

FLOPs
(×109)

#Params
(×106)

ST-GCN 71.43 ± 4.11 4.79 3.07
RA-GCNv1(3s) 73.38 ± 4.85 9.60 6.05
RA-GCNv2(3s) 35.41 ± 4.51 9.60 6.05
2s-AGCN(3s) 77.06 ± 6.97 10.94 6.94
STJA-GCN 92.08 ± 2.92 2.82 2.18
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As shown in Tables 4 and 5, the STJA-GCN model outperforms the models used for
comparison in terms of accuracy, FLOPs, and number of parameters on both datasets. The
STJA-GCN is 9.22 and 20.65% more accurate than the ST-GCN on the Kinect25 and Azure32
datasets, respectively. Owing to the early fusion between branches and the reduction of
spatial–temporal graph convolutional layers, the STJA-GCN achieves better FLOPs and
number of parameters than RA-GCNv1, RA-GCNv2, and 2s-AGCN, as evidenced by its
lower complexity and substantially fewer parameters. Moreover, the final accuracy of
the model is improved across the board. However, RA-GCN v2 and other models with
excessive numbers of convolutional layers fail to achieve desirable results on Azure32
owing to the small sample size of the dataset. In contrast, the STJA-GCN model achieves
good recognition accuracy on the dataset.

Furthermore, the performance of the model was evaluated with a confusion matrix to
reflect the difference between the actual and predicted values. Figure 6 shows the confusion
matrices for maximum and minimum accuracies on the two datasets.
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Figure 6. Comparison of confusion matrices. (a1,a2) are the training models with maximum and
minimum accuracies on Kinect25, respectively, (b1,b2) are the training models with maximum and
minimum accuracies on Azure32. The gait labels: 1-normal gait; 2-antalgic gait; 3-lurching gait;
4-steppage gate; 5-stiff-legged gate; 6-Trendelenburg gait.

As shown in Figure 6, the results of each gait type achieved good results, but the
classification accuracy of the Trendelenburg gait in these four experiments was not as good
as that of the other gaits; in the (a2) 360 Trendelenburg gait samples, 89 cases were misclas-
sified as normal gait, and 93 cases were misclassified as steppage gait. Misclassification of
the Trendelenburg gait as the steppage gait was also present in the other three experiments.

4. Discussion

In this study, we propose a novel method for abnormal gait recognition based on
graph neural networks. After extracting the skeleton data of walking humans with depth
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sensors, the body joints are streamlined by replacing unimportant joints in hands and head
with fusion averages. This streamlining reduces the redundant joints and enhances the
extraction of key walking features while reducing the computational load and training
speed of the model. Then, a multi-branch model structure is constructed for feature fusion
in the early stage. The original joint connections are divided into three feature branches,
including those for joint positions, motion velocities, and skeleton features, to enhance
the extraction of information between joints during walking. Finally, we also introduced
the ST-JointAtt module, which is combined with spatial–temporal graph convolution to
form a spatial–temporal joint attention graph convolution module. The ST-JointAtt can
jointly process temporal attention and spatial attention. Thus, the most important joints can
be identified in the whole skeleton series to focus more attention on the main features of
abnormal gaits. In addition, the results of a numerical evaluation show that the proposed
spatial–temporal joint attention graph convolution method, which fuses multi-branch
features early, performed accurately on two public Kinect gait classification datasets. The
experimental results show that the proposed method achieved improved efficiency and
accuracy on an abnormal gait recognition task compared to existing methods.

The effectiveness of the proposed method was thoroughly verified through compara-
tive experiments. The results show that joint streamlining does not affect the accuracy of
the model for gait recognition, but does reduce the number of parameters required and
the computational load. Compared with other attention mechanisms, the ST-jointAtt can
significantly improve the accuracy of the model, indicating that it can help to discriminate
abnormal gaits in both time and space.

It may also be observed from the confusion matrices that the STJA-GCN model is not
sufficiently accurate to classify some gaits on the two datasets, but the model is generally
able to distinguish abnormal gaits well on both datasets. Furthermore, the Trendelenburg
gait was sometimes incorrectly classified as the steppage gate owing to the clinical similarity
between the two gaits. The Trendelenburg gait is caused by an abnormal hip abduction:
during walking, the weak gluteal muscle causes the pelvis to sag to the opposite side,
shifting the center of gravity to the supporting leg. The same is true for the steppage
gait: due to the paralysis of the calf extensor group, the patient needs to raise their leg
while walking to keep their center of gravity balanced. Therefore, the center of gravity
shifts to one side during the walking cycle in both gait patterns, leading to classification
errors. Future research may consider capturing walking gait features from other angles
or exploring more suitable attention modules for abnormal gaits. Due to data limitations,
in this study, we only identified a few classes of abnormal gaits. In the future, we plan to
consider further collaboration with clinical hospitals and rehabilitation centers to collect
gait data from real patients and train a model to identify more classes of abnormal gaits.

5. Conclusions

Early identification of abnormal gaits is very important, especially at home and in
community hospitals. Detecting abnormal gaits as soon as possible helps to provide ap-
propriate treatment and care. Based on deep sensors, such as the Kinect system, in this
study, we have proposed a multi-branch, spatial–temporal, joint attention graph convolu-
tional network (STJA-GCN) for abnormal gait recognition. The STJA-GCN optimizes the
human skeleton joint model, simplifies the structure of multi-stream models, and captures
important joints in walking motion from multiple dimensions. The experimental results
show that the proposed method outperformed the benchmark ST-GCN and exhibited major
improvements in terms of accuracy, FLOPs, and number of parameters. The proposed
method is expected to be used for the initial rehabilitation assessment of abnormal gaits for
home use and in community hospitals.
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