Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = ab initio parametrization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 4862 KB  
Article
Theoretical Hints to Optimize Energy Dissipation and Cell–Cell Response in Quantum Cellular Automata Based on Tetrameric and Bidimeric Cells
by Andrew Palii, Shmuel Zilberg and Boris Tsukerblat
Magnetochemistry 2024, 10(10), 73; https://doi.org/10.3390/magnetochemistry10100073 - 30 Sep 2024
Cited by 2 | Viewed by 1230
Abstract
This article is largely oriented towards the theoretical foundations of the rational design of molecular cells for quantum cellular automata (QCA) devices with optimized properties. We apply the vibronic approach to the analysis of the two key properties of such molecular cells, namely [...] Read more.
This article is largely oriented towards the theoretical foundations of the rational design of molecular cells for quantum cellular automata (QCA) devices with optimized properties. We apply the vibronic approach to the analysis of the two key properties of such molecular cells, namely the cell–cell response and energy dissipation in the course of the non-adiabatic switching of the electric field acting on the cell. We consider two kinds of square planar cells, namely cells represented by a two-electron tetrameric mixed valence (MV) cluster and bidimeric cells composed of two one-electron MV dimeric half-cells. The model includes vibronic coupling of the excess electrons with the breathing modes of the redox sites, electron transfer, intracell interelectronic Coulomb repulsion, and also the interaction of the cell with the electric field of polarized neighboring cells. For both kinds of cells, the heat release is shown to be minimal in the case of strong delocalization of excess electrons (weak vibronic coupling and/or strong electron transfer) exposed to a weak electric field. On the other hand, such a parametric regime proves to be incompatible with a strong nonlinear cell–cell response. To reach a compromise between low energy dissipation and a strong cell–cell response, we suggest using weakly interacting MV molecules with weak electron delocalization as cells. From this point of view, bidimeric cells are advantageous over tetrameric ones due to their smaller number of electron transfer pathways, resulting in a lower extent of electron delocalization. The distinct features of bidimeric cells, such as their two possible mutual arrangements (“side-by-side” and “head-to-tail”), are discussed as well. Finally, we briefly discuss some relevant results from a recent ab initio study on electron transfer and vibronic coupling from the perspective of the possibility of controlling the key parameters of molecular QCA cells. Full article
Show Figures

Figure 1

33 pages, 6911 KB  
Article
Designing Accurate Moment Tensor Potentials for Phonon-Related Properties of Crystalline Polymers
by Lukas Reicht, Lukas Legenstein, Sandro Wieser and Egbert Zojer
Molecules 2024, 29(16), 3724; https://doi.org/10.3390/molecules29163724 - 6 Aug 2024
Cited by 3 | Viewed by 2613
Abstract
The phonon-related properties of crystalline polymers are highly relevant for various applications. Their simulation is, however, particularly challenging, as the systems that need to be modeled are often too extended to be treated by ab initio methods, while classical force fields are too [...] Read more.
The phonon-related properties of crystalline polymers are highly relevant for various applications. Their simulation is, however, particularly challenging, as the systems that need to be modeled are often too extended to be treated by ab initio methods, while classical force fields are too inaccurate. Machine-learned potentials parametrized against material-specific ab initio data hold the promise of being extremely accurate and also highly efficient. Still, for their successful application, protocols for their parametrization need to be established to ensure an optimal performance, and the resulting potentials need to be thoroughly benchmarked. These tasks are tackled in the current manuscript, where we devise a protocol for parametrizing moment tensor potentials (MTPs) to describe the structural properties, phonon band structures, elastic constants, and forces in molecular dynamics simulations for three prototypical crystalline polymers: polyethylene (PE), polythiophene (PT), and poly-3-hexylthiophene (P3HT). For PE, the thermal conductivity and thermal expansion are also simulated and compared to experiments. A central element of the approach is to choose training data in view of the considered use case of the MTPs. This not only yields a massive speedup for complex calculations while essentially maintaining DFT accuracy, but also enables the reliable simulation of properties that, so far, have been entirely out of reach. Full article
(This article belongs to the Special Issue Exclusive Feature Papers on Molecular Structure)
Show Figures

Graphical abstract

14 pages, 389 KB  
Article
Role of Magnetism in Lattice Instability and Martensitic Transformation of Heusler Alloys
by Ilya Razumov and Yuri Gornostyrev
Metals 2023, 13(5), 843; https://doi.org/10.3390/met13050843 - 25 Apr 2023
Cited by 2 | Viewed by 1675
Abstract
Heusler alloys are subject of considerable interest because they exhibit a martensitic transformation (MT), a shape-memory effect and a giant magnetocaloric effect. As it is commonly believed, the pronounced magnetoelastic coupling plays a crucial role; however, the effect of alloy composition on MT [...] Read more.
Heusler alloys are subject of considerable interest because they exhibit a martensitic transformation (MT), a shape-memory effect and a giant magnetocaloric effect. As it is commonly believed, the pronounced magnetoelastic coupling plays a crucial role; however, the effect of alloy composition on MT is still under discussion. To describe the features of MT in Ni0.75xMnxGa0.25 Heusler alloys, the phenomenological model that consistently considers the magnetic and lattice degrees of freedom and their mutual interplay has been developed. The magnetic entropy contribution was estimated within the framework of the microscopic approach. The proposed model allows us to describe the dependence of the martensitic transformation start temperature Ms(x) on the Mn concentration x in reasonable agreement with the experiment. Full article
(This article belongs to the Special Issue Microstructure and Mechanical Behaviour of Shape Memory Alloys)
Show Figures

Figure 1

8 pages, 450 KB  
Proceeding Paper
Bulk and Point Defect Properties in α-Zr: Uncertainty Quantification on a Semi-Empirical Potential
by Alessandra Del Masto
Phys. Sci. Forum 2022, 5(1), 3; https://doi.org/10.3390/psf2022005003 - 31 Oct 2022
Viewed by 1517
Abstract
Modelling studies of irradiation defects in α-Zr, such as point defects and their multiple clusters, often use semi-empirical potentials because of their higher computational efficiency as compared to ab initio approaches. Such potentials rely on a fixed number of parameters that need [...] Read more.
Modelling studies of irradiation defects in α-Zr, such as point defects and their multiple clusters, often use semi-empirical potentials because of their higher computational efficiency as compared to ab initio approaches. Such potentials rely on a fixed number of parameters that need to be fitted to a reference dataset (ab initio and/or experimental), and their reliability is closely related to the uncertainty associated with their parameters, coming from both data inconsistency and model approximations. In this work, parametric uncertainties are quantified on a Second Moment Approximation (SMA) potential, focusing on bulk and point defect properties in α-Zr. A surrogate model, based on polynomial chaos expansion, is first built for properties of interest computed from atomistics, and simultaneously allows us to analytically compute the sensitivity indices of the observed properties to the potential parameters. This additional information is then used to select a limited number of material properties for the Bayesian inference. The posterior probability distributions of the parameters are estimated through two Markov Chain Monte Carlo (MCMC) sampling algorithms. The estimated posteriors of the model parameters are finally used to estimate materials properties (not used for the inference): in any case, most of the properties are closer to the reference ab initio and experimental data than those obtained from the original potential. Full article
Show Figures

Figure 1

14 pages, 2308 KB  
Article
Field-Induced Slow Magnetic Relaxation in CoII Cyclopropane-1,1-dicarboxylates
by Anna K. Matyukhina, Ekaterina N. Zorina-Tikhonova, Alexander S. Goloveshkin, Konstantin A. Babeshkin, Nikolay N. Efimov, Mikhail A. Kiskin and Igor L. Eremenko
Molecules 2022, 27(19), 6537; https://doi.org/10.3390/molecules27196537 - 3 Oct 2022
Cited by 10 | Viewed by 2610
Abstract
New CoII substituted malonate field-induced molecular magnets {[Rb6Co3(cpdc)6(H2O)12]∙6H2O}n (1) and [Cs2Co(cpdc)2(H2O)6]n (2) (where cpdc2− stands [...] Read more.
New CoII substituted malonate field-induced molecular magnets {[Rb6Co3(cpdc)6(H2O)12]∙6H2O}n (1) and [Cs2Co(cpdc)2(H2O)6]n (2) (where cpdc2− stands for cyclopropane-1,1-dicarboxylic acid dianions) were synthesized. Both compounds contain mononuclear bischelate fragments {CoII(cpdc)2(H2O)2}2 where the quasi-octahedral cobalt environment (CoO6) is complemented by water molecules in apical positions. The alkali metal atoms play the role of connectors between the bischelate fragments to form 3D and 2D polymeric structures for 1 and 2, respectively. Analysis of dc magnetic data using the parametric Griffith Hamiltonian for high-spin CoII supported by ab initio calculations revealed that both compounds have an easy axis of magnetic anisotropy. Compounds 1 and 2 exhibit slow magnetic relaxation under an external magnetic field (HDC = 1000 and 1500 Oe, respectively). Full article
(This article belongs to the Special Issue Synthesis and Structure Analysis of Coordination Compounds)
Show Figures

Figure 1

11 pages, 1526 KB  
Article
The Exchange-Correlation Effects on the Electronic Bands of Hybrid Armchair Single-Walled Carbon Boron Nitride Nanostructure
by Yahaya Saadu Itas, Abdussalam Balarabe Suleiman, Chifu E. Ndikilar, Abdullahi Lawal, Razif Razali, Mayeen Uddin Khandaker, Pervaiz Ahmad, Nissren Tamam and Abdelmoneim Sulieman
Crystals 2022, 12(3), 394; https://doi.org/10.3390/cryst12030394 - 14 Mar 2022
Cited by 19 | Viewed by 3068
Abstract
This study investigates the effect of exchange-correlation on the electronic properties of hybridized hetero-structured nanomaterials, called single-walled carbon boron nitride nanotubes (SWCBNNT). A first principles (ab initio) method implemented in Quantum ESPRESSO codes, together with different parametrizations (local density approximation (LDA) formulated by [...] Read more.
This study investigates the effect of exchange-correlation on the electronic properties of hybridized hetero-structured nanomaterials, called single-walled carbon boron nitride nanotubes (SWCBNNT). A first principles (ab initio) method implemented in Quantum ESPRESSO codes, together with different parametrizations (local density approximation (LDA) formulated by Perdew Zunga (PZ) and the generalized gradient approximation (GGA) proposed by Perdew–Burke–Ernzerhof (PBE) and Perdew–Wang 91 (PW91)), were used in this study. It has been observed that the disappearance of interface states in the band gap was due to the discontinuity of the π–π bonds in some segments of SWCNT, which resulted in the asymmetric distribution in the two segments. This work has successfully created a band gap in SWCBNNT, where the PBE exchange-correlation functional provides a well-agreed band gap value of 1.8713 eV. Effects of orbitals on electronic properties have also been studied elaborately. It has been identified that the Py orbital gives the largest contribution to the electrical properties of our new hybrid SWCBNNT nanostructures. This study may open a new avenue for tailoring bandgap in the hybrid heterostructured nanomaterials towards practical applications with next-generation optoelectronic devices, especially in LED nanoscience and nanotechnology. Full article
Show Figures

Figure 1

27 pages, 4108 KB  
Review
Computational Studies of Au(I) and Au(III) Anticancer MetalLodrugs: A Survey
by Iogann Tolbatov, Alessandro Marrone, Cecilia Coletti and Nazzareno Re
Molecules 2021, 26(24), 7600; https://doi.org/10.3390/molecules26247600 - 15 Dec 2021
Cited by 29 | Viewed by 4895
Abstract
Owing to the growing hardware capabilities and the enhancing efficacy of computational methodologies, computational chemistry approaches have constantly become more important in the development of novel anticancer metallodrugs. Besides traditional Pt-based drugs, inorganic and organometallic complexes of other transition metals are showing increasing [...] Read more.
Owing to the growing hardware capabilities and the enhancing efficacy of computational methodologies, computational chemistry approaches have constantly become more important in the development of novel anticancer metallodrugs. Besides traditional Pt-based drugs, inorganic and organometallic complexes of other transition metals are showing increasing potential in the treatment of cancer. Among them, Au(I)- and Au(III)-based compounds are promising candidates due to the strong affinity of Au(I) cations to cysteine and selenocysteine side chains of the protein residues and to Au(III) complexes being more labile and prone to the reduction to either Au(I) or Au(0) in the physiological milieu. A correct prediction of metal complexes’ properties and of their bonding interactions with potential ligands requires QM computations, usually at the ab initio or DFT level. However, MM, MD, and docking approaches can also give useful information on their binding site on large biomolecular targets, such as proteins or DNA, provided a careful parametrization of the metal force field is employed. In this review, we provide an overview of the recent computational studies of Au(I) and Au(III) antitumor compounds and of their interactions with biomolecular targets, such as sulfur- and selenium-containing enzymes, like glutathione reductases, glutathione peroxidase, glutathione-S-transferase, cysteine protease, thioredoxin reductase and poly (ADP-ribose) polymerase 1. Full article
(This article belongs to the Special Issue Feature Review Papers in Physical Chemistry)
Show Figures

Figure 1

28 pages, 8301 KB  
Article
Interface and Interphase in Polymer Nanocomposites with Bare and Core-Shell Gold Nanoparticles
by Albert J. Power, Ioannis N. Remediakis and Vagelis Harmandaris
Polymers 2021, 13(4), 541; https://doi.org/10.3390/polym13040541 - 12 Feb 2021
Cited by 26 | Viewed by 5748
Abstract
Metal nanoparticles are used to modify/enhance the properties of a polymer matrix for a broad range of applications in bio-nanotechnology. Here, we study the properties of polymer/gold nanoparticle (NP) nanocomposites through atomistic molecular dynamics, MD, simulations. We probe the structural, conformational and dynamical [...] Read more.
Metal nanoparticles are used to modify/enhance the properties of a polymer matrix for a broad range of applications in bio-nanotechnology. Here, we study the properties of polymer/gold nanoparticle (NP) nanocomposites through atomistic molecular dynamics, MD, simulations. We probe the structural, conformational and dynamical properties of polymer chains at the vicinity of a gold (Au) NP and a functionalized (core/shell) Au NP, and compare them against the behavior of bulk polyethylene (PE). The bare Au NPs were constructed via a systematic methodology starting from ab-initio calculations and an atomistic Wulff construction algorithm resulting in the crystal shape with the minimum surface energy. For the functionalized NPs the interactions between gold atoms and chemically adsorbed functional groups change their shape. As a model polymer matrix we consider polyethylene of different molecular lengths, from the oligomer to unentangled Rouse like systems. The PE/Au interaction is parametrized via DFT calculations. By computing the different properties the concept of the interface, and the interphase as well, in polymer nanocomposites with metal NPs are critically examined. Results concerning polymer density profiles, bond order parameter, segmental and terminal dynamics show clearly that the size of the interface/interphase, depends on the actual property under study. In addition, the anchored polymeric chains change the behavior/properties, and especially the chain density profile and the dynamics, of the polymer chain at the vicinity of the Au NP. Full article
(This article belongs to the Special Issue Modeling and Simulation of Polymer Nanocomposites)
Show Figures

Graphical abstract

19 pages, 7132 KB  
Article
Modeling the Reflectance Changes Induced by Vapor Condensation in Lycaenid Butterfly Wing Scales Colored by Photonic Nanoarchitectures
by Géza I. Márk, Krisztián Kertész, Gábor Piszter, Zsolt Bálint and László P. Biró
Nanomaterials 2019, 9(5), 759; https://doi.org/10.3390/nano9050759 - 17 May 2019
Cited by 7 | Viewed by 5105
Abstract
Gas/vapor sensors based on photonic band gap-type materials are attractive as they allow a quick optical readout. The photonic nanoarchitectures responsible for the coloration of the wing scales of many butterfly species possessing structural color exhibit chemical selectivity, i.e., give vapor-specific optical response [...] Read more.
Gas/vapor sensors based on photonic band gap-type materials are attractive as they allow a quick optical readout. The photonic nanoarchitectures responsible for the coloration of the wing scales of many butterfly species possessing structural color exhibit chemical selectivity, i.e., give vapor-specific optical response signals. Modeling this complex physical-chemical process is very important to be able to exploit the possibilities of these photonic nanoarchitectures. We performed measurements of the ethanol vapor concentration-dependent reflectance spectra of the Albulina metallica butterfly, which exhibits structural color on both the dorsal (blue) and ventral (gold-green) wing sides. Using a numerical analysis of transmission electron microscopy (TEM) images, we revealed the details of the photonic nanoarchitecture inside the wing scales. On both sides, it is a 1D + 2D structure, a stack of layers, where the layers contain a quasi-ordered arrangement of air voids embedded in chitin. Next, we built a parametric simulation model that matched the measured spectra. The reflectance spectra were calculated by ab-initio methods by assuming variable amounts of vapor condensed to liquid in the air voids, as well as vapor concentration-dependent swelling of the chitin. From fitting the simulated results to the measured spectra, we found a similar swelling on both wing surfaces, but more liquid was found to concentrate in the smaller air voids for each vapor concentration value measured. Full article
Show Figures

Figure 1

20 pages, 734 KB  
Article
Parametric Calculations of Radiative Decay Rates for Magnetic Dipole and Electric Quadrupole Transitions in Tm IV, Yb V, and Er IV
by Wan-Ü Lydia Tchang-Brillet, Jean-François Wyart, Ali Meftah and Sofiane Ait Mammar
Atoms 2018, 6(3), 52; https://doi.org/10.3390/atoms6030052 - 12 Sep 2018
Cited by 2 | Viewed by 3808
Abstract
Semi-empirical transition probabilities for magnetic dipole (M1) and electric quadrupole (E2) emission lines have been derived from parametric studies of experimental energy levels in Tm3+ (Tm IV), Yb4+ (Yb V), and Er3+ (Er IV), using Cowan codes. Results are compared [...] Read more.
Semi-empirical transition probabilities for magnetic dipole (M1) and electric quadrupole (E2) emission lines have been derived from parametric studies of experimental energy levels in Tm3+ (Tm IV), Yb4+ (Yb V), and Er3+ (Er IV), using Cowan codes. Results are compared with those existing from ab initio calculations or from more sophisticated semi-empirical calculations. Satisfactory agreements show that simple parametric calculations can provide good predictions on line intensities, provided that experimental levels are available, allowing reliable fits of energy parameters. Full article
Show Figures

Figure 1

17 pages, 197 KB  
Article
From ELF to Compressibility in Solids
by Julia Contreras-García, Miriam Marqués, José Manuel Menéndez and José Manuel Recio
Int. J. Mol. Sci. 2015, 16(4), 8151-8167; https://doi.org/10.3390/ijms16048151 - 13 Apr 2015
Cited by 11 | Viewed by 6755
Abstract
Understanding the electronic nature of materials’ compressibility has alwaysbeen a major issue behind tabulation and rationalization of bulk moduli. This is especiallybecause this understanding is one of the main approaches to the design and proposal of newmaterials with a desired (e.g., ultralow) compressibility. [...] Read more.
Understanding the electronic nature of materials’ compressibility has alwaysbeen a major issue behind tabulation and rationalization of bulk moduli. This is especiallybecause this understanding is one of the main approaches to the design and proposal of newmaterials with a desired (e.g., ultralow) compressibility. It is well recognized that the softestpart of the solid will be the one responsible for its compression at the first place. In chemicalterms, this means that the valence will suffer the main consequences of pressurization.It is desirable to understand this response to pressure in terms of the valence properties(charge, volume, etc.). One of the possible approaches is to consider models of electronicseparability, such as the bond charge model (BCM), which provides insight into the cohesionof covalent crystals in analogy with the classical ionic model. However, this model relies onempirical parametrization of bond and lone pair properties. In this contribution, we havecoupled electron localization function (ELF) ab initio data with the bond charge modeldeveloped by Parr in order to analyze solid state compressibility from first principles andmoreover, to derive general trends and shed light upon superhard behavior. Full article
(This article belongs to the Special Issue Chemical Bond and Bonding 2015)
Show Figures

Graphical abstract

Back to TopTop