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Abstract: This study investigates the effect of exchange-correlation on the electronic properties of
hybridized hetero-structured nanomaterials, called single-walled carbon boron nitride nanotubes
(SWCBNNT). A first principles (ab initio) method implemented in Quantum ESPRESSO codes, together
with different parametrizations (local density approximation (LDA) formulated by Perdew Zunga (PZ)
and the generalized gradient approximation (GGA) proposed by Perdew–Burke–Ernzerhof (PBE) and
Perdew–Wang 91 (PW91)), were used in this study. It has been observed that the disappearance of
interface states in the band gap was due to the discontinuity of the π–π bonds in some segments of
SWCNT, which resulted in the asymmetric distribution in the two segments. This work has success-
fully created a band gap in SWCBNNT, where the PBE exchange-correlation functional provides a
well-agreed band gap value of 1.8713 eV. Effects of orbitals on electronic properties have also been
studied elaborately. It has been identified that the Py orbital gives the largest contribution to the elec-
trical properties of our new hybrid SWCBNNT nanostructures. This study may open a new avenue
for tailoring bandgap in the hybrid heterostructured nanomaterials towards practical applications
with next-generation optoelectronic devices, especially in LED nanoscience and nanotechnology.

Keywords: SWCBNNT heterostructures; hybrid system; quantum ESPRESSO; band gap; GGA functionals

1. Introduction

Carbon nanotubes (CNTs) have been evolved as important materials for the advance-
ment of nanoscience and technology [1]. They have received much attention because of their
ability to behave as both metallic and semi-metals depending on the chirality/translation
of carbon atoms arranged in a hexagonal lattice [2]; they can be single-walled (SW) or
multi-walled (MW) structures. They are anisotropic and also exist in three different ge-
ometries as an armchair, zigzag, and chiral. To bring the CNTs to the next-generation
optoelectronic fields or applications, many research approaches comprising theoretical [3],
computational, and experimental [4] ideas are carried out, and they all come up with many
exciting results [5,6]. A wide range of potential applications of CNTs in the field of polymer,
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composites, hydrogen/energy storage, biomedical sciences, field emission dipoles, etc.,
were also reported. Although CNTs show unique structural and physical properties, they
still require further improvement to be used in certain fields of nanotechnology [7]. As a re-
sult, CNTs hetero-structures have become one of the most interesting areas where scientists
are trying to explore novel properties for application purposes. The CNT composites such
as carbon nanotube metal matrix composites (CNT-MMC) are formed to make alloys due to
the CNT’s high tensile strength and electrical conductivity. Copper/carbon nanocomposites
are produced to fill the high demand for copper substitutes [8]. CNT composites are used as
reinforcement and thermal reservoirs. The high demand for semiconductor devices today
has led us to develop the idea of combining SWCNT with a wide gap material such as boron
nitride nanotube (BNNT) to form a CNT–BNNT hetero-structure. The hybrid single-walled
carbon boron nitride nanotube (SWBNNT) has an identical hexagonal structure to that of
a single-walled carbon nitride nanotube (SWCNT). It is worth mentioning that a single-
walled boron nitride nanotube (SWBNNT) is an insulator or wide bandgap semiconductor
with an energy gap of 5–6 eV [9], whereas armchair SWCNT is a conductor in its pure
form [10]. Therefore, the idea of creating a carbon boron nitride nanotube heterostructure
may create an energy band gap in CNT which will reduce its electrical conductivity to
the level of semiconductors. Just like CNTs, the BNNT is thermally and chemically inert,
and is known for its anisotropic behavior [11]. It is an isomorph of graphene [12]. Gener-
ally, armchair SWCNTs are rarely used as pure semiconductors because of compatibility
problems that arose from their hexagonal structure and isotropic nature [13]. SWCNTs are
used as semiconductors when they are fabricated in an impure form, where the intrinsic
impurities result in the creation of a band gap that reduces and/or tries to terminate the
full electrical behavior of the nanotubes. Successful creation of CBNNT hybrid nanotubes
can only be achieved when we use a nanotube of the same structural properties, such as
crystallographic nature (hexagonal structure), anisotropy, piezoelectricity, pyroelectricity,
and biocompatibility. A successful attempt was made to create a band gap in CNT with the
optimized structure of bilayered tin selenide (SnSe) [14] by using the Quantum ESPRESSO
package. Tin selenide (SnSe) has a hexagonal honeycomb structure similar to graphene with
a separation of 1.56 Å between Sn and Se atoms [14–16]. The result was the creation of a
SnSe-CNT semiconductor with a narrow bandgap of 2.56 eV. The Perdew–Burke–Ernzerhof
(PBE) type of generalized gradient approximation (GGA) exchange-correlation was used to
obtain the said result. Following the same strategy, as demonstrated in the literature [17],
we have been motivated to study the electronic band structures for hybrid SWCBNNT
structures. Consequently, in this work, we have implemented the ab initio principles to
calculate the electronic properties of our newly created system of carbon boron nitride
nanotubes (CBNNT) and analyze its potential in the next generation semiconductor appli-
cations. Some of the relevant works on the effect of exchange correlations and band gaps
obtained both theoretically and experimentally are summarized in Table 1.

Table 1. Available studies on band gap in hybrid nanostructures by various methods.

DFT Method Theoretical Results Experimental Results References

DFT-theoretical
Reported the possibility of obtaining band

gap by combining CNT segments and
BNNT segments.

None [18]

DFT-Theoretical

It has been reported that the CNT-BNNT can
be competitive in thermodynamical stability

for sufficiently large segments of building
blocks in the axial direction.

[19]

Non-equilibrium Green’s function
method combined with the density

functional theory

Carbon and boron nitride nanotubes were
obtained with semiconducting properties of
2.2 eV; results predicted that CBNNT could
become potential candidates in the field of

nano rectifiers.

[20]
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Table 1. Cont.

DFT Method Theoretical Results Experimental Results References

Density functional theory and using
basis set 6–31 g (d,p)

Reported the band gap of 1.21 and 2.52 eV
which is close with our results of PW91. [21]

Geometry optimization
implemented in the
CASTEP package

Reported 2.3 eV band gap in hetero
nanotubes with the lowest unoccupied

molecular orbital and the highest occupied
molecular orbital mainly located on the

carbon nanotube section.

[22]

Vienna ab initio simulation package The electrical conductivity of CBNNT is
increased by oxygen absorption. [23]

CVD

2.41 eV band gap was
reported. Recommended

for theoretical and
computational

confirmatory tests.

[24]

VASP code

Reported 1.06 eV band gap, also reported
that the highest occupied and lowest

unoccupied orbital gap of
carbon-boron-nitride hetero nanotubes can

be significantly tuned by modifying the CNT
and BNNT general geometry.

[25]

LDA

Reported 5.6 eV band gap in BNNT.
Furthermore, analysis of the HOMO–LUMO
gap after the adsorption process showed that
the HOMO value increased marginally while
the LUMO value decreased dramatically in

the curcumin-BNNT complexes

[26]

GGA-PBE

Reported 1.83 eV band gap, which agrees
with this current research. Also, reported that
the band gap of the CBNNT system is greatly

influenced by the nanotube aspect ratio.

[27]

GGA-PW91
Reported 2.52 eV band gap, highlighted the

potentials of CBNNT for the next
generation spintronics.

[28]

As can be seen in Table 1, various methods have been used to study CBNNT nanostruc-
tures, and various results have been obtained. In our work, a novel method of inter-tube
coupling (which is the basis of this research) was used (Figure 1). As far as our concern,
our technique was not adopted in any of the previous studies available in the literature. As
such, this work forms a new pathway for tailoring band gap in hybrid heterostructured
nanomaterials for advanced optoelectronic applications.
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2. Computational Methods

This section demonstrates the adopted working methodology that has made possible
the successful implementation of this study. The method shows effectiveness in developing
a new set of processes that could eventually help the relevant researchers for creating
a new band gap in the potential hetero-combination of BNNT-CNT nanostructures. In
this study, a representative model of both (5, 5) armchair SWBNNT and SWCNT was
considered. The local density of state (LDOS), the total density of state (DOS), and the
electronic band’s structure of the armchair form of CBNNT hetero-nanotubes are calculated
within the self-consistent field through solving the Kohn–Sham equation within the DFT in
terms of LDA and GGA functional (a method implemented on Quantum ESPRESSO codes),
this is necessary in order to analyze the effect of the various exchange-correlation functional
on the bands’ alignment of our hetero-system. The Quantum ESPRESSO (an acronym for
open-Source Package for Research in Electronic Structure, Simulation, and Optimization) is
an integrated suite of open-source computer codes for electronic-structure calculations and
materials modeling at the nanoscale. It is based on density-functional theory, plane waves,
and pseudopotentials. It uses first-principles electronic-structure calculations and materials
modeling, distributed for free and as free software under the GNU General Public License.

Calculations are performed on the 2 × 2 × 1 supercell model of (5, 5) SWBNNT
primitive unit cell containing 80 carbon atoms and 16 atoms each of boron and nitrogen,
based on the first principles together with DFT implemented in quantum ESPRESSO
codes. The calculations for the exchange-correlation are performed within the Perdew-
Zunga (PZ) within LDA, Perdew–Burke–Ernzerhof (PBE), and Perdew–Wang 91 (PW91)
of GGA approximations together with the smearing occupations method of integrals. We
have determined the Brillouin zone by using the Monkhorst–Pack scheme with k-grids of
1 × 1 × 4 and an e-cut of 50 Ry.

3. Geometry Optimization

Because of the structural influence of the hybrid SWCBNNT system on the electronic
properties, optimization of the tube geometry was performed prior to the calculation of
the electronic properties. This is achieved with the codes implemented in the nanotubes
modeler and VESTA. The hetero-nanotube was optimized by a new method called inter-
tube coupling (Figure 1) in which the carbon atoms in CNT are coupled with boron and
nitrogen atoms in BNNT.

The studies were conducted on the SWCBNNT system and the inter-tube separa-
tions were chosen as 3.95 Å, 4.80 Å, and 5.29 Å respectively. To ensure accurate results
in this research, the nanotube was appropriately relaxed to appropriate geometries. In
the SWCBNNT, the tube length and the tube height were chosen as 6.23 Å and 4.26 Å,
respectively. The chiral/translation vectors were constructed such that n = 5, m = 5 to ensure
the proper armchair chirality. The results of the relax calculations are listed in Table 2. The
maximum force, stress, and displacements were set at 0.06 eV/Å, 0.06 GPa, and 6 × 10−4 Å,
respectively. The unit cell volume was 6515.67 Å3 with lattice parameters a = 18.68 Å and
c = 9.68 Å. As can be seen from iteration 3, there was zero error in the relax calculations; as
such, the data in iteration 3 were used to obtain a well-converged value of all parameters
used in this research.

Table 2. The geometry of SWCBNNT (5, 5).

Iterations Delta-h Delta-r K-Point (Gamma)
Iterations

a1 a2 a3

0 1.000000 1.000000 1.000000 41 41 0
1 1.7171 × 10−3 7.5733 × 10−2 1.001208 1.001208 1.000000 20 20 0
2 −4.1446 × 10−5 −1.8236 × 10−4 1.001205 1.001205 1.000000 0 0 0
3 0.0000e + 00 0.0000e + 00 1.001205 1.001205 1.000000
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4. Results and Discussion
4.1. Bands Structures of (5, 5) CBNNT under Three Different Exchange-Correlation Functionals

The electronic band structures of the system of (5, 5) armchair single-walled carbon
boron nitride nanotubes (SWCBNNT) hybrid material were studied, and the results are
compared under three different exchange-correlation functional implemented within the
local density approximation (LDA) and the generalized gradient approximation (GGA).
The results obtained with each pseudopotential showed that direct band gaps [29] were
obtained, with LDA-PZ pseudo potential being the lowest of 0.0433 eV at the gamma point.
A considerable improvement of the band gap was obtained when PBE pseudopotential
was used for our calculations. As can be seen in Figures 2b and 3b, a direct band gap of
1.87 eV was achieved with PBE and 0.1886 with PW91 (as presented in Figures 2c and 3c.
The result obtained with PBE is close to the value of 2.00 eV experimental value [30]. This
value of band gap makes the CBNNT behave as a semi-metal with a tunable direct band
gap [31], a property that can be applied in LED, spintronic, electronic, Schottky devices,
and photonics devices with tunable band structures [32].
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Figure 2. Bands structures of (5, 5) SWCBNNT (a) LDA (b) PBE (c) PW91.
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Figure 3. TDOS for (5, 5) CBNNT systems under three different exchange-correlations of LDA and
GGA. (a) Effect of LDA; (b) effect of PBE; (c) effect of PW91.

The effect of each pseudopotential is summarized in Table 3. It can be seen that
different total energies were achieved by various exchange-correlation functional; for
example, the total energy was −12.99 Ry with PZ functional. This gives a Fermi energy
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of −8.16 eV in 72 self-consistent fields (SCF) iterations. However, different total energy
and Fermi energy were obtained by PBE functional, although the SCF calculation was
achieved in the same 72 iterations. In the case of PW91, the total energy achieved was
−1314.24 Ry (i.e., Rydberg unit of energy) and the Fermi energy was −8.00 eV. Since
the highest band gap was achieved with PBE exchange functional, we consider it as the
optimum parameter of the generalized gradient approximation in solving the exchange-
correlation problem, because it is reported in previous studies that the PBE is faster than
the other exchange-correlation [33].

Table 3. The effect of exchange-correlation in the Fermi energy.

S/No Pseudopotential Total Energy
Achieved (Ry)

The Calculated
Band Gap (eV) SCF Iterations

1 LDA −1299.17 0.043 72
2 PBE −1444.79 1.87 72
3 PW91 −1314.23 0.19 74

4.2. Analysis of the Density of States

To verify more on the findings regarding the bands obtained, analyses were made on
the density of states and partial density of states for our SWCBNNT hybrid system. As can
be seen in Figure 3a,b, there are more states in the valence band than in the conduction band
for bands obtained with PZ and PW91 exchange functional. This is because the total energy
of the nanotube that contributes to the conduction is lower than the sum of the energy which
forms the hetero-nanotube. As a result, the total energy of the nanotube which contributes
to conduction is lower than the sum of the energy which forms the hetero-nanotube. Direct
bands are obtained because the highest energy of the valence band is equal to the lowest
energy of the conduction band. It means that they are at the same momentum when the
transition takes place [34]. Recombination of holes and electron takes place in order to
conserve the momentum energy that is released in the form of light, such as LED. A good
band can be seen in Figure 3b when PBE exchange functional was used. Although the PBE
underestimates band gaps, this value is close to the 2.0 eV experimental value reported
elsewhere [35]. Figure 3b gives the plot information of TDOS for (5, 5) SWCBNNT system
within the PBE implementation. Zero states can be seen at the Fermi level; as such, this
region can be considered as the gap calculated to be 1.8713 eV. Very few states can be seen
in Figure 3a,b. There are also more states in the conduction band than in the valence band.
The three highest peaks can be seen with different states. The first one, at −6.109 eV, is due
to domination by 1S2 orbital of boron and carbon atoms, respectively (refer to Figures 4a,b
and 5a,b). The second peak, at −1.709 eV, is due to collective contributions by 2S2 orbitals
of B, C, and N atoms, respectively [36]. Lower occupations are due to partial contributions
by S orbitals of all the systems (refer to Figure 4). The third state occurs at 7.291 eV. This is
due to collective dominations by 2Py orbitals of B, C, and N atoms. The presence of zero
states at zero energy level confirms that the band gap had been successfully created by
using PBE exchange functional. In the case of the PW91 exchange functional, dense states
are seen in the valence bands because the total energy of interactions is the sum of exchange
energy and interaction energy of the nanotube which contributes to the conduction band,
and that is lower than the sum of the formation energy which forms the hetero-nanotube.
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Figure 4. PDOS of (5, 5) CBNNT system under GGA-PBE. (a) Boron atom (b) carbon atom (c) Nitro-
gen atom.
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Figure 5. S orbital contribution to electrical properties of (5, 5) CBNNT system. (a) Boron atom
(b) carbon atom (c) Nitrogen atom.

4.3. Partial Density of States for the (5, 5) CBNNT System

These studies of PDOS are limited to the results implemented with LDA and PBE
exchange functional. The individual orbital’s contributions and effect on the hybridized
SWCBNNT system were studied. The SWCBNNT semiconductor created in this work is
only a hybrid of S and P orbitals. Moreover, all the constituent elements belonging to the same
group IV in the periodic table with only carbon, among them, can form a covalent bond to itself
with electron mobility of 15,000 cm2/Vs in the graphene lattice [37]. The studies of PDOS
therefore may help to understand the electrical mobility of our semiconductor system.
Figure 6 shows that Py orbital generally determines the band gap of our SWCBNNT
hybrid system because it gives the largest contribution in all the constituent elements.
However, our investigation revealed that Px orbital provided the smallest contribution to
the conduction process. This is because they are considered frozen and form some part
of the nucleus. They are also always filled with both up and down spins, hence requiring
more energy of excitation [38]. The Pz orbitals are partially occupied with less probability
of finding the electron. For example, the Pz orbital of carbon is having zero electrons;
hence, will have to make a little contribution by interaction with one of the 2S electrons.
The interaction between each Pz orbitals among the carbon atoms is due to the result of
the π-bonding. Therefore, the electrical mobility across the Fermi energy is mainly by the
carbon atoms in the carbon nanotube lattice. This can be justified from Figure 3, which
shows that the Pz orbital of carbon contributes more than the Pz orbitals of boron and
nitrogen atoms.
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Figure 6. (a) Py contributions for B, C, and N, respectively; (b) S contributions for B, C, and N,
respectively.

There is a little contribution by the S orbital of carbon because of its interaction
with carbon Pz orbitals. The S orbitals of other elements can be seen to make almost no
contributions. To justify this claim, the PDOS and LDOS of Figure 5 can be seen to overlap,
which means that the local density of states is the contribution of the S orbital.

4.4. Effects of Py and S Orbitals in the Semiconductivity of (5, 5) CBNNT

To report which of the Py orbitals takes more of the electronic properties of our system,
we analyzed the results shown in Figure 6. This figure reveals that the Py orbital of carbon in
SWCNT provides more dominations than the Py orbitals of boron and nitrogen in SWBNNT.
Therefore, it can be inferred that Py orbitals of carbon contribute to narrowing the wider
gap made by boron nitride nanotubes, which pave the way for semiconductivity. The
results of this work agreed closely with previous findings from different methods. For
example, ref. [18] reported that it is possible to obtain a new set of semiconducting hetero
nanotubes by interfacing layers of CNT and BNNT. This has been possible in this work.
The 1.8 eV band gap reported by [27] agrees with the result of 1.8713 eV obtained with the
same PBE in this work. Moreover, the reported value of 1.21 by [21] is approximately close
to the obtained 0.8 eV in this work with the same PW91.

Figure 6a illustrates the individual py contributions by each of the constituent elements,
although they all belong to the same group in the periodic table [39]. They differ in the
contribution to the conduction process by each of their p-orbitals, which arises due to
different occupations by pz orbital [40]. For example, the pz orbital for element boron
contributes to the electronic configuration 1S2 2S2 2Px

1 2Py
0 2Pz

0. As can be seen, the py

orbital of boron contributes less because it has zero electrons. In the case of carbon with
an electronic configuration of 1S2 2S2 2Px

1 2Py
1 2Pz

0, it can be seen that the py orbital of
carbon is occupied by one electron, hence making a higher contribution than boron. This
can be seen in Figure 6b. All the S’ orbitals (Figure 6b) are found to make a very negligible
contribution to the conduction process because they are considered frozen and form some
part of the nucleus [41–46]. They are also always filled with both up and down spins, hence
requiring more energy of excitation similar to px orbital.

5. Conclusions

In this study, the electronic structure of the hybridized armchair form of SWCBNNT
was calculated based on the first principles method. This study successfully created a band
gap under three different parameterizations of LDA and GGA using the density functional
theory which is implemented in Quantum ESPRESSO code. In each case, the armchair
configurations of carbon nanotubes and boron nitride nanotubes were chosen to form
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coupled carbon–boron–nitride nanotubes via a new method of inter-tube coupling. The
chirality of all systems was chosen to be that of (5, 5) armchair tube. It was found that the
band structure of our (5, 5) SWCBNNT is straightforward, and can be applied in the next-
generation optoelectronic devices such as LED. The band gap of the hybrid SWCBBNNT
system is seen to greatly depend on the orbital contributions to atomic interactions in which
the py orbitals of carbon in SWCNT accounted for the electronic properties of the CBNNT
hetero nanotubes material. This is because other px and pz orbitals are considered to
form some part of the nucleus which provide effective repulsion; hence, valence states are
orthogonal to the core nuclear states and are considered frozen. Although the band gap of
1.8 eV has been recorded with PBE, it is well known that both LDA and GGA underestimate
the band gap. This result, therefore, can be improved by using hybrid functions such
as the GW functionals. The calculation of these band structures may hopefully lead to
the addition of new knowledge in the literature, and then serve as a reference for further
research on CBNNT heterostructures.
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