Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (279)

Search Parameters:
Keywords = ZrC coating

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3416 KiB  
Article
The Study of Tribological Characteristics of YSZ/NiCrAlY Coatings and Their Resistance to CMAS at High Temperatures
by Dastan Buitkenov, Zhuldyz Sagdoldina, Aiym Nabioldina and Cezary Drenda
Appl. Sci. 2025, 15(14), 8109; https://doi.org/10.3390/app15148109 - 21 Jul 2025
Viewed by 355
Abstract
This paper presents the results of a comprehensive study of the structure, phase composition, thermal corrosion, and tribological properties of multilayer gradient coatings based on YSZ/NiCrAlY obtained using detonation spraying. X-ray phase analysis showed that the coatings consist entirely of metastable tetragonal zirconium [...] Read more.
This paper presents the results of a comprehensive study of the structure, phase composition, thermal corrosion, and tribological properties of multilayer gradient coatings based on YSZ/NiCrAlY obtained using detonation spraying. X-ray phase analysis showed that the coatings consist entirely of metastable tetragonal zirconium dioxide (t’-ZrO2) phase stabilized by high temperature and rapid cooling during spraying. SEM analysis confirmed the multilayer gradient phase distribution and high density of the structure. Wear resistance, optical profilometry, wear quantification, and coefficient of friction measurements were used to evaluate the operational stability. The results confirm that the structural parameters of the coating, such as porosity and phase gradient, play a key role in improving its resistance to thermal corrosion and CMAS melt, which makes such coatings promising for use in high-temperature applications. It is shown that a dense and thick coating effectively prevents the penetration of aggressive media, providing a high barrier effect and minimal structural damage. Tribological tests in the temperature range from 21 °C to 650 °C revealed that the best characteristics are observed at 550 °C: minimum coefficient of friction (0.63) and high stability in the stage of stable wear. At room temperature and at 650 °C, there is an increase in wear due to the absence or destabilization of the protective layer. Full article
Show Figures

Figure 1

12 pages, 3473 KiB  
Article
Microstructure and Mechanical Properties of Laser-Clad Inconel 718 Coatings on Continuous Casting Mold Copper Plate
by Yu Liu, Haiquan Jin, Guohui Li, Ruoyu Xu, Nan Ma, Hui Liang, Jian Lin, Wenqing Xiang and Zhanhui Zhang
Lubricants 2025, 13(7), 289; https://doi.org/10.3390/lubricants13070289 - 28 Jun 2025
Viewed by 468
Abstract
Mold copper plates (Cr–Zr–Cu alloy) frequently fail due to severe wear under high-temperature conditions during continuous casting. To solve this problem, Inconel 718 coatings were prepared on the plate surface via laser cladding to enhance its high-temperature wear resistance. The results demonstrate that [...] Read more.
Mold copper plates (Cr–Zr–Cu alloy) frequently fail due to severe wear under high-temperature conditions during continuous casting. To solve this problem, Inconel 718 coatings were prepared on the plate surface via laser cladding to enhance its high-temperature wear resistance. The results demonstrate that the coatings exhibit a defect-free structure with metallurgical bonding to the substrate. The coating primarily consists of a γ-(Fe, Ni, Cr) solid solution and carbides (M23C6 and M6C). Notably, elongated columnar Laves phases and coarse Cr–Mo compounds were distributed along grain boundaries, significantly enhancing the coating’s microhardness and high-temperature stability. The coating exhibited an average microhardness of 491.7 HV0.5, which is approximately 6.8 times higher than that of the copper plate. At 400 °C, the wear rate of the coating was 4.7 × 10−4 mm3·N−1·min−1, significantly lower than the substrate’s wear rate of 8.86 × 10−4 mm3·N−1·min−1, which represents only 53% of the substrate’s wear rate. The dominant wear mechanisms were adhesive wear, abrasive wear, and oxidative wear. The Inconel 718 coating demonstrates superior hardness and excellent high-temperature wear resistance, effectively improving both the surface properties and service life of mold copper plates. Full article
Show Figures

Figure 1

13 pages, 6606 KiB  
Article
Preparation and Properties of C/C-(TiZrHfNbTa)C Composites via Inorganic Salt Precursor Method
by Haibo Ouyang, Jiyong Liu, Cuiyan Li, Tianzhan Shen, Jiaqi Liu, Mengyao He, Yanlei Li and Leer Bao
C 2025, 11(3), 41; https://doi.org/10.3390/c11030041 - 25 Jun 2025
Viewed by 474
Abstract
Using low-cost transition-metal chlorides and furfuryl alcohol as raw materials, the (TiZrHfNbTa)C precursor was prepared, and a three-dimensional braided carbon fiber preform (C/C) coated with pyrolytic carbon (PyC) was used as the reinforcing material. A C/C-(TiZrHfNbTa)C composite was successfully fabricated through the precursor [...] Read more.
Using low-cost transition-metal chlorides and furfuryl alcohol as raw materials, the (TiZrHfNbTa)C precursor was prepared, and a three-dimensional braided carbon fiber preform (C/C) coated with pyrolytic carbon (PyC) was used as the reinforcing material. A C/C-(TiZrHfNbTa)C composite was successfully fabricated through the precursor impregnation pyrolysis (PIP) process. Under extreme oxyacetylene ablation conditions (2311 °C/60 s), this composite material demonstrated outstanding ablation resistance, with a mass ablation rate as low as 0.67 mg/s and a linear ablation rate of only 20 μm/s. This excellent performance can be attributed to the dense (HfZr)6(TaNb)2O17 oxide layer formed during ablation. This oxide layer not only has an excellent anti-erosion capability but also effectively acts as an oxygen diffusion barrier, thereby significantly suppressing further ablation and oxidation within the matrix. This study provides an innovative strategy for the development of low-cost ultra-high-temperature ceramic precursors and opens up a feasible path for the efficient preparation of C/C-(TiZrHfNbTa)C composites. Full article
(This article belongs to the Special Issue High-Performance Carbon Materials and Their Composites (2nd Edition))
Show Figures

Graphical abstract

13 pages, 6653 KiB  
Article
Microstructure and Mechanical Properties of Tungsten Zircaloy-4 Diffusion Welding Interface
by Shaohong Wei, Yan Li, Ruiqiang Zhang, Bingfeng Wang, Tianjiao Liang and Wen Yin
Materials 2025, 18(12), 2823; https://doi.org/10.3390/ma18122823 - 16 Jun 2025
Viewed by 388
Abstract
The tungsten target block is widely used as a target material in spallation neutron sources. However, due to the poor corrosion resistance of tungsten, a corrosion-resistant metal layer needs to be coated on the surface. In this study, Zircaloy-4 coating on tungsten was [...] Read more.
The tungsten target block is widely used as a target material in spallation neutron sources. However, due to the poor corrosion resistance of tungsten, a corrosion-resistant metal layer needs to be coated on the surface. In this study, Zircaloy-4 coating on tungsten was prepared by hot isostatic pressure diffusion welding in the temperature range of 900 °C to 1400 °C. The microstructure and mechanical properties of the zirconium–tungsten interface were studied. The results show that a clear intermediate diffusion layer was formed at the interfaces, and no obvious defects were found. As the HIP temperature increased from 900 °C to 1400 °C, the thickness of the diffusion layer gradually increased from 0.28 μm to 10.74 μm. Composition and phase structure analysis of the intermediate diffusion layer showed that the main phase of the diffusion layer is ZrW2. The nanoindentation hardness results near the interface showed that the hardness of the ZrW2 diffusion layer was significantly higher than that of W and the zirconium alloy, reaching around 17.96 GPa. As the HIP temperature increased, the bonding strength between Zry-4 and W matrix first increased and then decreased, with the highest bonding strength of 83.9 MPa when the HIP temperature was 1000 °C. Full article
Show Figures

Figure 1

17 pages, 5042 KiB  
Article
Compressive Creep Performances of Dispersion Coated Particle Surrogate Fuel Pellets with ZrC–SiC Composite Matrix
by Qisen Ren, Yang Liu, Runjie Fang, Lixiang Wu and Weiqiang Liu
Materials 2025, 18(11), 2659; https://doi.org/10.3390/ma18112659 - 5 Jun 2025
Viewed by 516
Abstract
Nuclear fuel pellets are subject to stress for long periods during the in-pile operation, and this study on high-temperature creep performance is of great significance for predicting the in-pile behaviors and safety evaluation of fuel elements. In the present study, a mixture of [...] Read more.
Nuclear fuel pellets are subject to stress for long periods during the in-pile operation, and this study on high-temperature creep performance is of great significance for predicting the in-pile behaviors and safety evaluation of fuel elements. In the present study, a mixture of ZrC (50 wt%), SiC (46 wt%), and Si (4 wt%) powder was ball-milled for 24 h and then evaporated to obtain ZrC–SiC composite material. ZrC–SiC composite was adopted as the matrix, with ZrO2 surrogate kernel TRSIO particles and dispersion coated particle fuel pellets prepared with different TRISO packing fractions using the Spark Plasma Sintering (SPS) process. This study on compressive creep performances was conducted under a temperature range of 1373–2073 K and a stress range of 5–250 MPa, elucidating the creep behavior and mechanism of dispersed coated particles fuel pellets, and obtaining the variation laws of key parameters such as creep stress exponents and activation energy with TRISO packing fraction. The results showed that creep stress exponents of the surrogate fuel pellets are between 0.89 and 2.12. The activation energies for high temperature–low stress creep (1873–2073 K, 5–50 MPa) are 457.81–623.77 kJ/mol, and 135.14–161.59 kJ/mol for low temperature high stress creep (1373–1773 K, 50–250 MPa). Based on the experimental results, a high-temperature creep model was established, providing a valuable reference for the research and application of a ceramic matrix dispersed with coated particle fuels. Full article
Show Figures

Figure 1

15 pages, 4652 KiB  
Article
The Formation of Metal Hydrides on the Surface of Spherical Structures and the Numerical Evaluation of the Hydrogenation Process
by Zulfiqar Khalil and Žydrūnas Kavaliauskas
Materials 2025, 18(11), 2595; https://doi.org/10.3390/ma18112595 - 2 Jun 2025
Viewed by 547
Abstract
Hydrogen possesses distinctive characteristics that position it as a potential energy carrier to substitute fossil fuels. Nonetheless, there is still an essential need to create secure and effective storage solutions prior to its broad application. The use of hydride-forming metals (HFMs) for hydrogen [...] Read more.
Hydrogen possesses distinctive characteristics that position it as a potential energy carrier to substitute fossil fuels. Nonetheless, there is still an essential need to create secure and effective storage solutions prior to its broad application. The use of hydride-forming metals (HFMs) for hydrogen storage is a method that has been researched thoroughly over the past several decades. This study investigates the structural and chemical modifications in titanium (Ti) and zirconium (Zr) thin coatings over aluminum hydroxide (AlO3) granules before and after hydrogenation. The materials were subjected to hydrogenation at 400 °C and 5 atm of hydrogen pressure for 2 h, with a hydrogen flow rate of 0.8 L/min. The SEM analysis revealed significant morphological changes, including surface roughening, a grain boundary separation, and microcrack formations, indicating the formation of metal hydrides. The EDS analysis showed a reduction in Ti and Zr contents post-hydrogenation, likely due to the formation of hydrides. The presence of hydride phases, with shifts in diffraction peaks indicating structural modifications due to hydrogen absorption, is confirmed by the XRD analysis. The FTIR analysis revealed dihydroxylation, with the removal of surface hydroxyl groups and the formation of new metal–hydride bonds, further corroborating the structural changes. The formation of metal hydrides was confirmed by the emergence of new peaks within the 1100–1200 cm−1 range, suggesting the incorporation of hydrogen. Mathematical modeling based on the experimental parameters was conducted to assess the hydride formation and the rate of hydrogen penetration. The hydride conversion rate for Ti- and Zr-coated AlO3 granules was determined to be 3.5% and 1.6%, respectively. While, the hydrogen penetration depth for Ti- and Zr-coated AlO3 granules over a time of 2 h was found to be 1200 nm and 850 nm approximately. The findings had a good agreement with the experimental results. These results highlight the impact of hydrogenation on the microstructure and chemical composition of Ti- and Zr-coated AlO3, shedding light on potential applications in hydrogen storage and related fields. Full article
(This article belongs to the Section Materials Simulation and Design)
Show Figures

Figure 1

15 pages, 5573 KiB  
Article
Surface Transformation of Ultrahigh-Temperature ZrB2–HfB2–SiC–CCNT Ceramics Under Exposure to Subsonic N2-CH4 Plasma Flow
by Elizaveta P. Simonenko, Aleksey V. Chaplygin, Nikolay P. Simonenko, Ilya V. Lukomskii, Semen S. Galkin, Anton S. Lysenkov, Ilya A. Nagornov, Artem S. Mokrushin, Anatoly F. Kolesnikov and Nikolay T. Kuznetsov
Ceramics 2025, 8(2), 67; https://doi.org/10.3390/ceramics8020067 - 2 Jun 2025
Viewed by 1114
Abstract
The chemical and microstructural transformation of the surface of a 31.5 vol.% ZrB2-31.5 vol.% HfB2-27 vol.% SiC-10 vol.% CCNT ultrahigh-temperature ceramic sample (where CCNT refers to carbon nanotubes) was studied under the influence of a subsonic N [...] Read more.
The chemical and microstructural transformation of the surface of a 31.5 vol.% ZrB2-31.5 vol.% HfB2-27 vol.% SiC-10 vol.% CCNT ultrahigh-temperature ceramic sample (where CCNT refers to carbon nanotubes) was studied under the influence of a subsonic N2-plasma flow with the addition of 5 mol% methane, simulating aerodynamic heating in the atmosphere of Titan. As in the case of pure nitrogen flow, it was found that silicon carbide is removed from the surface. Zirconium and hafnium diborides are partially transformed into a Zr-Hf-B-C-N solid solution in the experiment conducted. XRD, Raman spectroscopy, and SEM-EDX analysis show that the presence of C2 in the N2-CH4 plasma flow leads to surface carbonization (formation of a graphite- and diamond-like coating with a high proportion of amorphous carbon), resulting in significant changes in the microstructure and emissivity, potentially affecting the catalytic properties of the surface. Full article
Show Figures

Figure 1

27 pages, 24499 KiB  
Article
Sol–Gel-Derived Vinyltrimethoxysilane (VTMS)/Tetraetoxysilane (TEOS) Hybrid Coatings on Titanium Materials for Use in Medical Applications
by Oliwia Kierat and Agata Dudek
Materials 2025, 18(10), 2273; https://doi.org/10.3390/ma18102273 - 14 May 2025
Viewed by 1202
Abstract
Hybrid silane-based coatings were developed via the sol–gel process using two precursors, vinyltrimethoxysilane (VTMS) and tetraethoxysilane (TEOS), and subsequently deposited onto three titanium-based substrates: commercially pure titanium Grade 2, Ti6Al4V, and Ti13Nb13Zr. Comprehensive physicochemical characterization was performed, including microstructural (optical and SEM), topographical [...] Read more.
Hybrid silane-based coatings were developed via the sol–gel process using two precursors, vinyltrimethoxysilane (VTMS) and tetraethoxysilane (TEOS), and subsequently deposited onto three titanium-based substrates: commercially pure titanium Grade 2, Ti6Al4V, and Ti13Nb13Zr. Comprehensive physicochemical characterization was performed, including microstructural (optical and SEM), topographical (3D roughness), spectroscopic (FTIR), and electrochemical (potentiodynamic) analyses. The coatings were continuous, transparent, smooth, and exhibited high gloss with no visible cracks or surface defects. Surface roughness (Sa ≈ 0.3 μm) was consistent across all samples and remained unaffected by both the VTMS to TEOS ratio and the substrate type. Coating thickness ranged from 8 to 15 μm, as confirmed by both digital microscopy and thickness gauge measurements. All coatings demonstrated strong adhesion to the substrates. FTIR analysis confirmed the presence of key functional groups, such as CH2, C=C, C–H, Si–O–Si, Si–OH, Si–O–Ti, CH=CH2, and O–Si–O, regardless of the substrate type. Electrochemical tests in Ringer’s solution showed excellent corrosion resistance, particularly for coatings with a VTMS to TEOS ratio of 1:1. Post-corrosion imaging confirmed the integrity of the coatings and their effectiveness as protective barriers in simulated physiological environments. These findings support the potential of VTMS/TEOS sol–gel coating as a surface modification strategy for biomedical titanium implants. Full article
Show Figures

Figure 1

11 pages, 3385 KiB  
Article
Functional Polyacrylate Textile Coatings with N,N-Diethyl-3-methylbenzamide (DEET) Immobilized on Zirconia, Alumina and Silica Sorbents
by Sergei Zverev, Sergei Andreev, Ekaterina Anosova, Varvara Morenova, Maria Rakitina and Vladimir Vinokurov
Surfaces 2025, 8(2), 33; https://doi.org/10.3390/surfaces8020033 - 9 May 2025
Viewed by 537
Abstract
In this study, polymer films based on the inorganic sorbents Al2O3, ZrO2 and SiO2-phenyl with repellent N,N-diethyl-3-methylbenzamide were prepared and used as functional textile coatings. The high sorption activity of oxides with respect [...] Read more.
In this study, polymer films based on the inorganic sorbents Al2O3, ZrO2 and SiO2-phenyl with repellent N,N-diethyl-3-methylbenzamide were prepared and used as functional textile coatings. The high sorption activity of oxides with respect to N,N-diethyl-3-methylbenzamide (63–239 mg/g) allows for the use of these compounds as repellent carrier materials, and their mixture with polyacrylates allows for the formation of functional coatings–polymer films. Scanning electron microscopy and Fourier transform infrared spectroscopy results revealed that the inorganic sorbents Al2O3, ZrO2 and SiO2-phenyl were successfully anchored in the polyacrylate structure, and the FTIR spectra confirmed the presence of repellent molecules. The thermal diffusion parameters of N,N-diethyl-3-methylbenzamide were also calculated via thermogravimetric analysis and high-performance liquid chromatography with diode array detection. The highest thermal diffusion rates and concentrations were observed for the material with Al2O3 (up to 148.3∙10−9 mol at 200 °C), and lower values for ZrO2 and SiO2-phenyl (up to 15.2∙10−9 mol and 34.3∙10−9 mol at 200 °C, respectively). The heat flux parameter Jf was also calculated according to Onsager’s theory and Fourier’s law. The release of repellent from polymeric materials can be achieved by applying less heat than that required to reach the boiling point of N,N-diethyl-3-methylbenzamide. Full article
(This article belongs to the Special Issue Surface Science: Polymer Thin Films, Coatings and Adhesives)
Show Figures

Figure 1

17 pages, 8086 KiB  
Article
Effect of Al on the Oxidation Behavior of TiCrZrNbTa High-Entropy Coatings on Zr Alloy
by Min Guo, Chaoyang Chen, Bin Song, Junhong Guo, Junhua Hu and Guoqin Cao
Materials 2025, 18(9), 1997; https://doi.org/10.3390/ma18091997 - 28 Apr 2025
Viewed by 526
Abstract
This study investigates the role of Al alloying in tailoring the oxidation resistance of AlTiCrZrNbTa refractory high-entropy alloy (RHEA) coatings on Zry-4 substrates under high-temperature steam environments. Coatings with varying Al contents (0–25 at.%) were deposited via magnetron sputtering and subjected to oxidation [...] Read more.
This study investigates the role of Al alloying in tailoring the oxidation resistance of AlTiCrZrNbTa refractory high-entropy alloy (RHEA) coatings on Zry-4 substrates under high-temperature steam environments. Coatings with varying Al contents (0–25 at.%) were deposited via magnetron sputtering and subjected to oxidation tests at 1000–1100 °C. The results demonstrate that Al content critically governs oxidation kinetics and coating integrity. The optimal performance was achieved at 10 at.% Al, above which a dense, continuous composite oxide layer (Al2O3, TiO2, Cr2O3) formed, effectively suppressing oxygen penetration and maintaining strong interfacial adhesion. Indentation tests confirmed enhanced mechanical integrity in Al-10 coatings, with minimal cracking post-oxidation. Excessive Al alloying (≥17 at.%) led to accelerated coating oxidation. This work establishes a critical Al threshold for balancing oxidation and interfacial bonding, providing a design strategy for developing accident-tolerant fuel cladding coatings. Full article
Show Figures

Figure 1

15 pages, 8131 KiB  
Article
Utilizing Fly Ash from Coal-Fired Power Plants to Join ZrO2 and Crofer by Reactive Air Brazing
by Shu-Wei Chang, Ren-Kae Shiue and Liang-Wei Huang
Materials 2025, 18(9), 1956; https://doi.org/10.3390/ma18091956 - 25 Apr 2025
Viewed by 464
Abstract
This study attempts to use fly ash as the brazing filler additive to increase the sustainable use of coal-fired power plant by-product materials. The experimental results show that adding 5 wt% fly ash into the Ag paste filler contributes to the interfacial reactions [...] Read more.
This study attempts to use fly ash as the brazing filler additive to increase the sustainable use of coal-fired power plant by-product materials. The experimental results show that adding 5 wt% fly ash into the Ag paste filler contributes to the interfacial reactions in heterogeneous reactive air brazing (RAB) of the ZrO2 and Crofer alloy. The Ag-rich phase dominates the brazed zone. The interfacial reaction layers contain oxidation of the Cu-Ti coating layer, Crofer alloy, and the Si/Al-rich oxides from the fly ash particles. The 5% fly ash RAB joint maintained airtightness for 280 h under 2 psig helium at room temperature. When the test temperature was raised to 600 °C for 24 h, the pressure of the joint assembly still did not drop. When the fly ash addition was increased to 10 wt%, the joint assembly was no longer leak-free at room temperature. Many visible voids and cracks exist in the brazed zone and at the ZrO2/braze and braze/Crofer interfaces. A high volume fraction of the fly ash particles results in many brittle Si/Al-rich oxides in the joint after RAB, and the fracture of these oxides significantly deteriorates the airtightness of the joint. This study shows the feasibility and potential of introducing 5 wt% fly ash particles to the Ag-rich paste filler during the RAB of ZrO2 and Crofer for airtight applications. Full article
Show Figures

Figure 1

16 pages, 5694 KiB  
Article
Preparation of New Vanadium Base Composite Conversion Coating on 6061 Aluminum Alloy Surface for Sports Equipment
by Yiqun Wang, Xuzheng Qian, Feng Huang and Yingsong Fang
Coatings 2025, 15(5), 516; https://doi.org/10.3390/coatings15050516 - 25 Apr 2025
Viewed by 492
Abstract
The 6061 aluminum alloy is a commonly used metal material for sports equipment but is vulnerable to the external environment and corrosion. A novel V-Zr-Ti composite conversion coating was successfully prepared on the surface of 6061 aluminum alloy, and a thorough investigation was [...] Read more.
The 6061 aluminum alloy is a commonly used metal material for sports equipment but is vulnerable to the external environment and corrosion. A novel V-Zr-Ti composite conversion coating was successfully prepared on the surface of 6061 aluminum alloy, and a thorough investigation was conducted into the effect of the conversion parameters. Furthermore, the microstructure of the conversion coating, element contents of the coating surface, and dynamic evolution characteristics of the conversion solution were systematically investigated, and furthermore, the relationship among them was established. The results show that the optimal conversion time (CTI) and conversion temperature (CTE) for the VZrCC are 12 min and 45 °C. The VZrTiCC can gradually fill surface scratches during the coating-forming process, resulting in a relatively flat and even surface morphology. The conversion element contents on the VZrTiCC surface demonstrated a gradual increase, and the deposition rate was characterized by high Ti, medium Zr, and low V. The phase of the coating is predominantly constituted by metal oxides derived from conversion compositions, with a minor proportion of fluoride. Furthermore, the VZrTiCC can significantly enhance the corrosion resistance of an Al alloy matrix due to its low icorr and average corrosion rate (ACR), and its corrosion resistance is about 5 times higher than that of the Al alloy matrix. Eventually, the formation process of the VZrTiCC with three key stages was proposed. In subsequent studies, to further establish a composition design framework for the conversion coating, a silane aqueous solution will be added to the existing V-Zr-Ti conversion solution, and a systematic study will be conducted on the V–organic composite conversion coating using computational molecular dynamics simulation combined with experimental characterization. Full article
Show Figures

Figure 1

17 pages, 10913 KiB  
Article
Study of Gd2O3-Doped La2(Zr0.7Ce0.3)2O7 Thermal Barriers for Coating Ceramic Materials for CMAS Resistance
by Xiaowei Song, Min Xie, Xiaofu Qu, Xiwen Song, Yonghe Zhang and Rende Mu
Coatings 2025, 15(4), 483; https://doi.org/10.3390/coatings15040483 - 18 Apr 2025
Cited by 1 | Viewed by 544
Abstract
The stability of thermal barrier coating (TBC) materials during service is a prerequisite for the normal operation of aircraft engines. The high-temperature corrosion of CaO–MgO–Al2O3–SiO2 (CMAS) is an important factor that affects the stability of TBCs on turbine [...] Read more.
The stability of thermal barrier coating (TBC) materials during service is a prerequisite for the normal operation of aircraft engines. The high-temperature corrosion of CaO–MgO–Al2O3–SiO2 (CMAS) is an important factor that affects the stability of TBCs on turbine blades and causes premature engine failure. For traditional 6-8 YSZ, at temperatures of more than 1200 °C, the thermal insulation performance is significantly reduced, which makes it necessary to find new, alternative materials. La2Zr2O7 has good thermal physical properties; the addition of Ce4+ improves its mechanical properties, while adding Gd2O3 affects its corrosion resistance. Herein, high-temperature corrosion studies of (La1−xGdx)2(Zr0.7Ce0.3)2O7 (L-GZC) (x = 0, 0.3, 0.5, 0.7) ceramic TBC were conducted using CMAS glass at 1250 °C. The results indicate that CMAS rapidly dissolves L-GZC and separates the (La, Gd)8Ca2(SiO4)6O2 apatite phase, ZrO2, and other crystalline phases. These products form a crystalline layer at the contact boundary, which can inhibit further CMAS reactions. Among the coatings examined, the L-GZC ceramic (x = 0.7) exhibits better corrosion resistance, and the penetration depth is <200 μm after high-temperature corrosion at 1250 °C for 5, 10, and 20 h. The failure mechanism and potential risk of CMAS were also analyzed and discussed. The L-GZC ceramic material has good thermal corrosion resistance and is expected to replace the traditional YSZ to better meet the high-temperature working requirements of gas turbines and aircraft engines. Full article
(This article belongs to the Section Corrosion, Wear and Erosion)
Show Figures

Graphical abstract

18 pages, 6707 KiB  
Article
The Effects of the Finishing Polish Process on the Tribological Properties of Boride Surfaces of AISI 4140 Steel
by Daniel Misael Flores-Arcos, Noé López-Perrusquia, Marco Antonio Doñu-Ruiz, Martin Flores-Martínez, Stephen Muhl Saunders, David Sánchez Huitron and Ernesto David García Bustos
Coatings 2025, 15(4), 474; https://doi.org/10.3390/coatings15040474 - 16 Apr 2025
Viewed by 567
Abstract
In sealing, sliding, and power transmission operations, surface quality and contact tolerances have high impacts on material system efficiency. Although the boriding process improves the wear resistance of metallic surfaces, it increases surface roughness, affecting the tribological efficiency of material systems. This study [...] Read more.
In sealing, sliding, and power transmission operations, surface quality and contact tolerances have high impacts on material system efficiency. Although the boriding process improves the wear resistance of metallic surfaces, it increases surface roughness, affecting the tribological efficiency of material systems. This study presents the tribological results of AISI 4140 boriding surfaces tested using a dehydrated paste pack boriding method with and without a finishing polish process to reduce the roughness. The duration of the boriding process was 1 h at 1123, 1173, 1223, and 1273 K using boron paste obtained from a commercial source and using a pot-polishing process with Al2O3 with a particle size of 0.5 μm for 25 min. The samples with and without the finishing polish process were structurally characterized using X-ray diffraction, and the boride coating adhesion was determined using Rockwell C indentation. The tribological properties of the boride surface with and without the finishing polish process were determined using a reciprocating sliding test, with a ZrO2 ball as a counter body. The boride surfaces’ crystalline structure changed with polishing, which revealed the FeB phase and reduced the roughness value. These modifications in the surface characteristics altered the adhesion and tribological performance of the coating, resulting in a more stable tribological performance on the polished boride surfaces, with a reduction in the coefficient of friction (Cof) value from 0.75 ± 0.02 for the tribological test on the 1123 K-P sample to 0.59 ± 0.002 for the 1273 K-P sample surface at 20 N of applied load. Full article
(This article belongs to the Special Issue Microstructure, Fatigue and Wear Properties of Steels, 2nd Edition)
Show Figures

Figure 1

17 pages, 14985 KiB  
Article
Effect of Yttrium Oxide on Microstructure and Oxidation Behavior of Cr/FeCrAl Coatings Fabricated by Extreme High-Speed Laser Cladding Process: An Experimental Approach
by Tian Liang, Jian Liu, Chi Zhan, Shaoyuan Peng and Jibin Pu
Materials 2025, 18(8), 1821; https://doi.org/10.3390/ma18081821 - 16 Apr 2025
Viewed by 511
Abstract
Zr-4 alloy tubes, as the primary cladding material in nuclear reactor cores, face the critical challenge of oxidative attack in 1200 °C steam environments. To address this issue, high-temperature oxidation-resistant coatings fabricated via extreme high-speed laser cladding (EHLA) present a promising mitigation strategy. [...] Read more.
Zr-4 alloy tubes, as the primary cladding material in nuclear reactor cores, face the critical challenge of oxidative attack in 1200 °C steam environments. To address this issue, high-temperature oxidation-resistant coatings fabricated via extreme high-speed laser cladding (EHLA) present a promising mitigation strategy. In this study, Y2O3-modified (0.0–5.0 wt.%) Cr/FeCrAl composite coatings were designed and fabricated on Zr-4 substrates using the EHLA process, followed by systematic investigation of Y doping effects on coating microstructures and steam oxidation resistance (1200 °C, H2O atmosphere). Experimental results demonstrate that Y2O3 doping remarkably enhanced the oxidation resistance, with optimal performance achieved at 2.0 wt.% Y2O3 (31% oxidation mass gain compared to the substrate after 120-min exposure). Microstructural analysis reveals that the dense grain boundary network facilitates rapid surface diffusion of Al, promoting continuous Al2O3 protective film formation. Additionally, Y segregation at grain boundaries suppressed outward diffusion of Cr3+ cations, effectively inhibiting void formation at the oxide-coating interface and improving interfacial stability. The developed rare-earth-oxide-doped composite coating via extreme high-speed laser cladding process shows promising applications in surface-strengthening engineering for nuclear reactor Zr-4 alloy cladding tubes, providing both theoretical insights and technical references for the design of high-temperature oxidation-resistant coatings in nuclear industry. Full article
(This article belongs to the Section Corrosion)
Show Figures

Figure 1

Back to TopTop