Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (75)

Search Parameters:
Keywords = Zr-Co powder

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 11502 KB  
Article
Laser Remelting of Biocompatible Ti-Based Glass-Forming Alloys: Microstructure, Mechanical Properties, and Cytotoxicity
by Aleksandra Małachowska, Wiktoria Drej, Agnieszka Rusak, Tomasz Kozieł, Denis Pikulski and Wojciech Stopyra
Materials 2025, 18(24), 5687; https://doi.org/10.3390/ma18245687 - 18 Dec 2025
Viewed by 379
Abstract
Titanium-based bulk metallic glasses (BMGs) offer high strength, lower stiffness than Ti-6Al-4V, and superior corrosion resistance, but conventional Ti glass-forming systems often contain toxic Ni, Be, or Cu. This work investigates five novel Ti-based alloys free of these elements—Ti42Zr35Si [...] Read more.
Titanium-based bulk metallic glasses (BMGs) offer high strength, lower stiffness than Ti-6Al-4V, and superior corrosion resistance, but conventional Ti glass-forming systems often contain toxic Ni, Be, or Cu. This work investigates five novel Ti-based alloys free of these elements—Ti42Zr35Si5Co12.5Sn2.5Ta3, Ti42Zr40Ta3Si15, Ti60Nb15Zr10Si15, Ti39Zr32Si29, and Ti65.5Fe22.5Si12—synthesized by arc melting and suction casting. Single-track laser remelting using a selective laser melting (SLM) system was performed to simulate additive manufacturing and examine microstructural evolution, cracking behavior, mechanical properties, and cytocompatibility. All alloys solidified into fully crystalline α/β-Ti matrices with Ti/Zr silicides; no amorphous structures were obtained. Laser remelting refined the microstructure but did not induce glass formation, consistent with the known limited glass-forming ability of Cu/Ni/Be-free Ti systems. Cracking was observed at low laser energies but crack density decreased as laser energy increased. Cracks were eliminated above ~0.4 J/mm for most alloys. Ti42Zr35Si5Co12.5Sn2.5Ta3 exhibited the lowest stiffness (~125 GPa), while Ti60Nb15Zr10Si15 showed the highest due to silicide precipitation. Cytotoxicity tests (ISO 10993-5) confirmed all alloys to be non-toxic, with some extracts even enhancing fibroblast proliferation. This rapid laser-remelting approach enables cost-effective screening of Ti-based glass-forming alloys for additive manufacturing. Ti–Zr–Ta–Si systems demonstrated the most promising properties for further testing using the powder bed method. Full article
(This article belongs to the Section Biomaterials)
Show Figures

Figure 1

33 pages, 11997 KB  
Article
The Effects of Knife Milling and Ball Milling on Hydrogen Decrepitated Sm2TM17 Sintered Magnet Powder for Short-Loop Recycling
by James Thomas Griffiths, Oliver Peter Brooks, Viktoria Kozak, Alexis Lambourne, Alexander Campbell and Richard Stuart Sheridan
Metals 2025, 15(11), 1258; https://doi.org/10.3390/met15111258 - 18 Nov 2025
Cited by 1 | Viewed by 594
Abstract
Sm2TM17 sintered magnets (TM = Co, Fe, Cu, Zr) are utilised in high-temperature rotor applications due to their stable magnetic properties at elevated temperatures of 200–350 °C. However, Sm and Co are critical elements, and the reliance on virgin material [...] Read more.
Sm2TM17 sintered magnets (TM = Co, Fe, Cu, Zr) are utilised in high-temperature rotor applications due to their stable magnetic properties at elevated temperatures of 200–350 °C. However, Sm and Co are critical elements, and the reliance on virgin material supply chains must be reduced. Hydrogen decrepitation (HD) could facilitate magnet-to-magnet recycling of scrap material, but the milling characteristics of the powders generated by HD requires investigation. Sm2TM17 sintered magnets were exposed to 18 bar and 2 bar hydrogen pressure at 100 °C for 72 h and then knife-milled, roller ball-milled, and planetary ball-milled for varying milling times utilising a variety of surfactants. The particle size and morphology of the powders were investigated, and sintered magnets manufactured from chosen powders were characterised in terms of composition, density, microstructure, and magnetic properties. Knife milling for two minutes showed major particle size reductions of 70 and 82% in D50 for 18 bar and 2 bar samples respectively. Roller ball milling trials showed that a cyclohexane and oleic acid mixture was the most effective at reducing particle size, reducing D10, 50, and 90 by 92, 91, and 80% respectively. Knife milling HD powder for two minutes and then planetary ball milling this powder in a cyclohexane and 1 wt.% oleic acid mixture generated a particle size distribution of 1.3–6.8 µm. This powder formed a sintered compact with a density 0.08 g/cm3 lower than the as-received material. Sm losses due to oxidation and sublimation in addition to carbon impurities from surfactant usage caused the precipitation of an α-Fe/Co phase and formed ZrC phases respectively. Sm-hydride additions of 2–3 wt.% mitigated the formation of the α-Fe/Co phase, but ZrC phases remained and likely prevented cell structure formation and inhibited domain wall pinning in recycled magnets. Full article
Show Figures

Figure 1

18 pages, 8789 KB  
Article
Optimization of Plasma-Sprayed CeScYSZ Thermal Barrier Coating Parameters and Investigation of Their CMAS Corrosion Resistance
by Rongbin Li, Keyu Wang and Ziyan Li
Materials 2025, 18(22), 5114; https://doi.org/10.3390/ma18225114 - 11 Nov 2025
Viewed by 494
Abstract
Thermal barrier coatings (TBCs) are critical for protecting hot-section components in gas turbines and aero-engines. Traditional yttria-stabilized zirconia (YSZ) coatings are prone to phase transformation and sintering-induced failure at elevated temperatures. This study fabricated CeScYSZ (4 mol% CeO2 and 6 mol% Sc [...] Read more.
Thermal barrier coatings (TBCs) are critical for protecting hot-section components in gas turbines and aero-engines. Traditional yttria-stabilized zirconia (YSZ) coatings are prone to phase transformation and sintering-induced failure at elevated temperatures. This study fabricated CeScYSZ (4 mol% CeO2 and 6 mol% Sc2O3 co-doped YSZ)/NiCrAlY TBCs using atmospheric plasma spraying (APS). A five-factor, four-level orthogonal experimental design was employed to optimize spraying parameters, investigating the influence of powder feed rate, spray distance, current, hydrogen flow rate and primary gas flow rate on the coating’s microstructure and mechanical properties. The resistance to calcium–magnesium–alumino–silicate (CMAS) corrosion was compared between CeScYSZ and YSZ coatings. The results indicate that the optimal parameters are a spray distance of 100 mm, current of 500 A, argon flow rate of 30 L/min, hydrogen flow rate of 6 L/min, and powder feed rate of 45 g/min. Coatings produced under these conditions exhibited moderate porosity and excellent bonding strength. After exposure to CMAS corrosion at 1300 °C for 2 h, the CeScYSZ coating demonstrated significantly superior corrosion resistance compared to YSZ. This enhancement is attributed to the formation of a CaZrO3 physical barrier and the synergistic effect of Ce and Sc in suppressing deleterious phase transformations. This study provides an experimental basis for the preparation and application of high-performance TBCs. Full article
(This article belongs to the Special Issue Protective Coatings for Metallic Materials)
Show Figures

Figure 1

15 pages, 4059 KB  
Article
Surface Fluorination for the Stabilization in Air of Garnet-Type Oxide Solid Electrolyte for Lithium Ion Battery
by Michael Herraiz, Saida Moumen, Kevin Lemoine, Laurent Jouffret, Katia Guérin, Elodie Petit, Nathalie Gaillard, Laure Bertry, Reka Toth, Thierry Le Mercier, Valérie Buissette and Marc Dubois
Batteries 2025, 11(7), 268; https://doi.org/10.3390/batteries11070268 - 16 Jul 2025
Cited by 1 | Viewed by 1339
Abstract
After reviewing the state of the art of the fluorination of inorganic solid electrolytes, an application of gas/solid fluorination is given and how it can be processed. Garnet-type oxide has been chosen. These oxides with an ideal structure of chemical formula A3 [...] Read more.
After reviewing the state of the art of the fluorination of inorganic solid electrolytes, an application of gas/solid fluorination is given and how it can be processed. Garnet-type oxide has been chosen. These oxides with an ideal structure of chemical formula A3B2(XO4)3 are mainly known for their magnetic and dielectric properties. Certain garnets may have a high enough Li+ ionic conductivity to be used as solid electrolyte of lithium ion battery. The surface of LLZO may be changed in contact with the moisture and CO2 present in the atmosphere that results in a change of the conductivity at the interface of the solid. LiOH and/or lithium carbonate are formed at the surface of the garnet particles. In order to allow for handling and storage under normal conditions of this solid electrolyte, surface fluorination was performed using elemental fluorine. When controlled using mild conditions (temperature lower or equal to 200 °C, either in static or dynamic mode), the addition of fluorine atoms to LLZO with Li6,4Al0,2La3Zr2O12 composition is limited to the surface, forming a covering layer of lithium fluoride LiF. The effect of the fluorination was evidenced by IR, Raman, and NMR spectroscopies. If present in the pristine LLZO powder, then the carbonate groups disappear. More interestingly, contrary to the pristine LLZO, the contents of these groups are drastically reduced even after storage in air up to 45 days when the powder is covered with the LiF layer. Surface fluorination could be applied to other solid electrolytes that are air sensitive. Full article
Show Figures

Figure 1

40 pages, 7391 KB  
Review
Preparation Methods and Photocatalytic Performance of Kaolin-Based Ceramic Composites with Selected Metal Oxides (ZnO, CuO, MgO): A Comparative Review
by Dikra Bouras, Lotfi Khezami, Regis Barille, Neçar Merah, Billel Salhi, Gamal A. El-Hiti, Ahlem Guesmi and Mamoun Fellah
Inorganics 2025, 13(5), 162; https://doi.org/10.3390/inorganics13050162 - 13 May 2025
Cited by 7 | Viewed by 2464
Abstract
The current review examines various methods for preparing photocatalytic materials based on ceramic substrates, with a focus on incorporating metal oxides such as ZnO, CuO, and MgO. This study compares traditional mixing, co-precipitation, sol–gel, and autoclave methods for synthesizing these materials. Kaolin-based ceramics [...] Read more.
The current review examines various methods for preparing photocatalytic materials based on ceramic substrates, with a focus on incorporating metal oxides such as ZnO, CuO, and MgO. This study compares traditional mixing, co-precipitation, sol–gel, and autoclave methods for synthesizing these materials. Kaolin-based ceramics (DD3 and DD3 with 38% ZrO2) from Guelma, Algeria, were used as substrates. This review highlights the effects of different preparation methods on the structural, morphological, and compositional properties of the resulting photocatalysts. Additionally, the potential of these materials for the photocatalytic degradation of organic dyes, specifically Orange II, was evaluated. Results indicated that ceramic/ZnO/CuO and ceramic/MgO powders prepared via traditional mixing and co-precipitation techniques exhibited significantly faster degradation rates under visible light than Cu layers deposited on ceramic substrates using solution gradient processes. This enhancement was attributed to the increased effective surface area and the size of the spherical nanoparticles obtained through these methods, which facilitated accelerated pollutant absorption. This study highlights the ease and cost-effectiveness of preparing robust layers on ceramic substrates, which are advantageous for photocatalytic applications due to their straightforward removal after filtration. Notably, DD3Z/MgO powders demonstrated superior catalytic activity, achieving complete degradation of the organic dye in just 10 min, whereas DD3Z/ZnO-CuO powders achieved 93.6% degradation after 15 min. Additionally, experiments using kaolin-based ceramics as substrates instead of powders yielded a maximum dye decomposition rate of 77.76% over 6 h using ZnO thin layers prepared via the autoclave method. Full article
(This article belongs to the Special Issue Nanocomposites for Photocatalysis, 2nd Edition)
Show Figures

Graphical abstract

18 pages, 6209 KB  
Article
Non-Isothermal Crystallization Behavior of a Zr-Based Amorphous Alloy Composite Prepared by Selective Laser Melting
by Qi An, Rui Li, Yalin Hu, Yun Luo, Anhui Cai, Yixian Li, Hong Mao and Sheng Li
Materials 2025, 18(7), 1631; https://doi.org/10.3390/ma18071631 - 3 Apr 2025
Viewed by 768
Abstract
Zr48Cu47.5Al4Co0.5 bulk amorphous alloy composites were prepared by selective laser melting (SLM) technology under different processing conditions and their non-isothermal crystallization behaviors were systematically investigated. The results show that the crystallization phases are Cu10Zr [...] Read more.
Zr48Cu47.5Al4Co0.5 bulk amorphous alloy composites were prepared by selective laser melting (SLM) technology under different processing conditions and their non-isothermal crystallization behaviors were systematically investigated. The results show that the crystallization phases are Cu10Zr7 and CuZr2 for both gas-atomized powder and SLMed samples. The dependence of volume fraction of Cu10Zr7 and CuZr2 on laser energy density can be fitted by an exponential function. The crystalline sizes of Cu10Zr7 and CuZr2 linearly increase with increasing energy density. The thermal stability is larger for the gas-atomized powders than for the SLMed bulk samples. It is interestingly found that there is an exponential relationship between the crystallization enthalpy ΔHx and the amorphous content. In addition, the glass transition is more difficult for the gas-atomized powders than for the SLMed bulk samples. The crystallization procedure is more difficult for the SLMed bulk samples than for the gas-atomized powders. The local activation energy Eα decreases with increasing α for the gas-atomized powder and the SLMed bulk samples. In addition, the Eα is larger for the SLMed bulk samples than for the gas-atomized powder at the corresponding crystallization fraction α. The dependence of the local Avrami exponent n(α) on the α is similar for both the gas-atomized powders and the SLMed bulk samples at studied heating rates. The crystallization mechanism is also discussed. Full article
Show Figures

Figure 1

12 pages, 2501 KB  
Article
Reduction and Phase Transformation of Ce-Doped Zirconolites
by Kohei Hayashizaki, Shun Hirooka, Tadahisa Yamada, Takeo Sunaoshi, Tatsutoshi Murakami and Kosuke Saito
Ceramics 2025, 8(1), 24; https://doi.org/10.3390/ceramics8010024 - 4 Mar 2025
Cited by 1 | Viewed by 1128
Abstract
Zirconolite is a wasteform that can immobilize Pu. Herein, zirconolites comprising Ce as a Pu simulant and Al as a charge compensator of Ce/Pu were synthesized by sintering raw CaO, ZrO2, TiO2, CeO2, and Al2O [...] Read more.
Zirconolite is a wasteform that can immobilize Pu. Herein, zirconolites comprising Ce as a Pu simulant and Al as a charge compensator of Ce/Pu were synthesized by sintering raw CaO, ZrO2, TiO2, CeO2, and Al2O3 powder mixtures at 1400 °C in static air. The reduction behavior and phase transformation of zirconolites during their heat treatment in an Ar–H2 gas flow were investigated. In pure and Ce–Al co-doped zirconolite compositions, 2M-zirconolite and small amounts of perovskite were obtained after sintering. In contrast, 2M-, 4M-zirconolite and relatively large amounts of perovskite were obtained in Ce-doped zirconolite composition. All zirconolite compositions first underwent reduction at ~1050 °C by forming a small domain of perovskite phase. Ce–Al co-doped zirconolite showed a smaller fraction of phase transformation in perovskite than Ce-doped zirconolite, indicating the advantage of using a charge compensator to prevent perovskite formation. Full article
Show Figures

Figure 1

11 pages, 1657 KB  
Article
Cu-Related Paramagnetic Centers in Cu- and (Cu,Y)-Doped ZrO2 Nanopowders
by Valentyna Nosenko, Igor Vorona, Volodymyr Trachevsky, Yuriy Zagorodniy, Sergey Okulov, Oksana Isaieva, Volodymyr Yukhymchuk, Sergei A. Kulinich, Lyudmyla Borkovska and Larysa Khomenkova
Materials 2025, 18(3), 605; https://doi.org/10.3390/ma18030605 - 29 Jan 2025
Viewed by 1286
Abstract
In this work, we studied Cu-doped and (Cu,Y)-codoped ZrO2 nanopowders produced through a coprecipitation approach to identify the nature of Cu-related bulk and surface paramagnetic centers. We conducted EPR, NMR, and Raman scattering studies on Cu- and (Cu,Y)-doped ZrO2 powders calcined [...] Read more.
In this work, we studied Cu-doped and (Cu,Y)-codoped ZrO2 nanopowders produced through a coprecipitation approach to identify the nature of Cu-related bulk and surface paramagnetic centers. We conducted EPR, NMR, and Raman scattering studies on Cu- and (Cu,Y)-doped ZrO2 powders calcined at different temperatures. At low calcination temperatures (400 °C) and low Cu loading (0.1–1.0 mol.% of CuO), the EPR signal was found to be attributed to surface-related Cu-H2O complexes. For powders with higher Cu content (up to 8.0 mol.% of CuO), the superparamagnetic signal associated with the formation of copper clusters was observed. At higher calcination temperatures, the destruction of Cu-related surface complexes promotes the incorporation of Cu2+ ions into the bulk of ZrO2 nanocrystals at Zr positions. Co-doping ZrO2 with Cu and Y was observed to facilitate the incorporation of Cu2+ ions into cation sites at lower calcination temperatures when compared with Cu-doped ZrO2. Full article
Show Figures

Graphical abstract

11 pages, 3867 KB  
Article
Influence of Nb Content on Structure and Functional Properties of Novel Multicomponent Nb–Ni–Ti–Zr–Co Alloy for Hydrogen Separation Membrane Application
by Egor B. Kashkarov, Leonid A. Svyatkin, Kirill S. Gusev, Sergey S. Ognev, Maksim Koptsev, Daria V. Terenteva, Tatyana L. Murashkina and Andrey M. Lider
Hydrogen 2024, 5(4), 929-939; https://doi.org/10.3390/hydrogen5040049 - 21 Nov 2024
Cited by 1 | Viewed by 6242
Abstract
Novel multicomponent Nb–Ni–Ti–Zr–Co alloys with 20–55 at.% Nb were synthesized from metal powders by arc melting. The resulting alloys consist primarily of Nb-rich and eutectic body-centered (BCC) phases. The content of the eutectic BCC phase is highest for an equimolar composition, while the [...] Read more.
Novel multicomponent Nb–Ni–Ti–Zr–Co alloys with 20–55 at.% Nb were synthesized from metal powders by arc melting. The resulting alloys consist primarily of Nb-rich and eutectic body-centered (BCC) phases. The content of the eutectic BCC phase is highest for an equimolar composition, while the content of the Nb-rich BCC phase increases with Nb content in the alloy. The content of secondary phases is the highest for the alloy with 32 at.% Nb. According to ab initio calculations, hydrogen occupies tetrahedral interstitial sites in the Nb-rich phase and octahedral sites in the eutectic BCC phase. For different Nb concentrations, hydrogen-binding energies were calculated. An increase in the Nb-rich phase leads to softening of multicomponent alloys. The alloys with 20 and 32 at.% Nb demonstrate high hydrogen permeability (1.05 and 0.96 × 10−8 molH2m−1s−1Pa−0.5, respectively) at 400 °C, making them promising for hydrogen purification membrane application. Multicomponent alloys with a high Nb content (55 at.%) have low resistance to hydrogen embrittlement. Full article
Show Figures

Figure 1

20 pages, 7608 KB  
Article
Anti-Sintering Behavior of GYYSZ, Thermophysical Properties, and Thermal Shock Behavior of Thermal Barrier Coating with YSZ/Composite/GYYSZ System by Atmospheric Plasma Spraying
by Chunxia Jiang, Rongbin Li, Feng He, Zhijun Cheng, Wenge Li and Yuantao Zhao
Nanomaterials 2024, 14(22), 1787; https://doi.org/10.3390/nano14221787 - 7 Nov 2024
Cited by 3 | Viewed by 1850
Abstract
In this study, Gd2O3 and Yb2O3 co-doped YSZ (GYYSZ) ceramic coatings were prepared via atmospheric plasma spraying (APS). The GYYSZ ceramic coatings were subjected to heat treatment at different temperatures for 5 h to analyze their high-temperature [...] Read more.
In this study, Gd2O3 and Yb2O3 co-doped YSZ (GYYSZ) ceramic coatings were prepared via atmospheric plasma spraying (APS). The GYYSZ ceramic coatings were subjected to heat treatment at different temperatures for 5 h to analyze their high-temperature phase stability and sintering resistance. The thermophysical properties of GYYSZ, YSZ, and composite coatings were compared. Three types of thermal barrier coatings (TBCs) were designed: GYYSZ (TBC-1), YSZ/GYYSZ (TBC-2), and YSZ/Composite/GYYSZ (TBC-3). The failure mechanisms of these three TBCs were investigated. The results indicate that both the powder and the sprayed GYYSZ primarily maintain a homogeneous cubic phase c-ZrO2, remaining stable at 1500 °C after annealing. The sintering and densification of the coatings are influenced by the annealing temperature; higher temperatures lead to faster sintering rates. At 1500 °C, the grain size and porosity of GYYSZ are 4.66 μm and 9.9%, respectively. At 1000 °C, the thermal conductivity of GYYSZ is 1.35 W·m−1 K−1, which is 44% lower than that of YSZ. The thermal conductivity of the composite material remains between 1.79 W·m−1 K−1 and 1.99 W·m−1 K−1 from room temperature to 1000 °C, positioned between GYYSZ and YSZ. In the TBC thermal shock water quenching experiment, TBC-3 demonstrated an exceptionally long thermal shock lifetime of 246.3 cycles, which is 5.8 times that of TBC-1 and 1.8 times that of TBC-2. The gradient coating structure effectively reduces the thermal mismatch stress between layers, while the dense surface microcracks provide a certain toughening effect. Failure analysis of the TBC reveals that TBC-3 exhibits a mixed failure mode characterized by both spallation and localized peeling. The ultimate failure was attributed to the propagation of transverse cracks during the final stage of water quenching, which led to the eventual spallation of the ceramic blocks. Full article
(This article belongs to the Special Issue Design and Applications of Heterogeneous Nanostructured Materials)
Show Figures

Figure 1

14 pages, 3617 KB  
Article
Effect of Doping ZrO2 on Structural and Thermal Properties
by Mirela Petriceanu, Florentina Gabriela Ioniță, Radu Robert Piticescu, Adrian Ionuț Nicoară, Alexandru Cristian Matei, Miruna Adriana Ioța, Ioan Albert Tudor, Ștefania Caramarin and Cristina Florentina Ciobota
Inorganics 2024, 12(11), 290; https://doi.org/10.3390/inorganics12110290 - 6 Nov 2024
Cited by 9 | Viewed by 3371
Abstract
The aim of this paper was to investigate the structure and thermal properties of zirconia ceramics co-doped with rare earth (RE) elements in equimolar concentrations. We prepared (1 − x)ZrO2 − x(yLa2O3 + yNd2O3 + ySm [...] Read more.
The aim of this paper was to investigate the structure and thermal properties of zirconia ceramics co-doped with rare earth (RE) elements in equimolar concentrations. We prepared (1 − x)ZrO2 − x(yLa2O3 + yNd2O3 + ySm2O3 + yGd2O3 + yYb2O3) (x = 0.2; y = 0.2) powders by a hydrothermal method in mild conditions (200 °C, 2 h, 60–100 atm.) The powder was analyzed by XRD, SEM-EDAX, BET, and FT-IR after synthesis and heat treatments at 1200 °C and 1500 °C. The samples exhibit good thermal stability, with a single cubic phase presented after heat treatment at 1500 °C. The compound exhibits a low thermal conductivity (0.61 W·m−1·K−1), a low heat capacity (0.42 J·g−1K−1), and a low thermal diffusivity (0.34 mm2·s−1). The values are lower than reported for conventional RE-doped zirconia. Full article
(This article belongs to the Special Issue Novel Functional Ceramics)
Show Figures

Graphical abstract

12 pages, 5853 KB  
Article
Crystallographic Orientation of Grains Formed in the Laser Melt-Pool of (CoCuFeZr)17Sm2 Anisotropic Permanent Magnets
by Felix Trauter, Ralf Loeffler, Gerhard Schneider and Dagmar Goll
Crystals 2024, 14(11), 955; https://doi.org/10.3390/cryst14110955 - 31 Oct 2024
Cited by 1 | Viewed by 1555
Abstract
Textured microstructures and anisotropic properties are key factors for the optimization of magnetic materials. Only for high texture grades can the remanence Jr and the maximum energy product (BH)max be maximized. In additive manufacturing such as laser powder bed fusion (PBF-LB), [...] Read more.
Textured microstructures and anisotropic properties are key factors for the optimization of magnetic materials. Only for high texture grades can the remanence Jr and the maximum energy product (BH)max be maximized. In additive manufacturing such as laser powder bed fusion (PBF-LB), methods to achieve texture have to be developed. In this work, anisotropic (CoCuFeZr)17Sm2 sintered magnets have been used as a substrate in experiments featuring single laser tracks to study the relationships between crystallographic orientation of the substrate grains and crystallographic orientation of grain growth in the melt-pool. The <0001> crystal direction (c-axis) of the substrate has been systematically varied with respect to the orientation of the laser scan track on the specimen surface. Crystallographic orientations of the melt-pool and the substrate have been analyzed using electron backscatter diffraction (EBSD). It is found that if the c-axis is oriented perpendicular to the temperature gradient in the melt-pool, grains grow with orientation similar to that of the substrate grain. If the c-axis and the temperature gradient are oriented in the same direction, the grains grow with high misorientation to the substrate. The highest anisotropy in the melt-pool is achieved when the substrate’s c-axis is oriented along the laser scan track. Under these conditions, 98.7% of the melt-pool area shows a misorientation <45° compared to the substrate orientation. The texture grade of the melt-pool area is comparable to that of the substrate magnet, at 91.8% and 92.2%, respectively. Full article
(This article belongs to the Special Issue Recent Advances in Microstructure and Properties of Metals and Alloys)
Show Figures

Figure 1

17 pages, 13526 KB  
Article
Hydrogen-Rich Syngas Production in a Ce0.9Zr0.05Y0.05O2−δ/Ag and Molten Carbonates Membrane Reactor
by José A. Raya-Colín, José A. Romero-Serrano, Cristian Carrera-Figueiras, José A. Fabián-Anguiano, Heberto Balmori-Ramírez, Oscar Ovalle-Encinia and José Ortiz-Landeros
ChemEngineering 2024, 8(5), 106; https://doi.org/10.3390/chemengineering8050106 - 15 Oct 2024
Cited by 1 | Viewed by 1761
Abstract
This study proposes a new dense membrane for selectively separating CO2 and O2 at high temperatures and simultaneously producing syngas. The membrane consists of a cermet-type material infiltrated with a ternary carbonate phase. Initially, the co-doped ceria of composition Ce0.9 [...] Read more.
This study proposes a new dense membrane for selectively separating CO2 and O2 at high temperatures and simultaneously producing syngas. The membrane consists of a cermet-type material infiltrated with a ternary carbonate phase. Initially, the co-doped ceria of composition Ce0.9Zr0.05Y0.05O2−δ (CZY) was synthesized by using the conventional solid-state reaction method. Then, the ceramic was mixed with commercial silver powders using a ball milling process and subsequently uniaxially pressed and sintered to form the disk-shaped cermet. The dense membrane was finally formed via the infiltration of molten salts into the porous cermet supports. At high temperatures (700–850 °C), the membranes exhibit CO2/N2 and O2/N2 permselectivity and a high permeation flux under different CO2 concentrations in the feed and sweeping gas flow rates. The observed permeation properties make its use viable for CO2 valorization via the oxy-CO2 reforming of methane, wherein both CO2 and O2 permeated gases were effectively utilized to produce hydrogen-rich syngas (H2 + CO) through a catalytic membrane reactor arrangement at different temperatures ranging from 700 to 850 °C. The effect of the ceramic filler in the cermet is discussed, and continuous permeation testing, up to 115 h, demonstrated the membrane’s superior chemical and thermal stability by confirming the absence of any chemical interaction between the material and the carbonates as well as the absence of significant sintering concerns with the pure silver. Full article
Show Figures

Graphical abstract

21 pages, 5686 KB  
Article
Shape Anisotropy of Grains Formed by Laser Melting of (CoCuFeZr)17Sm2
by Felix Trauter, Ralf Loeffler, Gerhard Schneider and Dagmar Goll
Metals 2024, 14(9), 1025; https://doi.org/10.3390/met14091025 - 9 Sep 2024
Cited by 2 | Viewed by 1465
Abstract
For permanent magnetic materials, anisotropic microstructures are crucial for maximizing remanence Jr and maximum energy product (BH)max. This also applies to additive manufacturing processes such as laser powder bed fusion (PBF-LB). In PBF-LB processing, the solidification behavior is [...] Read more.
For permanent magnetic materials, anisotropic microstructures are crucial for maximizing remanence Jr and maximum energy product (BH)max. This also applies to additive manufacturing processes such as laser powder bed fusion (PBF-LB). In PBF-LB processing, the solidification behavior is determined by the crystal structure of the material, the substrate, and the melt-pool morphology, resulting from the laser power PL and scanning speed vs. To study the impact of these parameters on the textured growth of grains in the melt-pool, experiments were conducted using single laser tracks on (CoCuFeZr)17Sm2 sintered magnets. A method was developed to quantify this grain shape anisotropy from electron backscatter diffraction (EBSD) analysis. For all grains in the melt-pool, the grain shape aspect ratio (GSAR) is calculated to distinguish columnar (GSAR < 0.5) and equiaxed (GSAR > 0.5) grains. For columnar grains, the grain shape orientation (GSO) is determined. The GSO represents the preferred growth direction of each grain. This method can also be used to reconstruct the temperature gradients present during solidification in the melt-pool. A dependence of the melt-pool aspect ratio (depth/width) on energy input was observed, where increasing energy input (increasing PL, decreasing vs) led to higher aspect ratios. For aspect ratios around 0.3, an optimum for directional columnar growth (93% area fraction) with predominantly vertical growth direction (mean angular deviation of 23.1° from vertical) was observed. The resulting crystallographic orientation is beyond the scope of this publication and will be investigated in future work. Full article
(This article belongs to the Special Issue Laser Processing Technology and Principles of Metal Materials)
Show Figures

Figure 1

12 pages, 3903 KB  
Article
Mechanical Properties and Interfacial Characterization of Additive-Manufactured CuZrCr/CoCrMo Multi-Metals Fabricated by Powder Bed Fusion Using Pulsed Wave Laser
by Hao Zhang, Xiang Jin, Zhongmin Xiao and Liming Yao
Micromachines 2024, 15(6), 765; https://doi.org/10.3390/mi15060765 - 7 Jun 2024
Cited by 4 | Viewed by 1607
Abstract
In this study, CoCrMo cuboid samples were deposited on a CuZrCr substrate using laser powder bed fusion (L-PBF) technology to investigate the influence of process parameters and laser remelting strategies on the mechanical properties and interface characteristics of multi-metals. This study found that [...] Read more.
In this study, CoCrMo cuboid samples were deposited on a CuZrCr substrate using laser powder bed fusion (L-PBF) technology to investigate the influence of process parameters and laser remelting strategies on the mechanical properties and interface characteristics of multi-metals. This study found that process parameters and laser scanning strategies had a significant influence on the mechanical properties and interface characteristics. Samples fabricated with an EV ≤ 20 J/mm3 showed little tensile ductility. As the volumetric energy density (EV) increased to a range between 40 J/mm3 and 100 J/mm3, the samples achieved the desired mechanical properties, with a strong interface combining the alloys. However, an excessive energy density could result in cracks due to thermal stress. Laser remelting significantly improved the interface properties, especially when the EV was below 40 J/mm3. Variances in the EV showed little influence on the hardness at the CuZrCr end, while the hardness at the interface and the CoCrMo end showed an increasing and decreasing trend with an increase in the EV, respectively. Interface characterization showed that when the EV was greater than 43 J/mm3, the main defects in the L-PBF CoCrMo samples were thermal cracks, which gradually changed to pores with a lack of fusion when the EV decreased. This study provides theoretical and technical support for the manufacturing of multi-metal parts using L-PBF technology. Full article
(This article belongs to the Special Issue Future Prospects of Additive Manufacturing)
Show Figures

Figure 1

Back to TopTop