Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,112)

Search Parameters:
Keywords = Zn0.8Cd0.2S

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2441 KB  
Article
Assessment of Heavy Metal Accumulation in Wastewater–Receiving Soil–Exotic and Indigenous Vegetable Systems and Its Potential Health Risks: A Case Study from Blantyre, Malawi
by Chimwemwe Chiutula, Andrew G. Mtewa, Amon Abraham, Richard Lizwe Steven Mvula, Alfred Maluwa, Fasil Ejigu Eregno and John Njalam’mano
Int. J. Environ. Res. Public Health 2025, 22(11), 1614; https://doi.org/10.3390/ijerph22111614 - 23 Oct 2025
Viewed by 227
Abstract
Urban and peri-urban farmers in Malawi increasingly use treated and untreated wastewater for vegetable production, but little is known about the extent of heavy metal accumulation in both exotic and indigenous vegetables, particularly with respect to differences between edible tissues (leaves vs. stems). [...] Read more.
Urban and peri-urban farmers in Malawi increasingly use treated and untreated wastewater for vegetable production, but little is known about the extent of heavy metal accumulation in both exotic and indigenous vegetables, particularly with respect to differences between edible tissues (leaves vs. stems). This study addresses this gap by measuring the concentrations of cadmium (Cd), chromium (Cr), lead (Pb), zinc (Zn), and copper (Cu) in wastewater, soils, and six vegetables including three exotic and three indigenous irrigated with effluent from the Soche Wastewater Treatment Plant in Blantyre. Metal concentrations were determined using Atomic Absorption Spectrophotometry. Wastewater contained Zn (0.01 ± 0.001 mg/L) and Cu (0.02 ± 0.018 mg/L), both below World Health Organization (WHO) and Malawi Bureau of Standards (MBS) limits (Zn: 0.2 mg/L; Cu: 2 mg/L), while Cd, Cr, and Pb were below detection limit. In soils, Zn reached 56.4 ± 0.5 mg/kg, exceeding the WHO limit of 36 mg/kg; other metals remained within WHO permissible values. Vegetables showed species- and tissue-specific variation in metal accumulation: Cr reached 4.65 mg/kg in Cucurbita moschata stems, Cd up to 0.31 mg/kg in Amaranthus retro-flexus leaves, and Pb up to 4.09 mg/kg in Brassica rapa stems—all above FAO/WHO permissible limits (2.3, 0.2, and 0.3 mg/kg, respectively). Duncan’s post hoc analysis confirmed significant differences (p < 0.05) across matrices and plant parts, with leaves generally accumulating more Zn and Cu than stems. Principal component analysis (PCA) revealed that Zn, Cu, Cr, and Pb in the wastewater-soil-vegetable system largely share a common source, likely wastewater effluent and historical soil contamination, while Cd showed a more sporadic distribution, highlighting differential accumulation pathways. Health risk assessments revealed high Health Risk Index (HRI) values, with Brassica rapa stems (HRI = 92.3) and Brassica rapa subsp. chinensis leaves (HRI = 82.2) exceeding the safe threshold (HRI > 1), indicating potential chronic risks. This study reveals potential health risks associated with wastewater irrigation due to heavy metal accumulation in edible vegetables, and therefore recommends further research on metal speciation, seasonal variation, and bioaccumulation at different crop growth stages. Full article
Show Figures

Figure 1

16 pages, 3446 KB  
Article
Groundwater Heavy Metal Contamination and Health Risk Assessment: A Case Study of South Dongting Lake, China
by Shun Zhang and Bozhi Ren
Water 2025, 17(21), 3036; https://doi.org/10.3390/w17213036 - 22 Oct 2025
Viewed by 244
Abstract
To investigate the heavy metal contamination status and associated health risks in the groundwater of South Dongting Lake, China, 88 groundwater samples were collected and analyzed for the contents of heavy metals (Fe, Mn, Cu, Zn, As, Cd, Pb). The heavy metal pollution [...] Read more.
To investigate the heavy metal contamination status and associated health risks in the groundwater of South Dongting Lake, China, 88 groundwater samples were collected and analyzed for the contents of heavy metals (Fe, Mn, Cu, Zn, As, Cd, Pb). The heavy metal pollution characteristics and human health risks were comprehensively analyzed using a combined approach of the Heavy Metal Pollution Index (HPI), Heavy Metal Evaluation Index (HEI), Water Quality Index (WQI), and by integrating traditional health risk assessment with Monte Carlo simulation. The results indicated that manganese (Mn) and iron (Fe) were the most prominent pollutants in the regional groundwater, with exceedance rates of 35.3% and 25.0%, respectively. Arsenic (As) showed localized exceedances (13.91 μg/L, 1.39 times the standard limit). Spatially, contamination levels were higher in the north and lower in the south, with Fe, Mn, and As enrichment concentrated in the northern region, correlating with geological structures and industrial discharges. Health risk assessment revealed that the total carcinogenic risk (TCR) for children (1.82 × 10−4) exceeded the safety threshold by 82%, with arsenic being the primary carcinogen (contribution rate: 74.7%). The non-carcinogenic total hazard index (HI) reached 3.59 for adults and 6.54 for children, significantly exceeding the acceptable level of 1.0. Manganese was identified as the core non-carcinogenic risk source (Hazard Quotient (HQ) for children = 3.35). Monte Carlo simulation confirmed that pollutant concentration and exposure time were the most sensitive risk-driving factors. This study provides a scientific basis for prioritizing the control of As and Mn pollution in the northern region and implementing protective measures against children’s exposure. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

17 pages, 1832 KB  
Article
Integrated Monitoring of Water Quality, Metal Ions, and Antibiotic Residues, with Isolation and Optimization of Enrofloxacin-Degrading Bacteria in American Shad (Alosa sapidissima) Aquaculture Systems
by Yao Zheng, Jiajia Li, Ampeire Yona, Xiaofei Wang, Xue Li, Julin Yuan and Gangchun Xu
J. Xenobiot. 2025, 15(6), 174; https://doi.org/10.3390/jox15060174 - 22 Oct 2025
Viewed by 190
Abstract
This study investigated water quality, metal ion concentrations, and antibiotic residues specifically enrofloxacin (ENR) and its metabolite ciprofloxacin (CIP), across six American shad (Alosa sapidissima) aquaculture sites over a one-year period. Water and sediment samples were analyzed to determine contamination levels, [...] Read more.
This study investigated water quality, metal ion concentrations, and antibiotic residues specifically enrofloxacin (ENR) and its metabolite ciprofloxacin (CIP), across six American shad (Alosa sapidissima) aquaculture sites over a one-year period. Water and sediment samples were analyzed to determine contamination levels, and ENR-degrading bacteria were isolated from the culture environment to explore their potential use in bioremediation. Findings showed that NH3-N and total suspended solids (TSS) exceeded recommended standards at all sampling sites. Elevated levels of Li, Na (except S1), Fe, Ni (except S2 and S4), Sr, and Cu were found at site S3. Site S5 recorded the highest concentrations of Al, As, and Pb, while Cd was most abundant at S6. In sediments, S5 showed higher levels of Mg, K (except S3), Ca, Cr, Mn, Fe, Ni, As, Pb, Cu, and Zn (except S3). ENR and CIP were detected in all water and sediment samples, with a 100% detection rate. The highest ENR (16.68–3215.95 mg·kg−1) and CIP (3.90–459.60 mg·kg−1) concentrations in water occurred at site S6, following a seasonal pattern of autumn > winter > summer > spring. In sediments, the maximum ENR (41.43–133.67 mg·kg−1) and CIP (12.36–23.71 mg·kg−1) levels were observed in spring. Two ENR-degrading bacterial strains were successfully isolated and identified as Enterococcus and Bacillus. Optimal degradation was achieved at 30 °C, pH 8.0, 6% inoculum, and 3000 Lux, resulting in a 64.2% reduction in ENR after 72 h. Under slightly different conditions (25 °C, pH 10), degradation reached 58.5%. This study provides an efficient strain resource for the bioremediation of ENR pollution in the aquaculture water of American shad. Full article
Show Figures

Graphical abstract

11 pages, 3383 KB  
Article
All-Optically Controlled Terahertz Modulation by Silicon-Grown CdSe/CdZnS Colloidal Quantum Wells
by Reyihanguli Tudi, Zhongxin Zhang, Xintian Song, AbulimitiYasen, Bumaliya Abulimiti and Mei Xiang
Nanomaterials 2025, 15(20), 1597; https://doi.org/10.3390/nano15201597 - 20 Oct 2025
Viewed by 240
Abstract
The CdSe/CdZnS colloidal quantum wells, with their exceptionally high carrier mobility and ultrafast response characteristics, emerge as highly promising candidate material for high-performance active terahertz modulators—indispensable core components critical for next-generation communication technologies. A high-performance, cost-effective terahertz modulator was fabricated through spin-coating CdSe(4ML)/CdZnS [...] Read more.
The CdSe/CdZnS colloidal quantum wells, with their exceptionally high carrier mobility and ultrafast response characteristics, emerge as highly promising candidate material for high-performance active terahertz modulators—indispensable core components critical for next-generation communication technologies. A high-performance, cost-effective terahertz modulator was fabricated through spin-coating CdSe(4ML)/CdZnS nanosheets onto a silicon substrate. This all-optical device demonstrates broadband modulation capabilities (0.25–1.4 THz), achieving a remarkable modulation depth of 87.6% at a low power density of 2 W/cm2. Demonstrating pump-power-efficient terahertz modulation characteristics, this core–shell composite shows immediate applicability in terahertz communication systems and non-destructive testing equipment. Full article
Show Figures

Graphical abstract

18 pages, 2227 KB  
Article
Assessment of Heavy Metal Concentrations in Urban Soil of Novi Sad: Correlation Analysis and Leaching Potential
by Ivana Jelić, Dušan Topalović, Maja Rajković, Danica Jovašević, Kristina Pavićević, Marija Janković and Marija Šljivić-Ivanović
Appl. Sci. 2025, 15(19), 10842; https://doi.org/10.3390/app151910842 - 9 Oct 2025
Viewed by 346
Abstract
Soil samples from the urban area of Novi Sad were analyzed to determine the total concentrations of heavy metals including Cr, Pb, Cu, Zn, As, Mn, Ni, Co, Cd and Fe. In addition, leaching tests according to CEN 12457-2—Milli-Q deionized leaching procedure and [...] Read more.
Soil samples from the urban area of Novi Sad were analyzed to determine the total concentrations of heavy metals including Cr, Pb, Cu, Zn, As, Mn, Ni, Co, Cd and Fe. In addition, leaching tests according to CEN 12457-2—Milli-Q deionized leaching procedure and ISO/TS 21268-2—CaCl2 solution leaching procedure were conducted to assess the mobility of these metals. Multivariate statistical methods, including Pearson’s correlation, Principal Component Analysis (PCA) and Cluster Analysis, were applied to identify pollution sources and grouping patterns among elements. The results revealed a distinct clustering of Pb and Zn, separate from other metals, indicating their predominant origin from anthropogenic activities. Contamination Factor (CF), Pollution Load Index (PLI), and Geoaccumulation Index (Igeo) were calculated to evaluate the degree of pollution. Combining total concentration, mobility, and multivariate analyses offers a more comprehensive insight into the extent and origin of pollution in the urban area of Novi Sad. The results obtained are valuable for evaluating the soil conditions in the Western Balkans, which have been recognized as a necessity by the EU. Full article
Show Figures

Figure 1

24 pages, 4302 KB  
Article
New Data on Phase Composition and Geochemistry of the Muschelkalk Carbonate Rocks of the Upper Silesian Province in Poland
by Katarzyna J. Stanienda-Pilecki and Rafał Jendruś
Appl. Sci. 2025, 15(19), 10751; https://doi.org/10.3390/app151910751 - 6 Oct 2025
Viewed by 263
Abstract
Detailed description of phase composition and geochemistry of the Muschelkalk carbonate rocks of the Upper Silesian Province in Poland were presented in this article. The tests were carried out to determine mineralogical features and geochemical properties. The samples were collected from the formations [...] Read more.
Detailed description of phase composition and geochemistry of the Muschelkalk carbonate rocks of the Upper Silesian Province in Poland were presented in this article. The tests were carried out to determine mineralogical features and geochemical properties. The samples were collected from the formations of the Lower Muschelkalk (Gogolin Unit), Middle Muschelkalk (Diplopore Dolomite Unit) and Upper Muschelkalk (Tarnowice Unit, Boruszowice Unit). The following research methods were used: macroscopic description, X-Ray Diffraction, Fourier transform infrared spectroscopy, X-Ray Fluorescence and Atomic spectrometry with plasma intensification. The following carbonate phases were identified: a low-Mg calcite, a high-Mg calcite, a proto-dolomite, an ordered dolomite and a huntite. The results of XRD analysis allowed the determination of the chemical formulas of the mineral phases. XRF and ICP AES analyses allowed to establish the content of following trace elements: Sr, Ba, Al, Si, Fe, Mn, K, Na, S, Cl, Ti, Cr, Ni, Zn, Rb, Zr, Pb, As, V, Be, B, Co, Cu, Br, Mo and Cd. Apart from Sr and Ba, they are not fundamental components of carbonate rocks. They indicate the presence of minerals such as silicates, aluminosilicates, oxides and sulfides. Full article
Show Figures

Figure 1

13 pages, 3651 KB  
Article
Optical Absorption Properties of Sn- and Pd-doped ZnO: Comparative Analysis of Substitutional Metallic Impurities
by Vicente Cisternas, Pablo Díaz, Ulises Guevara, David Laroze and Eduardo Cisternas
Materials 2025, 18(19), 4613; https://doi.org/10.3390/ma18194613 - 5 Oct 2025
Viewed by 417
Abstract
In this article, we present density functional theory (DFT) calculations for Zn(1x)MxO, where M represents one of the following substitutional metallic impurities: Ga, Cd, Cu, Pd, Ag, In, or Sn. Our study is [...] Read more.
In this article, we present density functional theory (DFT) calculations for Zn(1x)MxO, where M represents one of the following substitutional metallic impurities: Ga, Cd, Cu, Pd, Ag, In, or Sn. Our study is based on the wurtzite structure of pristine ZnO. We employ the Quantum Espresso package, using a fully unconstrained implementation of the generalized gradient approximation (GGA) with an additional U correction for exchange and correlation effects. We analyze the density of states, energy gaps, and absorption spectra for these doped systems, considering the limitations of a finite-size cell approximation. Rather than focusing on precise numerical values, we highlight the following two key aspects: the location of impurity-induced electronic states and the overall trends in optical properties across the eight systems, including pristine ZnO. Our results indicate that certain dopants introduce electronic levels within the band gap, which enhance optical absorption in the visible, near-infrared, and near-ultraviolet regions. For instance, Sn-doped ZnO shows a pronounced absorption peak at ∼2.5 eV, which is in the middle of the visible spectrum. In the case of Ag and Pd impurities, they lead to increased electromagnetic radiation absorption at the near ultra-violet spectrum. This represents a promising performance for efficient solar radiation absorption, both at the Earth’s surface and in outer space. Furthermore, Ga- and In-doped ZnO present bandgaps of ∼0.9 eV, promising an interesting performance in the near infrared region. These findings suggest potential applications in solar energy harvesting and selective sensors. Full article
(This article belongs to the Topic Wide Bandgap Semiconductor Electronics and Devices)
Show Figures

Figure 1

19 pages, 3218 KB  
Article
Occupational Exposure to Heavy Metal(loid)-Contaminated Soil from Mining Operations: A Case Study of the Majdanpek Site, Serbia
by Andrijana Miletić, Jelena Vesković, Yangshuang Wang, Xun Huang, Milica Lučić, Yunhui Zhang and Antonije Onjia
Appl. Sci. 2025, 15(19), 10711; https://doi.org/10.3390/app151910711 - 4 Oct 2025
Viewed by 393
Abstract
This study investigated the occupational hazard effects of heavy metal(loid)s (HMs) from soil in several critical mining activity areas at the Majdanpek copper mine in Serbia. Soil contamination and associated ecological and health risks to workers were evaluated through an apportionment of sources [...] Read more.
This study investigated the occupational hazard effects of heavy metal(loid)s (HMs) from soil in several critical mining activity areas at the Majdanpek copper mine in Serbia. Soil contamination and associated ecological and health risks to workers were evaluated through an apportionment of sources and a quantitative evaluation of ecological and health risks. The majority of soil samples had increased concentrations of Cd, Cu, Pb, Zn, Hg, As, Mo, and Sb. The results of the multivariate statistical analysis suggested the existence of multiple sources. The positive matrix factorization further explained these associations between HMs and defined three main pollution sources: natural (Factor 1), mixed source (Factor 2), and mining pollution (Factor 3). According to the RI, the average value was 1215, with more than half of the samples (57.4%) showing very high pollution levels, while 3.3% of the samples had an RI lower than 150. The ecological risk was dominated by Cd, Cu, and Hg, with Factor 3 contributing the most to the RI values. Assessment of worker exposure to soil revealed that outdoor workers had a higher potential for adverse health effects, with mean HI and TCR being 0.18 and 2.9 × 10−5, respectively. The identified sources had similar impacts on non-carcinogenic and carcinogenic risks, with a decreasing trend: Factor 3 > Factor 2 > Factor 1. Indoor workers were exposed to neither non-carcinogenic or carcinogenic risks, whereas outdoor workers suffered from possible health issues regarding TCR. Source-specific health risk assessment indicated mining pollution as the only risk contributing factor. A Monte Carlo simulation of risks revealed that the probability of developing carcinogenic issues for outdoor workers was within the safety threshold (TCR < 10−4). The findings of this study emphasize the need for regulation and control strategies for worker health risks from HM-contaminated soil in mining areas. Full article
(This article belongs to the Section Ecology Science and Engineering)
Show Figures

Figure 1

45 pages, 7902 KB  
Review
Artificial Intelligence-Guided Supervised Learning Models for Photocatalysis in Wastewater Treatment
by Asma Rehman, Muhammad Adnan Iqbal, Mohammad Tauseef Haider and Adnan Majeed
AI 2025, 6(10), 258; https://doi.org/10.3390/ai6100258 - 3 Oct 2025
Viewed by 949
Abstract
Artificial intelligence (AI), when integrated with photocatalysis, has demonstrated high predictive accuracy in optimizing photocatalytic processes for wastewater treatment using a variety of catalysts such as TiO2, ZnO, CdS, Zr, WO2, and CeO2. The progress of research [...] Read more.
Artificial intelligence (AI), when integrated with photocatalysis, has demonstrated high predictive accuracy in optimizing photocatalytic processes for wastewater treatment using a variety of catalysts such as TiO2, ZnO, CdS, Zr, WO2, and CeO2. The progress of research in this area is greatly enhanced by advancements in data science and AI, which enable rapid analysis of large datasets in materials chemistry. This article presents a comprehensive review and critical assessment of AI-based supervised learning models, including support vector machines (SVMs), artificial neural networks (ANNs), and tree-based algorithms. Their predictive capabilities have been evaluated using statistical metrics such as the coefficient of determination (R2), root mean square error (RMSE), and mean absolute error (MAE), with numerous investigations documenting R2 values greater than 0.95 and RMSE values as low as 0.02 in forecasting pollutant degradation. To enhance model interpretability, Shapley Additive Explanations (SHAP) have been employed to prioritize the relative significance of input variables, illustrating, for example, that pH and light intensity frequently exert the most substantial influence on photocatalytic performance. These AI frameworks not only attain dependable predictions of degradation efficiency for dyes, pharmaceuticals, and heavy metals, but also contribute to economically viable optimization strategies and the identification of novel photocatalysts. Overall, this review provides evidence-based guidance for researchers and practitioners seeking to advance wastewater treatment technologies by integrating supervised machine learning with photocatalysis. Full article
Show Figures

Figure 1

14 pages, 1358 KB  
Article
Toxic Metals in Road Dust from Urban Industrial Complexes: Seasonal Distribution, Bioaccessibility and Integrated Health Risk Assessment Using Triangular Fuzzy Number
by Yazhu Wang, Jinyuan Guo, Zhiguang Qu and Fei Li
Toxics 2025, 13(10), 842; https://doi.org/10.3390/toxics13100842 - 2 Oct 2025
Viewed by 409
Abstract
Urban industrial complexes have been expanding worldwide, reducing the spatial separation between agricultural, residential, and industrial zones, particularly in developing nations. Urban road dust contamination, a sensitive indicator of urban environmental quality, primarily originates in urbanization and industrialization. Its detrimental impacts on human [...] Read more.
Urban industrial complexes have been expanding worldwide, reducing the spatial separation between agricultural, residential, and industrial zones, particularly in developing nations. Urban road dust contamination, a sensitive indicator of urban environmental quality, primarily originates in urbanization and industrialization. Its detrimental impacts on human health arise not only from particulate matter itself but also from toxic and harmful substances embedded within dust particles. Toxic metals in road dust can pose health risks through inhalation, ingestion and contact. To investigate the seasonal patterns, bioaccessibility levels and the potential human health risks linked to toxic metals (Cadmium (Cd), Nickel (Ni), Arsenic (As), Lead (Pb), Zinc (Zn), Copper (Cu), and Chromium (Cr)), 34 dust samples were collected from key roads in proximity to representative industrial facilities in Wuhan’s Qingshan District. The study found that the concentrations of Cd, Pb, and Cu in road dust were within the limits set by the national standard (GB 15618-2018), while Ni and As were not. Seasonally, Ni, As, Pb, Zn, and Cr exhibited higher concentrations during the summer than in other seasons, whereas Cd levels were lowest in spring and highest in autumn, the opposite of Cu. According to the Simplified Bioaccessibility Extraction Test (SBET), the average bioaccessibility rates of toxic metals were Cd > Zn > Cu > Ni > Cr > As > Pb. An improved health risk assessment model was developed, integrating metal enrichment, bioaccessibility, and parameter uncertainty. Results indicated that Cd, Ni, Zn, Cu, As, and Cr posed no significant non-carcinogenic risk. However, for children, the carcinogenic risks of Cd and As were relatively high, identifying them as priority control metals. Therefore, it is recommended to periodically monitor As and Cd and regulate their potential emission sources, especially in winter and spring. Full article
(This article belongs to the Section Air Pollution and Health)
Show Figures

Figure 1

41 pages, 65993 KB  
Article
Spatial Distribution of Geochemical Anomalies in Soils of River Basins of the Northeastern Caucasus
by Ekaterina Kashirina, Roman Gorbunov, Ibragim Kerimov, Tatiana Gorbunova, Polina Drygval, Ekaterina Chuprina, Aleksandra Nikiforova, Nastasia Lineva, Anna Drygval, Andrey Kelip, Cam Nhung Pham and Nikolai Bratanov
Geosciences 2025, 15(10), 380; https://doi.org/10.3390/geosciences15100380 - 1 Oct 2025
Viewed by 252
Abstract
The aim of this study is to determine the spatial distribution of geochemical anomalies of selected potential toxic elements in the soils of the river basins in the Northeastern Caucasus—specifically the Ulluchay, Sulak, and Sunzha Rivers. A concentration of 25 chemical elements was [...] Read more.
The aim of this study is to determine the spatial distribution of geochemical anomalies of selected potential toxic elements in the soils of the river basins in the Northeastern Caucasus—specifically the Ulluchay, Sulak, and Sunzha Rivers. A concentration of 25 chemical elements was measured using inductively coupled plasma mass spectrometry (ICP-MS). Petrogenic elements commonly found in the Earth’s crust (Al, Na, Ca, Fe, Mg) showed high concentrations (Na up to 306,600.70 mg/kg). Conversely, concentrations of Ag, Cd, Sn, Sb, and Te at many sampling sites were extremely low, falling below the detection limits of analytical instruments. The geochemical indicators Cf (contamination factor) and Igeo (geoaccumulation index) indicate that the regional characteristics of the territory, such as lithological conditions, hydrochemical schedules, and the history of geological development of the territory, affect the concentration of elements. Anomalous concentrations were found for seven elements (Ba, Na, Zn, Ag, Li, Sc, As), whereas no anomalies were identified for Be, Mg, Al, Mn, Fe, Co, Ni, Cu, Pb, Te, and Cs. For the most part (8 of 10), the sampling sites with anomalous chemical element content are located in the basin of the Sunzha River. Two sites with anomalous chemical element content have been identified in the Sulak River Basin. Anomalous values in the Sulak River Basin are noted for two chemical elements—Ba and Na. Natural features such as geological structure, parent rock composition, vertical climatic zonation, and landscape diversity play a major role in forming geochemical anomalies. The role of anthropogenic factors increases in localized areas near settlements, industrial facilities, and roads. The spatial distribution of geochemical anomalies must be considered in agricultural management, the use of water sources for drinking supply, the development of tourist routes, and comprehensive spatial planning. Full article
(This article belongs to the Special Issue Soil Geochemistry)
Show Figures

Figure 1

19 pages, 10338 KB  
Article
Halophyte-Mediated Metal Immobilization and Divergent Enrichment in Arid Degraded Soils: Mechanisms and Remediation Framework for the Tarim Basin, China
by Jingyu Liu, Lang Wang, Shuai Guo and Hongli Hu
Sustainability 2025, 17(19), 8771; https://doi.org/10.3390/su17198771 - 30 Sep 2025
Viewed by 269
Abstract
Understanding heavy metal behavior in arid saline soils is critical for phytoremediation in degraded lands. This study investigated metal distribution and plant enrichment in the Tarim Basin using 323 soil and 55 plant samples (Populus euphratica, Tamarix ramosissima, cotton, jujube). [...] Read more.
Understanding heavy metal behavior in arid saline soils is critical for phytoremediation in degraded lands. This study investigated metal distribution and plant enrichment in the Tarim Basin using 323 soil and 55 plant samples (Populus euphratica, Tamarix ramosissima, cotton, jujube). Analyses included redundancy analysis (RDA) and bioconcentration factor (BCF) assessments. Key findings reveal that elevated salinity (total salts, TS > 200 g/kg) and alkalinity (pH > 8.5) immobilized As, Cd, Cu, and Zn. Precipitation and competitive leaching reduced metal mobility by 42–68%. Plant enrichment strategies diverged significantly: P. euphratica hyperaccumulated Cd (BCF = 1.59) and Zn (BCF = 2.41), while T. ramosissima accumulated As and Pb (BCF > 0.05). Conversely, cotton posed Hg transfer risks (BCF = 2.15), and jujube approached Cd safety thresholds in phosphorus-rich soils. RDA indicated that pH and total salinity (TS) jointly suppressed metal bioavailability, explaining 57.6% of variance. Total phosphorus (TP) and soil organic carbon (SOC) enhanced metal availability (36.8% variance), with notable TP-Cd synergy (Pearson’s r = 0.42). We propose a dual-threshold management framework: (1) leveraging salinity–alkalinity suppression (TS > 200 g/kg + pH > 8.5) for natural immobilization; and (2) implementing TP control (TP > 0.8 g/kg) to mitigate crop Cd risks. P. euphratica demonstrates targeted phytoremediation potential for degraded saline agricultural systems. This framework guides practical management by spatially delineating zones for natural immobilization versus targeted remediation (e.g., P. euphratica planting in Cd/Zn hotspots) and implementing phosphorus control in high-risk croplands. Full article
Show Figures

Figure 1

22 pages, 4102 KB  
Article
Stability of Ferronickel and Lead Slags in Rainwater and Seawater Environments
by Michail Samouhos, Anastasia Gkika, Marios G. Kostakis, Eirini Siandri, George Romanos and Athanasios Godelitsas
Minerals 2025, 15(10), 1030; https://doi.org/10.3390/min15101030 - 28 Sep 2025
Viewed by 702
Abstract
This study investigates the environmental stability of ferronickel slag (FNS) and primary lead slags (GCS and FCS) from historical metallurgical complexes in Greece, in rainwater and seawater media. Leaching experiments revealed that nickel is the most mobile element from FNS (43.5 μg·g−1 [...] Read more.
This study investigates the environmental stability of ferronickel slag (FNS) and primary lead slags (GCS and FCS) from historical metallurgical complexes in Greece, in rainwater and seawater media. Leaching experiments revealed that nickel is the most mobile element from FNS (43.5 μg·g−1 in seawater after 90 days). Chromium release, on the other hand, is very limited, not exceeding 0.04 μg·g−1. In lead slags, zinc and lead exhibit significant leaching (up to 650 and 230 μg·g−1, respectively), while arsenic release reaches 22.6 μg·g−1. GCS contains pores primarily in the range of 50–90 Å. The majority of pore volume in FCS is centered around 30 Å. The porosity appears to have a significant effect on the element’s leachability. Pb, Zn, As, Sb, and Cd are released in significantly higher amounts from the finely porous FCS compared to GCS. Thermodynamic modeling was used to identify the pollutant speciation in water media in relation to the oxygen concentration. The release of toxic elements such as Cr from FNS and As from lead slags is enhanced under oxic (open-air) conditions. Therefore, their land disposal poses a greater environmental threat compared to sea disposal, where anoxic conditions prevail. Full article
(This article belongs to the Section Environmental Mineralogy and Biogeochemistry)
Show Figures

Graphical abstract

16 pages, 4052 KB  
Article
Investigation of the Impact of Coal Fires on Soil: A Case Study of the Wugong Coal Fire Area, Xinjiang, China
by Ruirui Hao, Qiang Zeng, Ting Ren, Suqing Wu and Haijian Li
Fire 2025, 8(10), 385; https://doi.org/10.3390/fire8100385 - 26 Sep 2025
Viewed by 799
Abstract
This study focused on the Wugong coal fire area in the Zhunnan coalfield of Xinjiang, analyzing 41 soil samples extending from the fire center outward. The key parameters included pH, soil organic carbon (SOC), total nitrogen (TN), total phosphorus (TP), available potassium (AK), [...] Read more.
This study focused on the Wugong coal fire area in the Zhunnan coalfield of Xinjiang, analyzing 41 soil samples extending from the fire center outward. The key parameters included pH, soil organic carbon (SOC), total nitrogen (TN), total phosphorus (TP), available potassium (AK), various ions (Ca2+, Na+, Mg2+, SO42−, CO32−, HCO3, and Cl), and heavy metal concentrations (As, Cr, Hg, Ni, Cd, Cu, Zn, and Pb). The primary objectives were to evaluate heavy metal pollution levels and potential ecological risks using the single factor pollution index (Pi), the Geo-accumulation index (IGeo), Nemero’s pollution index (Pn), the pollution load index (PLI), and the ecological risk factor (Eri) and risk index (RI). Spatial distribution analysis indicated higher heavy metal concentrations in the southwestern and central regions. The heavy metals Cr, Ni, Cd, Cu, and Zn reached mild pollution levels, while Hg exhibited high pollution, with Pi, IGeo, and Pn values of 3.27, 0.61, and 9.68, respectively. Hg (Eri = 111.07) and Cd (Eri = 45.91) emerged as the primary ecological risk factors. The overall ecological risk index (RI) of 184.98 indicated a moderate ecological risk. The results demonstrate that soils surrounding the coal fire zone are significantly impacted by coal fire, characterized by severe heavy metal contamination and nutrient deficiency. Full article
Show Figures

Figure 1

41 pages, 2278 KB  
Review
Heavy Metals and Microplastics as Emerging Contaminants in Bangladesh’s River Systems: Evidence from Urban–Industrial Corridors
by Raju Kumar Das, Mongsathowai Marma, Al Mizan, Gang Chen and Md Shahin Alam
Toxics 2025, 13(9), 803; https://doi.org/10.3390/toxics13090803 - 22 Sep 2025
Cited by 1 | Viewed by 2155
Abstract
Urban industrialization is a major driver of water pollution, particularly through emerging contaminants that pose significant health risks for humans and ecosystems. This critical review focuses on Bangladesh’s Buriganga and Dhaleshwari rivers, which pass through highly industrialized and urban areas, analyzing contaminant types, [...] Read more.
Urban industrialization is a major driver of water pollution, particularly through emerging contaminants that pose significant health risks for humans and ecosystems. This critical review focuses on Bangladesh’s Buriganga and Dhaleshwari rivers, which pass through highly industrialized and urban areas, analyzing contaminant types, sources, pathways, and impacts. By synthesizing data from studies published between 2005 and 2024, the paper examines pollutants such as heavy metals (e.g., Cr, Cd, Pb, Ni, Zn, Hg, As, Mn, Cu, Fe) and microplastics in water, sediments, and biota. The Buriganga River shows extreme heavy metal contamination, with surface water Cr concentrations reaching up to 167,160 μg/L, Pb up to 3830 μg/L, and Fe up to 30,000 μg/L, and sediment Cr up to 4249 μg/g, Pb up to 3312 μg/g, and Fe up to 15,435 μg/g. In contrast, the Dhaleshwari River exhibits elevated but comparatively lower heavy metal concentrations in surface water (e.g., Cr up to 3350 μg/L; Cd up to 1890 μg/L; Pb up to 1320 μg/L; Ni up to 1732 μg/L; Fe up to 6040 μg/L) and sediments (Cr up to 282 μg/g; Fe up to 14,375 μg/g). Microplastic contamination in Buriganga is widespread across water, sediments, and biota and dominated by polymers such as polyethylene (PE), polypropylene (PP), and polyethylene terephthalate (PET). Industrial discharges, particularly from the textile, leather, and metal processing industries, are identified as primary sources for heavy metals and microplastics. Additional inputs from domestic waste, agricultural runoff, and municipal sewage intensify pollution, with Cr, Cd, and Pb notably frequently exceeding safety thresholds. Microplastics, originating from municipal waste and atmospheric deposition, persist in these rivers, posing ecological and public health risks. The persistence and bioaccumulation of heavy metals and microplastics threaten aquatic biodiversity by disrupting food chains and pose significant risks to local communities that depend on these rivers for agriculture, fishing, and daily water use. This review highlights the urgent need for comprehensive bioaccumulation studies, long-term monitoring, and enhanced detection techniques to better assess contamination levels. Strengthening environmental regulations, improving waste management, and adopting sustainable industrial practices are critical to mitigating emerging contaminant impacts and safeguarding these vital river ecosystems and public health. Full article
Show Figures

Graphical abstract

Back to TopTop