Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = Zinnia elegans L.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2205 KiB  
Article
Composted Green Waste as a Peat Substitute in Growing Media for Vinca (Catharanthus roseus (L.) G. Don) and Zinnia (Zinnia elegans Jacq.)
by Li Ma and Lu Zhang
Agronomy 2024, 14(5), 897; https://doi.org/10.3390/agronomy14050897 - 25 Apr 2024
Viewed by 1382
Abstract
The purpose of this work was to explore the feasibility of replacing all or part of peat with composted green waste (CGW) for vinca (Catharanthus roseus (L.) G. Don) and zinnia (Zinnia elegans Jacq.) cultivation. Seven different growing media were prepared [...] Read more.
The purpose of this work was to explore the feasibility of replacing all or part of peat with composted green waste (CGW) for vinca (Catharanthus roseus (L.) G. Don) and zinnia (Zinnia elegans Jacq.) cultivation. Seven different growing media were prepared as follows (volume/volume): T1, 100% CGW; T2, 80% CGW + 20% peat; T3, 60% CGW + 40% peat; T4, 50% CGW + 50% peat; T5, 40% CGW + 60% peat; T6, 20% CGW + 80% peat; and T7, 100% peat. In the course of the experiment, the physicochemical properties of the seven media were analyzed, and the growth of vinca and zinnia was determined. Studies showed that replacing peat completely or partially with CGW could significantly enhance the nutrient content, bulk density, water-holding capacity, total porosity, aeration porosity, water-holding porosity, organic matter, pH, and electrical conductivity of growing media. In comparison with what observed with T7 (control), shoot fresh weight (SFW), shoot dry weight (SDW), root fresh weight (RFW), root dry weight (RDW), plant height (HP), root length (RL), flower number (FN), total chlorophyll, and the content of chlorophyll a, chlorophyll b, and carotenoids in the leaves of vinca cultivated under T5 conditions increased by 36%, 34%, 84%, 27%, 34%, 25%, 157%, 62%, 60%, and 33%, respectively; SFW, SDW, RFW, RDW, HP, RL, FN, total chlorophylls, and the content of chlorophyll a, chlorophyll b, and carotenoids in the leaves of zinnia increased by 341%, 296%, 365%, 302%, 206%, 93%, 180%, 56%, 49%, 67%, 110%, respectively. Full article
Show Figures

Figure 1

9 pages, 2146 KiB  
Article
Identification of the Pathogen Causing Leaf Spot in Zinnia elegans and Its Sensitivity to Five Fungicides
by Yu Liu, Qiuyu Yao, Shuang Liang, Cheng Li, Xiangsheng Chen and Zhong Li
Pathogens 2022, 11(12), 1454; https://doi.org/10.3390/pathogens11121454 - 1 Dec 2022
Cited by 1 | Viewed by 3553
Abstract
Zinnia elegans Jacq. is an important, globally cultivated ornamental plant. In August 2021, a leaf spot disease was observed in zinnia in Shibing County, Guizhou, China, with an incidence of approximately 60%. Pathogens were isolated and purified from the infected leaves by tissue [...] Read more.
Zinnia elegans Jacq. is an important, globally cultivated ornamental plant. In August 2021, a leaf spot disease was observed in zinnia in Shibing County, Guizhou, China, with an incidence of approximately 60%. Pathogens were isolated and purified from the infected leaves by tissue isolation, and pathogen strain BRJ2 was confirmed as the pathogen causing the leaf spot. Based on morphology and ITS, TEF-1α, and TUB2 sequence analyses, the pathogen was identified as Nigrospora musae (McLennan and Hoëtte). The mycelial growth rate method was used to determine the in vitro toxicity of five fungicides to the pathogen. The results showed that 10% difenoconazole provided the strongest inhibitory effect on N. musae, with a concentration for 50% of maximal effect (EC50) of 0.0658 mg/L; 75% trifloxystrobin·tebuconazole had the second greatest effect, with an EC50 of 0.1802 mg/L. This study provides the first report that N. musae caused leaf spot disease in Z. elegans and provides important guidance for the effective prevention and control of this disease in Guizhou. Full article
(This article belongs to the Special Issue Plant Pathogenic Fungi)
Show Figures

Figure 1

13 pages, 5568 KiB  
Article
Zinnia (Zinnia elegans L.) and Periwinkle (Catharanthus roseus (L.) G. Don) Responses to Salinity Stress
by Monika Marković, Jasna Šoštarić, Antonija Kojić, Brigita Popović, Ante Bubalo, Dejan Bošnjak and Aleksandar Stanisavljević
Water 2022, 14(7), 1066; https://doi.org/10.3390/w14071066 - 28 Mar 2022
Cited by 11 | Viewed by 4362
Abstract
The study of salinity stress in irrigated floriculture can make a significant contribution to the preservation of freshwater sources. To analyze the morphological and aesthetic responses of zinnia (Zinnia elegans L.) and periwinkle (Catharanthus roseus (L.) G. Don) to different salinity [...] Read more.
The study of salinity stress in irrigated floriculture can make a significant contribution to the preservation of freshwater sources. To analyze the morphological and aesthetic responses of zinnia (Zinnia elegans L.) and periwinkle (Catharanthus roseus (L.) G. Don) to different salinity stress levels, the following treatments were performed: s0 = municipal water (control), s1 = 3 dS m−1, s2 = 4.5 dS m−1, and s3 = 6 dS m−1. The growth of zinnia (flower number, plant height, branch and leaf number, total fresh and dry biomass, and root length) was linearly reduced by increasing salinity levels, while all observed periwinkle traits for the s2 salinity treatment were either equal to or greater than the control treatment (n.s.) and a further increase in salinity stress showed a significant (p < 0.01) decrease. The first flower buds on zinnia appeared with the control treatment (s0), while for periwinkle the first flower bud appeared with the s1 treatment. With regard to both zinnia and periwinkle leaf necrosis, drying and firing occurred during the third week in the s2 and s3 treatments. Zinnia proved to be sensitive to salinity, while periwinkle showed mild tolerance to salinity stress, up to 3 dS m−1. Full article
(This article belongs to the Special Issue Climate, Water, and Soil)
Show Figures

Figure 1

13 pages, 1018 KiB  
Article
Remediation of Pb and Cd Polluted Soils with Fulvic Acid
by Aslihan Esringü, Metin Turan and Asli Cangönül
Forests 2021, 12(11), 1608; https://doi.org/10.3390/f12111608 - 22 Nov 2021
Cited by 12 | Viewed by 2722
Abstract
Heavy metal pollution is among the important environmental problems in the world. Many techniques have already been used to remove the heavy metals such as lead (Pb) and cadmium (Cd). Among them, the phytoremediation method is an environmentally friendly and green technology. This [...] Read more.
Heavy metal pollution is among the important environmental problems in the world. Many techniques have already been used to remove the heavy metals such as lead (Pb) and cadmium (Cd). Among them, the phytoremediation method is an environmentally friendly and green technology. This study was carried out to determine the efficiency of fulvic acid (FA) application in removing Pb and Cd from polluted soil using Tagetes eracta L. and Zinnia elegans Jacq. ornamental plants. The results indicated that, FA application, number of flower per plants, and plant fresh weight of Tagetes eracta plants and Zinnia elegans plants increased 187.5%, 104.5% and 155.5%, 57.7%, respectively with application of 7000 mg L−1 FA at 100 mg kg−1 Pb pollution condition, whereas 42.85%, 16.5%, and 44.4–36.1% with application of 7000 mg L−1 FA at 30 mg kg±1 Cd pollution condition, respectively. With the FA application in the Zinnia elegans plant, the root part has accumulated 51.53% more Pb than the shoot part. For Cd, the shoot part accumulated 35.33% more Cd than the root. The effect of FA application on superoxide dismutase (SOD), peroxidase (POD) and, catalase (CAT) of the Tagetes eracta were decreased as 32.7%, 33.1%, and 35.1% for Pb, 21.2%, 25.1%, and 26,1%, for Cd, and 15.1%, 22.7%, and 37.7% for Pb, and 7.55%, 18.0%, and 18.8% for Cd were in Zinnia elegans respectively. In conclusion, Tagetes eracta and Zinnia elegans can not be recommended for remediation of Pb and Cd polluted area, but FA can be recommended for Pb and Cd stabilization in polluted soil. Full article
Show Figures

Figure 1

17 pages, 3001 KiB  
Article
Morphological, Physiological, and Biochemical Responses of Zinnia to Drought Stress
by Stefania Toscano and Daniela Romano
Horticulturae 2021, 7(10), 362; https://doi.org/10.3390/horticulturae7100362 - 4 Oct 2021
Cited by 21 | Viewed by 5146
Abstract
Bedding plants in the nursery phase are often subject to drought stress because of the small volume of the containers and the hydraulic conductivity of organic substrates used. To analyse the morphological, physiological, and enzymatic responses of zinnia (Zinnia elegans L.) plants [...] Read more.
Bedding plants in the nursery phase are often subject to drought stress because of the small volume of the containers and the hydraulic conductivity of organic substrates used. To analyse the morphological, physiological, and enzymatic responses of zinnia (Zinnia elegans L.) plants at different irrigation levels, four treatments were performed: irrigated at 100% (100% field capacity, FC); light deficit irrigation (75% FC), medium deficit irrigation (50% FC), and severe deficit irrigation (25% FC). The growth of zinnia was significantly influenced by drought stress treatments. Different morphological parameters (dry biomass, leaf number, root to shoot ratio (R/S)) were modified only in the more severe drought stress treatment (25% FC). The stomata density increased in 50% FC and 25% FC, while the stomata size was reduced in 25% FC. The net photosynthesis, stomatal conductance, and transpiration were reduced in 50% FC and 25% FC. The relative water content (RWC) was reduced in 25% FC. Severe drought stress (25% FC) increased proline content up to seven-fold. Catalase (CAT), peroxidase (GPX), and superoxide dismutase (SOD) activity significantly increased in 50% FC and 25% FC. Principal component analysis (PCA) showed that the morphological and physiological parameters were mostly associated with the 100% FC and 75% FC treatments of the biplot, whereas the stomata density, R/S ratio, and antioxidant enzymes (GPX, CAT) were associated with 50% FC, and proline and DPPH were associated with 25% FC, respectively. Full article
(This article belongs to the Special Issue Drought Stress in Horticultural Plants)
Show Figures

Figure 1

16 pages, 1173 KiB  
Article
Chemical Profile and Antioxidant Activity of Zinnia elegans Jacq. Fractions
by Ana Flavia Burlec, Łukasz Pecio, Cornelia Mircea, Oana Cioancă, Andreia Corciovă, Alina Nicolescu, Wiesław Oleszek and Monica Hăncianu
Molecules 2019, 24(16), 2934; https://doi.org/10.3390/molecules24162934 - 13 Aug 2019
Cited by 19 | Viewed by 6350
Abstract
Zinnia elegans (syn. Zinnia violacea) is a common ornamental plant of the Asteraceae family, widely cultivated for the impressive range of flower colors and persistent bloom. Given its uncomplicated cultivation and high adaptability to harsh landscape conditions, we investigated the potential use [...] Read more.
Zinnia elegans (syn. Zinnia violacea) is a common ornamental plant of the Asteraceae family, widely cultivated for the impressive range of flower colors and persistent bloom. Given its uncomplicated cultivation and high adaptability to harsh landscape conditions, we investigated the potential use of Z. elegans as a source of valuable secondary metabolites. Preliminary classification of compounds found in a methanolic extract obtained from inflorescences of Z. elegans cv. Caroussel was accomplished using HR LC-MS techniques. The extract was then subjected to solid-phase extraction and separation using Sephadex LH-20 column chromatography, which resulted in several fractions further investigated for their antioxidant properties through lipoxygenase inhibition and metal chelating activity assays. Moreover, following additional purification procedures, structures of some active ingredients were established by NMR spectroscopy. The investigated fractions contained polyphenolic compounds such as chlorogenic acids and apigenin, kaempferol, and quercetin glycosides. Antioxidant assays showed that certain fractions exhibit moderate 15-LOX inhibition (Fr 2, IC50 = 18.98 μg/mL) and metal chelation (e.g., Fr 1-2, EC50 = 0.714–1.037 mg/mL) activities as compared to positive controls (20.25 μg/mL for kaempferol and 0.068 mg/mL for EDTA, respectively). For Fr 2, the 15-LOX inhibition activity seems to be related to the abundance of kaempferol glycosides. The NMR analyses revealed the presence of a kaempferol 3-O-glycoside, and a guanidine alkaloid previously not described in this species. Full article
(This article belongs to the Special Issue Selected Papers from the Joint Symposia of MESMAP-5 & ISPBS-5)
Show Figures

Figure 1

Back to TopTop