Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (55)

Search Parameters:
Keywords = Zinc selective electrode

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3714 KiB  
Article
Application of Graphite Electrodes Prepared from Waste Zinc−Carbon Batteries for Electrochemical Detection of Xanthine
by Milan B. Radovanović, Ana T. Simonović, Marija B. Petrović Mihajlović, Žaklina Z. Tasić and Milan M. Antonijević
Chemosensors 2025, 13(8), 282; https://doi.org/10.3390/chemosensors13080282 - 2 Aug 2025
Viewed by 112
Abstract
Waste from zinc−carbon batteries poses a serious environmental protection problem. One of the main problems is also the reliable and rapid determination of some compounds that may be present in food and beverages consumed worldwide. This study addresses these problems and presents a [...] Read more.
Waste from zinc−carbon batteries poses a serious environmental protection problem. One of the main problems is also the reliable and rapid determination of some compounds that may be present in food and beverages consumed worldwide. This study addresses these problems and presents a possible solution for the electrochemical detection of xanthine using carbon from spent batteries. Cyclic voltammetry and differential pulse voltammetry are electrochemical methods used for the detection of xanthine. The techniques used demonstrate the mechanism of xanthine oxidation in the tested environment. A linear correlation was found between the oxidation current peaks and the xanthine concentration in the range of 5·10−7 to 1·10−4 M, as well as the values for the limit of detection and the limit of quantification, 7.86·10−8 M and 2.62·10−7 M, respectively. The interference test shows that the electrode obtained from waste Zn-C batteries has good selectivity, which means that the electrode can be used for xanthine determination in the presence of various ions. The data obtained show that carbon sensors from used zinc−carbon batteries can be used to detect xanthine in real samples. Full article
(This article belongs to the Special Issue Electrochemical Sensor for Food Analysis)
Show Figures

Figure 1

37 pages, 7777 KiB  
Review
Cement-Based Electrochemical Systems for Structural Energy Storage: Progress and Prospects
by Haifeng Huang, Shuhao Zhang, Yizhe Wang, Yipu Guo, Chao Zhang and Fulin Qu
Materials 2025, 18(15), 3601; https://doi.org/10.3390/ma18153601 - 31 Jul 2025
Viewed by 311
Abstract
Cement-based batteries (CBBs) are an emerging category of multifunctional materials that combine structural load-bearing capacity with integrated electrochemical energy storage, enabling the development of self-powered infrastructure. Although previous reviews have explored selected aspects of CBB technology, a comprehensive synthesis encompassing system architectures, material [...] Read more.
Cement-based batteries (CBBs) are an emerging category of multifunctional materials that combine structural load-bearing capacity with integrated electrochemical energy storage, enabling the development of self-powered infrastructure. Although previous reviews have explored selected aspects of CBB technology, a comprehensive synthesis encompassing system architectures, material strategies, and performance metrics remains insufficient. In this review, CBB systems are categorized into two representative configurations: probe-type galvanic cells and layered monolithic structures. Their structural characteristics and electrochemical behaviors are critically compared. Strategies to enhance performance include improving ionic conductivity through alkaline pore solutions, facilitating electron transport using carbon-based conductive networks, and incorporating redox-active materials such as zinc–manganese dioxide and nickel–iron couples. Early CBB prototypes demonstrated limited energy densities due to high internal resistance and inefficient utilization of active components. Recent advancements in electrode architecture, including nickel-coated carbon fiber meshes and three-dimensional nickel foam scaffolds, have achieved stable rechargeability across multiple cycles with energy densities surpassing 11 Wh/m2. These findings demonstrate the practical potential of CBBs for both energy storage and additional functionalities, such as strain sensing enabled by conductive cement matrices. This review establishes a critical basis for future development of CBBs as multifunctional structural components in infrastructure applications. Full article
Show Figures

Figure 1

13 pages, 1647 KiB  
Article
Electrochemical Sensing of Hg2+ Ions Using an SWNTs/Ag@ZnBDC Composite with Ultra-Low Detection Limit
by Gajanan A. Bodkhe, Bhavna Hedau, Mayuri S. More, Myunghee Kim and Mahendra D. Shirsat
Chemosensors 2025, 13(7), 259; https://doi.org/10.3390/chemosensors13070259 - 16 Jul 2025
Viewed by 372
Abstract
A novel single-walled carbon nanotube (SWNT), silver (Ag) nanoparticle, and zinc benzene carboxylate (ZnBDC) metal–organic framework (MOF) composite was synthesised and systematically characterised to develop an efficient platform for mercury ion (Hg2+) detection. X-ray diffraction confirmed the successful incorporation of Ag [...] Read more.
A novel single-walled carbon nanotube (SWNT), silver (Ag) nanoparticle, and zinc benzene carboxylate (ZnBDC) metal–organic framework (MOF) composite was synthesised and systematically characterised to develop an efficient platform for mercury ion (Hg2+) detection. X-ray diffraction confirmed the successful incorporation of Ag nanoparticles and SWNTs without disrupting the crystalline structure of ZnBDC. Meanwhile, field-emission scanning electron microscopy and energy-dispersive spectroscopy mapping revealed a uniform elemental distribution. Thermogravimetric analysis indicated enhanced thermal stability. Electrochemical measurements (cyclic voltammetry and electrochemical impedance spectroscopy) demonstrated improved charge transfer properties. Electrochemical sensing investigations using differential pulse voltammetry revealed that the SWNTs/Ag@ZnBDC-modified glassy carbon electrode exhibited high selectivity toward Hg2+ ions over other metal ions (Cd2+, Co2+, Cr3+, Fe3+, and Zn2+), with optimal performance at pH 4. The sensor displayed a linear response in the concentration range of 0.1–1.0 nM (R2 = 0.9908), with a calculated limit of detection of 0.102 nM, slightly close to the lowest tested point, confirming its high sensitivity for ultra-trace Hg2+ detection. The outstanding sensitivity, selectivity, and reproducibility underscore the potential of SWNTs/Ag@ZnBDC as a promising electrochemical platform for detecting trace levels of Hg2+ in environmental monitoring. Full article
(This article belongs to the Special Issue Green Electrochemical Sensors for Trace Heavy Metal Detection)
Show Figures

Figure 1

22 pages, 9357 KiB  
Article
A Zinc Oxide Interconnected Hydroxypropyl-Beta-Cyclodextrin/rGO Nanocomposite as an Electrocatalyst for Melatonin Detection: An Ultra-Sensitive Electrochemical Sensor
by Kuo-Yuan Hwa, Aravindan Santhan, Chun-Wei Ou and Cheng-Han Wang
Sensors 2025, 25(11), 3266; https://doi.org/10.3390/s25113266 - 22 May 2025
Viewed by 575
Abstract
Nanocomposite hydroxypropyl-beta-cyclodextrin functionalized reduced graphene oxide sheets (HpβCD@rGOs) with zinc oxide flaky structures (ZnOFs) were synthesized. The ZnOFs/HpβCD@rGOs were first characterized to examine their physicochemical characteristics. The ZnOFs exhibited a highly crystalline structure intertwined with HpβCD@rGO sheets. The electrocatalyst experienced excellent electrochemical oxidation [...] Read more.
Nanocomposite hydroxypropyl-beta-cyclodextrin functionalized reduced graphene oxide sheets (HpβCD@rGOs) with zinc oxide flaky structures (ZnOFs) were synthesized. The ZnOFs/HpβCD@rGOs were first characterized to examine their physicochemical characteristics. The ZnOFs exhibited a highly crystalline structure intertwined with HpβCD@rGO sheets. The electrocatalyst experienced excellent electrochemical oxidation current responses toward melatonin (MTN). The interaction between the catalyst and MTN improves electrochemical activity through a synergistic action, which can be measured by a glassy carbon electrode (GCE) modified with ZnOFs/HpβCD@rGOs. This modified electrode with the increased reactive sites and a large electrochemically active surface area allows the rapid oxidation reaction of MTN. The oxidation of MTN was detected and measured with a linearity range around 0.014–0.149 and 1.149–643.341 (µM), with a low detection limit (LOD) of around 0.0105 µM or 10.5 nM. The sensitivity was around 6.19 μA μM−1 cm−2. The constructed electrode demonstrated a notable level of selectivity to MTN when the interfering (biological) chemicals with a similar structure to MTN were introduced. The real samples were tested in order to examine whether the ZnOFs/HpβCD@rGOs/GCE can be developed for the biomedical monitoring of compounds. The results suggest that ZnOFs/HpβCD@rGOs/GCE can detect MTN in in vitro human samples. Furthermore, the cost-effectiveness, enhanced electrochemical capabilities, and easy fabrication of the electrode make the ZnOFs/HpβCD@rGOs composite a feasible solution for the future industrial development of monitoring tools as sensors. Full article
(This article belongs to the Special Issue Recent Advances in Nanomaterial-Based Electrochemical Sensors)
Show Figures

Graphical abstract

22 pages, 5620 KiB  
Article
Zinc Oxide Nanorod-Based Sensor for Precision Detection and Estimation of Residual Pesticides on Tea Leaves
by Baharul Islam, Rakesh A. Afre, Sunandan Baruah and Diego Pugliese
Micromachines 2025, 16(5), 569; https://doi.org/10.3390/mi16050569 - 10 May 2025
Viewed by 655
Abstract
This study presents the development of a zinc oxide (ZnO) nanorod-based sensor for the detection and quantification of residual pesticides commonly found in tea plantations, with a focus on quinalphos and thiamethoxam. Exploiting the unique electrical characteristics of ZnO nanorods, the sensor exhibits [...] Read more.
This study presents the development of a zinc oxide (ZnO) nanorod-based sensor for the detection and quantification of residual pesticides commonly found in tea plantations, with a focus on quinalphos and thiamethoxam. Exploiting the unique electrical characteristics of ZnO nanorods, the sensor exhibits high sensitivity and selectivity in monitoring trace levels of pesticide residues. The detection mechanism relies on measurable changes in electrical resistance when the ZnO nanorod-coated electrodes interact with varying concentrations of the target pesticides. A performance evaluation was carried out using water samples spiked with different pesticide concentrations. The sensor displayed distinct response profiles for each compound: a linear resistance–concentration relationship for quinalphos and a non-linear, saturating trend for thiamethoxam, reflecting their differential interactions with the ZnO surface. Statistical analysis confirmed the sensor’s reliability, reproducibility, and consistency across repeated measurements. The rapid response time and ease of fabrication underscore its potential for real-time, on-site pesticide monitoring. This method offers a promising alternative to traditional analytical techniques, enhancing food safety assurance and supporting sustainable agricultural practices through effective environmental surveillance. Full article
(This article belongs to the Special Issue Nanomaterials for Micro/Nano Devices, 2nd Edition)
Show Figures

Figure 1

21 pages, 10702 KiB  
Review
Recent Progress in Cathode-Free Zinc Electrolytic MnO2 Batteries: Electrolytes and Electrodes
by Shiwei Liu, Zhongqi Liang, Hang Zhou, Weizheng Cai, Jiazhen Wu, Qianhui Zhang, Guoshen Yang, Walid A. Daoud, Zanxiang Nie, Pritesh Hiralal, Shiqiang Luo and Gehan A. J. Amaratunga
Batteries 2025, 11(5), 171; https://doi.org/10.3390/batteries11050171 - 23 Apr 2025
Viewed by 991
Abstract
Zinc–manganese dioxide (Zn–MnO2) batteries, pivotal in primary energy storage, face challenges in rechargeability due to cathode dissolution and anode corrosion. This review summarizes cathode-free designs using pH-optimized electrolytes and modified electrodes/current collectors. For electrolytes, while acidic systems with additives (PVP, HAc) [...] Read more.
Zinc–manganese dioxide (Zn–MnO2) batteries, pivotal in primary energy storage, face challenges in rechargeability due to cathode dissolution and anode corrosion. This review summarizes cathode-free designs using pH-optimized electrolytes and modified electrodes/current collectors. For electrolytes, while acidic systems with additives (PVP, HAc) enhance ion transport, dual-electrolyte configurations (ion-selective membranes/hydrogels) reduce Zn corrosion. Near-neutral strategies utilize nanomicelles/complexing agents to regulate MnO2 deposition. Moreover, mediators (I, Br, Cr3+) reactivate MnO2 but require shuttle-effect control. For the electrodes/current collectors, electrode innovations including SEI/CEI layers and surfactant-driven phase tuning are introduced. Electrode-free designs and integrated “supercapattery” systems combining supercapacitors with Zn–MnO2/I2 chemistries are also discussed. This review highlights electrolyte–electrode synergy and hybrid device potential, paving the way for sustainable, high-performance Zn–MnO2 systems. Full article
Show Figures

Graphical abstract

14 pages, 5458 KiB  
Article
A Study on Measures to Preserve Chlorine and Ammonia Oxygen Removal
by Kecheng Shang, Zhonglin Li, Weiguang Zhang and Yibing Li
Materials 2025, 18(6), 1347; https://doi.org/10.3390/ma18061347 - 18 Mar 2025
Viewed by 459
Abstract
Ammonia zinc refining has the benefits of low energy consumption, high zinc recovery, and good environmental protection compared with traditional acid and alkaline zinc refining. However, in the production process of refining zinc with ammonia, the anode undergoes chlorine precipitation, and then the [...] Read more.
Ammonia zinc refining has the benefits of low energy consumption, high zinc recovery, and good environmental protection compared with traditional acid and alkaline zinc refining. However, in the production process of refining zinc with ammonia, the anode undergoes chlorine precipitation, and then the oxidation of the ammonia precipitation of some nitrogen occurs. Ammonia replenishment is a cumbersome process that results in large amounts of ammonia volatilization and environmental pollution. In ammonia zinc refining, it is important to ensure the concentration of ammonia and chlorine, as the graphite anodes used in conventional ammonia zinc refining do not retain chlorine and ammonia and dissolve slowly due to oxidation. Therefore, this paper proposes a new measure to conserve chlorine and ammonia to reduce anode chlorine generation by adding an anionic barrier layer and selecting manganese anode materials with selective oxygen precipitation. Under the conditions of 50 × 100 mm sized electrodes, a current density of 350 A/m2, and a temperature of 60 °C, a graphite anode and manganese anode were used for electrowinning and for the collection of anode gas under different additive conditions. For the first time, we present a comparative analysis of gas composition, using gas chromatography to demonstrate the feasibility of the different measures used to preserve chlorine, ammonia, and oxygen for industrial applications, as well as the advantages of using these methods in reducing costs. And the experiments show that, by adding the anionic barrier layer, adding urea, and using manganese anode materials with selective oxygen precipitation, the nitrogen precipitation in the anode gas can be reduced to 40–50%, and oxygen precipitation reaches 48.76%. Full article
Show Figures

Figure 1

21 pages, 5430 KiB  
Article
Electrocatalytic Pathways and Efficiency of Cuprous Oxide (Cu2O) Surfaces in CO2 Electrochemical Reduction (CO2ER) to Methanol: A Computational Approach
by Zubair Ahmed Laghari, Wan Zaireen Nisa Yahya, Sulafa Abdalmageed Saadaldeen Mohammed and Mohamad Azmi Bustam
Catalysts 2025, 15(2), 130; https://doi.org/10.3390/catal15020130 - 29 Jan 2025
Viewed by 1697
Abstract
Carbon dioxide (CO2) can be electrochemically, thermally, and photochemically reduced into valuable products such as carbon monoxide (CO), formic acid (HCOOH), methane (CH4), and methanol (CH3OH), contributing to carbon footprint mitigation. Extensive research has focused on catalysts, [...] Read more.
Carbon dioxide (CO2) can be electrochemically, thermally, and photochemically reduced into valuable products such as carbon monoxide (CO), formic acid (HCOOH), methane (CH4), and methanol (CH3OH), contributing to carbon footprint mitigation. Extensive research has focused on catalysts, combining experimental approaches with computational quantum mechanics to elucidate reaction mechanisms. Although computational studies face challenges due to a lack of accurate approximations, they offer valuable insights and assist in selecting suitable catalysts for specific applications. This study investigates the electrocatalytic pathways of CO2 reduction on cuprous oxide (Cu2O) catalysts, utilizing the computational hydrogen electrode (CHE) model based on density functional theory (DFT). The electrocatalytic performance of flat Cu2O (100) and hexagonal Cu2O (111) surfaces was systematically analysed, using the standard hydrogen electrode (SHE) as a reference. Key parameters, including free energy changes (ΔG), adsorption energies (Eads), reaction mechanisms, and pathways for various intermediates were estimated. The results showed that CO2 was reduced to CO(g) on both Cu2O surfaces at low energies. However, methanol (CH3OH) production was observed preferentially on Cu2O (111) at ΔG = −1.61 eV, whereas formic acid (HCOOH) and formaldehyde (HCOH) formation were thermodynamically unfavourable at interfacial sites. The CO2-to-methanol conversion on Cu2O (100) exhibited a total ΔG of −3.38 eV, indicating lower feasibility compared to Cu2O (111) with ΔG = −5.51 eV. These findings, which are entirely based on a computational approach, highlight the superior catalytic efficiency of Cu2O (111) for methanol synthesis. This approach also holds the potential for assessing the catalytic performance of other transition metal oxides (e.g., nickel oxide, cobalt oxide, zinc oxide, and molybdenum oxide) and their modified forms through doping or alloying with various elements. Full article
(This article belongs to the Special Issue Catalysis for CO2 Conversion, 2nd Edition)
Show Figures

Graphical abstract

13 pages, 13568 KiB  
Article
Influence of Copper and Tin Oxidation States on the Phase Evolution of Solution-Processed Ag-Alloyed CZTS Photovoltaic Absorbers
by Abdeljalil Errafyg, Naoufal Ennouhi, Yassine Chouimi and Zouheir Sekkat
Energies 2024, 17(24), 6341; https://doi.org/10.3390/en17246341 - 17 Dec 2024
Viewed by 1155
Abstract
Kesterite-based semiconductors, particularly copper–zinc–tin–sulfide (CZTS), have garnered considerable attention as potential absorber layers in thin-film solar cells because of their abundance, nontoxicity, and cost-effectiveness. In this study, we explored the synthesis of Ag-alloyed CZTS (ACZTS) materials via the sol–gel method and deposited them [...] Read more.
Kesterite-based semiconductors, particularly copper–zinc–tin–sulfide (CZTS), have garnered considerable attention as potential absorber layers in thin-film solar cells because of their abundance, nontoxicity, and cost-effectiveness. In this study, we explored the synthesis of Ag-alloyed CZTS (ACZTS) materials via the sol–gel method and deposited them on a transparent fluorine-doped tin oxide (FTO) back electrode. A key challenge is the selection and manipulation of metal–salt precursors, with a particular focus on the oxidation states of copper (Cu) and tin (Sn) ions. Two distinct protocols, varying the oxidation states of the Cu and Sn ions, were employed to synthesize the ACZTS materials. The transfer from the solution to the precursor film was analyzed, followed by annealing at different temperatures under a sulfur atmosphere to investigate the behavior and growth of these materials during the final stage of annealing. Our results show that the precursor transformation from solution to film is highly sensitive to the oxidation states of these metal ions, significantly influencing the chemical reactions during sol–gel synthesis and subsequent annealing. Furthermore, the formation pathway of the kesterite phase at elevated temperatures differs between the two protocols. Structural, morphological, and optical properties were characterized via X-ray diffraction (XRD), Raman spectroscopy, and scanning electron microscopy (SEM). Our findings highlight the critical role of the Cu and Sn oxidation states in the formation of high-quality kesterite materials. Additionally, we studied a novel approach for controlling the synthesis and phase evolution of kesterite materials via molecular inks, which could provide new opportunities for enhancing the efficiency of thin-film solar cells. Full article
(This article belongs to the Section D1: Advanced Energy Materials)
Show Figures

Figure 1

12 pages, 2422 KiB  
Article
Optimization of Electrospray Deposition Conditions of ZnO Thin Films for Ammonia Sensing
by Georgi Marinov, Gergana Alexieva, Katerina Lazarova, Rositsa Gergova, Petar Ivanov and Tsvetanka Babeva
Nanomaterials 2024, 14(12), 1008; https://doi.org/10.3390/nano14121008 - 11 Jun 2024
Cited by 2 | Viewed by 1935
Abstract
This study focuses on the influence of electrospray deposition parameters on the morphology, topography, optical and sensing properties of ZnO films deposited on gold electrodes of quartz crystal resonators. The substrate temperature, precursor feed rate and emitter’s voltage were varied. Zinc acetate dehydrate [...] Read more.
This study focuses on the influence of electrospray deposition parameters on the morphology, topography, optical and sensing properties of ZnO films deposited on gold electrodes of quartz crystal resonators. The substrate temperature, precursor feed rate and emitter’s voltage were varied. Zinc acetate dehydrate dissolved in a mixture of deionized water, ethanol and acetic acid was used as a precursor. The surface morphology and average roughness of the films were studied by scanning electron microscopy (SEM) and 3D optical profilometry, respectively, while the optical properties were investigated by diffuse reflectance and photoluminescence measurements. The sensing response toward ammonia was tested and verified by the quartz crystal microbalance (QCM) method. The studies demonstrated that electrospray deposition parameters strongly influence the surface morphology, roughness and gas sensing properties of the films. The deposition parameters were optimized in order for the highest sensitivity toward ammonia to be achieved. The successful implementation of the electrospray method as a simple, versatile and low-cost method for deposition of ammonia-sensitive and selective ZnO films used as a sensing medium in QCM sensors was demonstrated and discussed. Full article
(This article belongs to the Special Issue Nanoscale Material-Based Gas Sensors)
Show Figures

Figure 1

15 pages, 5938 KiB  
Article
An Electroanalytical Enzymeless α-Fe2O3-ZnO Hybrid Nanostructure-Based Sensor for Sensitive Quantification of Nitrite Ions
by Rafiq Ahmad, Abdullah, Md. Tabish Rehman, Mohamed F. AlAjmi, Shamshad Alam, Kiesar Sideeq Bhat, Prabhash Mishra and Byeong-Il Lee
Nanomaterials 2024, 14(8), 706; https://doi.org/10.3390/nano14080706 - 18 Apr 2024
Cited by 7 | Viewed by 2652
Abstract
Nitrite monitoring serves as a fundamental practice for protecting public health, preserving environmental quality, ensuring food safety, maintaining industrial safety standards, and optimizing agricultural practices. Although many nitrite sensing methods have been recently developed, the quantification of nitrite remains challenging due to sensitivity [...] Read more.
Nitrite monitoring serves as a fundamental practice for protecting public health, preserving environmental quality, ensuring food safety, maintaining industrial safety standards, and optimizing agricultural practices. Although many nitrite sensing methods have been recently developed, the quantification of nitrite remains challenging due to sensitivity and selectivity limitations. In this context, we present the fabrication of enzymeless iron oxide nanoparticle-modified zinc oxide nanorod (α-Fe2O3-ZnO NR) hybrid nanostructure-based nitrite sensor fabrication. The α-Fe2O3-ZnO NR hybrid nanostructure was synthesized using a two-step hydrothermal method and characterized in detail utilizing x-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). These analyses confirm the successful synthesis of an α-Fe2O3-ZnO NR hybrid nanostructure, highlighting its morphology, purity, crystallinity, and elemental constituents. The α-Fe2O3-ZnO NR hybrid nanostructure was used to modify the SPCE (screen-printed carbon electrode) for enzymeless nitrite sensor fabrication. The voltammetric methods (i.e., cyclic voltammetry (CV) and differential pulse voltammetry (DPV)) were employed to explore the electrochemical characteristics of α-Fe2O3-ZnO NR/SPCE sensors for nitrite. Upon examination of the sensor’s electrochemical behavior across a range of nitrite concentrations (0 to 500 µM), it is evident that the α-Fe2O3-ZnO NR hybrid nanostructure shows an increased response with increasing nitrite concentration. The sensor demonstrates a linear response to nitrite concentrations up to 400 µM, a remarkable sensitivity of 18.10 µA µM−1 cm−2, and a notably low detection threshold of 0.16 µM. Furthermore, its exceptional selectivity, stability, and reproducibility make it an ideal tool for accurately measuring nitrite levels in serum, yielding reliable outcomes. This advancement heralds a significant step forward in the field of environmental monitoring, offering a potent solution for the precise assessment of nitrite pollution. Full article
(This article belongs to the Special Issue Functional Nanomaterials for Sensing and Detection (2nd Edition))
Show Figures

Figure 1

13 pages, 4571 KiB  
Article
Metal-Based Nanomaterials for the Sensing of NSAIDS
by Farah Quddus, Afzal Shah, Naimat Ullah and Iltaf Shah
Nanomaterials 2024, 14(7), 630; https://doi.org/10.3390/nano14070630 - 4 Apr 2024
Cited by 1 | Viewed by 1871
Abstract
Cadmium sulfide and zinc oxide nanoparticles were prepared, characterized and used as electrode modifiers for the sensing of two non-steroidal anti-inflammatory drugs (NSAIDs): naproxen and mobic. The structural and morphological characterization of the synthesized nanoparticles was carried out by XRD, UV-Vis spectroscopy, FTIR [...] Read more.
Cadmium sulfide and zinc oxide nanoparticles were prepared, characterized and used as electrode modifiers for the sensing of two non-steroidal anti-inflammatory drugs (NSAIDs): naproxen and mobic. The structural and morphological characterization of the synthesized nanoparticles was carried out by XRD, UV-Vis spectroscopy, FTIR and scanning electron microscopy. The electrode’s enhanced surface area facilitated the signal amplification of the selected NSAIDs. The CdS-modified glassy carbon electrode (GCE) enhanced the electro-oxidation signals of naproxen to four times that of the bare GCE, while the ZnO-modified GCE led to a two-fold enhancement in the electro-oxidation signals of mobic. The oxidation of both NSAIDs occurred in a pH-dependent manner, suggesting the involvement of protons in their electron transfer reactions. The experimental conditions for the sensing of naproxen and mobic were optimized and, under optimized conditions, the modified electrode surface demonstrated the qualities of sensitivity and selectivity, and a fast responsiveness to the target NSAIDs. Full article
Show Figures

Figure 1

16 pages, 9653 KiB  
Article
[SBP]BF4 Additive Stabilizing Zinc Anode by Simultaneously Regulating the Solvation Shell and Electrode Interface
by Xingyun Zhang, Kailimai Su, Yue Hu, Kaiyuan Xue, Yan Wang, Minmin Han and Junwei Lang
Batteries 2024, 10(3), 102; https://doi.org/10.3390/batteries10030102 - 14 Mar 2024
Cited by 1 | Viewed by 2585
Abstract
The zinc anode mainly faces technical problems such as short circuits caused by the growth of dendrite, low coulomb efficiency, and a short cycle life caused by side reactions, which impedes the rapid development of aqueous zinc-ion batteries (AZIBs). Herein, a common ionic [...] Read more.
The zinc anode mainly faces technical problems such as short circuits caused by the growth of dendrite, low coulomb efficiency, and a short cycle life caused by side reactions, which impedes the rapid development of aqueous zinc-ion batteries (AZIBs). Herein, a common ionic liquid, 1,1-Spirobipyrrolidinium tetrafluoroborate ([SBP]BF4), is selected as a new additive for pure ZnSO4 electrolyte. It is found that this additive could regulate the solvation sheath of hydrated Zn2+ ions, promote the ionic mobility of Zn2+, homogenize the flux of Zn2+, avoid side reactions between the electrolyte and electrode, and inhibit the production of zinc dendrites by facilitating the establishment of an inorganic solid electrolyte interphase layer. With the 1% [SBP]BF4-modified electrolyte, the Zn||Zn symmetric cell delivers an extended plating/stripping cycling life of 2000 h at 1 mA cm−2, which is much higher than that of the cell without additives (330 h). As a proof of concept, the Zn‖V2O5 battery using the [SBP]BF4 additive shows excellent cycling stability, maintaining its specific capacity at 97 mAh g−1 after 2000 cycles at 5 A g−1, which is much greater than the 46 mAh g−1 capacity of the non-additive battery. This study offers zinc anode stabilization through high-efficiency electrolyte engineering. Full article
Show Figures

Figure 1

16 pages, 6327 KiB  
Article
ZnO Decorated Graphene-Based NFC Tag for Personal NO2 Exposure Monitoring during a Workday
by Alejandro Santos-Betancourt, José Carlos Santos-Ceballos, Mohamed Ayoub Alouani, Shuja Bashir Malik, Alfonso Romero, José Luis Ramírez, Xavier Vilanova and Eduard Llobet
Sensors 2024, 24(5), 1431; https://doi.org/10.3390/s24051431 - 22 Feb 2024
Cited by 6 | Viewed by 2768
Abstract
This paper presents the integration of a sensing layer over interdigitated electrodes and an electronic circuit on the same flexible printed circuit board. This integration provides an effective technique to use this design as a wearable gas measuring system in a target application, [...] Read more.
This paper presents the integration of a sensing layer over interdigitated electrodes and an electronic circuit on the same flexible printed circuit board. This integration provides an effective technique to use this design as a wearable gas measuring system in a target application, exhibiting high performance, low power consumption, and being lightweight for on-site monitoring. The wearable system proves the concept of using an NFC tag combined with a chemoresistive gas sensor as a cumulative gas sensor, having the possibility of holding the data for a working day, and completely capturing the exposure of a person to NO2 concentrations. Three different types of sensors were tested, depositing the sensing layers on gold electrodes over Kapton substrate: bare graphene, graphene decorated with 5 wt.% zinc oxide nanoflowers, or nanopillars. The deposited layers were characterized using FESEM, EDX, XRD, and Raman spectroscopy to determine their crystalline structure, morphological and chemical compositions. The gas sensing performance of the sensors was analyzed against NO2 (dry and humid conditions) and other interfering species (dry conditions) to check their sensitivity and selectivity. The resultant-built wearable NFC tag system accumulates the data in a non-volatile memory every minute and has an average low power consumption of 24.9 µW in dynamic operation. Also, it can be easily attached to a work vest. Full article
Show Figures

Figure 1

16 pages, 10756 KiB  
Article
Ternary Nanostructure Coupling Flip-Flap Origami-Based Aptasensor for the Detection of Dengue Virus Antigens
by Mohd. Rahil Hasan, Saumitra Singh, Pradakshina Sharma, Chhaya Rawat, Manika Khanuja, Roberto Pilloton and Jagriti Narang
Sensors 2024, 24(3), 801; https://doi.org/10.3390/s24030801 - 25 Jan 2024
Cited by 5 | Viewed by 1909
Abstract
There is currently a lot of interest in the construction of point-of-care devices stemming from paper-based origami biosensors. These devices demonstrate how paper’s foldability permits the construction of sensitive, selective, user-friendly, intelligent, and maintainable analytical devices for the detection of several ailments. Herein, [...] Read more.
There is currently a lot of interest in the construction of point-of-care devices stemming from paper-based origami biosensors. These devices demonstrate how paper’s foldability permits the construction of sensitive, selective, user-friendly, intelligent, and maintainable analytical devices for the detection of several ailments. Herein, the first example of the electrochemical aptasensor-based polyvalent dengue viral antigen detection using the origami paper-folding method is presented. Coupling it with an aptamer leads to the development of a new notation known as OBAs, or origami-based aptasensor, that presents a multitude of advantages to the developed platform, such as assisting in safeguarding the sample from air-dust particles, providing confidentiality, and providing a closed chamber to the electrodes. In this paper, gold-decorated nanocomposites of zinc and graphene oxide (Au/ZnO/GO) were synthesized via the chemical method, and characterization was conducted by Scanning Electron Microscope, Transmission Electron Microscope, UV-Vis, and XRD which reveals the successful formation of nanocomposites, mainly helping to enhance the signal and specificity of the sensor by employing aptamers, since isolation and purification procedures are not required. The biosensor that is being demonstrated here is affordable, simple, and efficient. The reported biosensor is an OBA detection of polyvalent antigens of the dengue virus in human serum, presenting a good range from 0.0001 to 0.1 mg/mL with a limit of detection of 0.0001 mg/mL. The reported single-folding ori-aptasensor demonstrates exceptional sensitivity, specificity, and performance in human serum assays, and can also be used for the POC testing of various viral infections in remote areas and underdeveloped countries, as well as being potentially effective during outbreaks. Highlights: (1) First report on origami-based aptasensors for the detection of polyvalent antigens of DENV; (2) In-house construction of low-cost origami-based setup; (3) Gold-decorated zinc/graphene nanocomposite characterization was confirmed via FESEM/UV-Vis/FTIR; (4) Cross-reactivity of dengue-aptamer has been deduced; (5) Electrochemical validation was conducted through CV. Full article
Show Figures

Figure 1

Back to TopTop